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1. Introduction. In this paper we prove the
strong unique continuation property for some
second order systems. There are many results for
second order single equation (for example [1-3]).
Let Q be a nonempty open connected subset of R"
containing the origin, and let

p(x,0) = Z a; i(x)0;0k

be an elliptic differential operator in €2 such that
a;,(0) is real and a;;(z) is Lipschitz continuous
in Q. In [3], Regbaoui proved that if v € H. ()
satisfies

Ip(a, )ul < Cola ™ |ul + Cile] " [Vl

with a sufficiently small C; and

lim p’ﬂ/ |u|2dac =0
p=0 |z[<p
for any positive 3, then w is identically zero in ).
We are interested in second order systems, that
is, ajx(x) is of matrix valued.
2. Main Results. Let  be a nonempty
open connected subset of R" containing the origin,
and let

(2.1) P(z,0) = Y Ajx(x)00

1<), k<n

be an elliptic differential operator in 2 where A; . is
an N x N matrix valued function with the entries
which are Lipschitz continuous in § for any 1 <
J,k<n. We assume that P(z,d) satisfies the
following properties;
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(22) j’ﬂkAl,m = Al,m jk

for any 1 < j,k,1,m < n, and there exist an elliptic
differential operator p(9) =}, ;<, @;10;0; with
real coefficients and complex numbers \; j=
1,2..., N such that

A1p(0)

(2.3) P(0,0) =diag

Anp(0)

Then it follows the following theorem.

Theorem 2.1. There exists a positive con-
stant C* depending only on p(d) such that if u €
{H2 (O} satisfies

(24)  |P(x,0)ul < Colul/|z* + C1|Vul /||
with C7 < C* and

(2.5) nmpfﬂ/ 0 ufda = 0

=0 lel<p

for any positive B and any |a| <2, then u is

identically zero in some neighborhood of the origin.
3. Proof of Theorem. After a linear trans-

form, we may assume that p(d) = A. Considering

4= (AT'ug, ..., Ay'uy), without loss of generality,

it suffices to prove the theorem assuming P(0,0) =

Aly. In [3] Regbaoui proved the following result.
Lemma 3.1. There exists a positive constant

C such that
RV Sl A R
af<2

< c/ || 72 Al da
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for any pBe{j+1/2;€ N} and u €
@\ {0}).

Remark 3.2. The estimate (3.1) in Lemma
remains valid if we assume u e {H2 (Q)}" with
compact support satisfies (2.5).

Proposition 3.3. Letu € {HfOL(Q)}N satisfy
(2.4) and (2.5). Then there exist positive Cy and Cs

such that

any

||u||?{3({z|x|§p}) <Gy exp(—Cgpfl)

for any small positive p.

Proof. Let x(r) € C3°(]0, 00)) be a nonnegative
function such that x(r)=1 when 0<r <1,
Xx(r) =0 when 2 <r and |x'| < C. Setting u(z) =
x(e71B]x|)u(z) where € is a small positive parameter
which will be determined later. By Lemma 3.1
and (2.3) we have

(32) Z 6272‘0‘ / |$‘726+2‘a‘73‘8‘?ﬁ|2d$

la|<2
<c / 22 AdfPde
< O/ 2|27 P(0, 8)a)| da.

Since A;j, is Lipschitz continuous and |z| < 2¢7'4,
it follows that

(3.3) / 2|2 P(0, 0)a|*dx

<2 / (2| P, Q)i d

+2 Z/|x\_w+3|8§ﬂ|2dx

jal<2
and
(34) > / || 72| 9%) *da:
la|<2
<1262 Y / | 2 o da
jal<2

Fixing € such that 1 — 8Ce? > 0, we obtain

(3.5) Z /3272\11\ / |$\723+2‘“‘*3\8§a|2dx

la|<2
<c / 12| 2| P, Ol da

by (3.2), (3.3) and (3.4). On the other hand, from
(2.4) and €371 < |z| < 2¢87L, we have
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(3.6)
/ 2|1 P(z, B)af*dx

< / 2| | P, B)ulda
Jo|<ep1

+ / |lz| 2 P(, 0)al*da
ef1<|z|<2e61

<2 / |21 2l + C2|Vuf)da
x| <ep!

—20642|a|— 2
+c§:/ | 221013 g0y 2
lo]<2 ef1<|z| <261

By (3.5) and (3.6), if C} is small enough, then we
have

3 /6272\04/|x|72ﬁ+2\a\73|a:ﬂ|2dm

lal<2
<C / ‘x|72ﬁ+2‘a‘73|83u|2d.r
\§|§:2 B <[a| <267 '
for any large 3 € {j+1/2;j € N}. It follows that

52 j2) 2 / 07l de
|(X‘Z§2 |z|<1/2¢671

< Z 62—2|a\/ |x|726+2|a\73|a;¢12|2dx
lz|<1/2€67!

jal<2

<3 gl / | 2420008 g g 2

laf<2

and

Z/ |x‘72ﬁ+2\a\73‘89u|2dx
|| <2 eB1<|2|<2e6-1 i

< (BTN / 0% ul?da.
lal<2 ef1<|z|<2e671

Therefore there exist positive C5 and Cy such that

> / 05wl da:
o] <2 |z|<1/2¢671

<O(1/2)780 Yy / 0% u[2dx
lal<2 ef1<|z|<2e61

S CS eXp(_C4ﬁ)7

which proves the desired conclusion. 0

Proposition 3.3 allows us to use ¢1/2(loglal)’
rather than the usual weight |z|7”. Using the
similar method as [3], we can get the following
Carleman estimate under the hypothesis of
Theorem 2.1.
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Proposition 3.4. Under the hypothesis of
Theorem 2.1 there exists a positive C' such that

(B.7) llele, Tulal ™2 + 4 llipyule] )

< Clllal*¢, P(w, yulz| |
for any large v and any u € CP(Q\ {0}) with a
sufficiently small Q where ©, = exp(v/2(log z)?).
Remark 3.5. The estimate (3.7) in Proposi-

tion 3.4 remains valid if we assume u € HZ ()
with compact support satisfies

ti exp(3(og 1)) [

|lz|<p

|a§u|2dﬂc =0

for any positive 8 and any |a| < 2.

Proof. Let’s introduce polar coordinates in
R”\ {0} by setting z = e'w, with t € R and w=
(Wiy...,w,) €S L For k=1,...,n, we set Dj =
Q. and Dy = 0;. We have then

Or, = € (w0 + Q)

where € is a vector field on S~ The vector fields
€); have the properties

n n
Zw]‘QjZO and ZQ]'UJJ‘:TL—L
j=1 j=1

The adjoint of 2; as an operator in L?(S"71) is
Q= (n— Nw; — Q.
Then the operator P(x,d) takes the form
e* P(x,0) = ¢ P(0,0) + €' (P(x,0) — P(0,9))
= (0} + (n—2)0; + A) Iy
+ > (Aju(e'w) = A;(0))
ik

X (wj(0 — 1) + Q) (w0 + )
= (02 + (n—2)0 + A)Ix
+ ) Bja(t,w)dQ",

JHal<2

where Bj, are N x N valued matrices such that
Bj, = O(€') as t tends to —oo, and DyB;, = O(e')

as t tends to —oo, for any k€ {0,1,...,n}. We
note
(3.8) B!, Bys = BuiB..,

for any j, k, o and 8 thanks to the hypothesis (2.2).
Set u = e 7"/2y and P,v = /2 P(e7"/%v), thus P,

can be written

Strong unique continuation 121

e Pv = (9 — vt)*v + (n — 2)(dy — yt)v + Ay
+ Z ija((?t — ’}/t)an’U

JHlal<2
=0+ (n—2—2yt)ow
+ (P =y = (n =29t + AL

+ Z Bm(at —’Yt)an’U

JHal<2

=ay +az + a3z + as.

Set
ezf’PW_v = (=8, —yt)* v+ (n — 2)(—= — yt)v
+ AL v — 2w
+ Y B (=0 — ) ()
J+|al<2

=0 —(n—2—2yt)0w
+ (P =y = (n =29t + Ao
+ ) B (=0 — ) ()

J+lal<2
=a1 —az + a3 +as,
D(v,0) = [ Pyo* = || Py ol
and
S(y,0) = l¥t™ Pyl + [|e*t Py ol .
Thus we have
D(3,0) = 4R (a1, 02) + (a2, a5)}
+ 2R{(a4, a1 + as + a3) — (a1 — as + as, as)}
+ Jlaalf*  Jlas|*
S(v,0) > [t (a1 + a2 + a3)|*/2
+ It (a1 — ap + a3)||* /2
— [t aul® = |t as)?
= ([t a* + 1 az ) + ||t as
+2R(t  ar, t ag) — [t agl)P — ||t as |

where (-,-) is the L? inner product. Using the same
method as [3], we have

2R(ay,a9) = 2’y||8tv||2,
2R(az, az) = || fol?/2 = 2¢ Y 1901/,
=
[t an|* + [t aol* + [t as]|® + 2R(E a1, ¢ ag)

= 3Pl + It Al +2 ) 1t 820
j=1



122 M. SANADA

2 2 - 2
+ [[holl* + gdll* = D fliyll
j=1

where f2 = 12932 — 12(n — 2)72t — 492 4+ 2(n — 2)*,
P =27+ n -2t =29 +2(n— 2yt~ +29172,
B2 = (%t —(n—2)y — 4t 1)? —2(n — 2)yt 3 — 6yt
and > = 2(y? — (n — 2)yt~' — yt72) + 6t* (see from
page 212, line 23 to page 213, line 18 in [3] in
detail). On the other hand, by the definition of a4
and as it follows that

[t asll + (1t a5

< Z 7472\@\ ||B1Dav||2

la|<2

where By = Bj(t,w) satisfies Bj(t,w) = O(te') as t
tends to —oo.

To prove Proposition 3.4 we need the following
similar result as [3] (see Lemma 2.3 in [3]).

Lemma 3.6. Let Dy =0, —~t and ﬁ]- =Q;
forj=1,...,n, and let A(t,w) be an N x N matrizc
valued function such that A= O(e") as t tends to
—o0, and DA = O(€') ast tends to —oo. Then there
exists B(t,w) such that for any ve C(I x S"71),
and for any o, 3 € N""1 with |al, || < 2 we have

(A(t,w) D", DPv) - (A(t,w)(D")"v, (D))

< > 4N BD |
o] <2
and B = O(t?¢"?) as t tends to —oo.

Now, we proceed to the proof of Proposi-
tion 3.4. By Lemma 3.6 and (3.8) there exists a
function By(t,w) such that Bs(t,w) = O(t%¢!/?) as t
tends to —oo and

2R{ (a4, a1 + az + a3z) — (a1 — ag + az, a5)}

+ Jlaalf* — Jlas|®
< 3 By
|al<2

Thus we have

n
D(y,v) = 49|100))* + || foll* = 47D 19250]?
=1

= 3B D

laf<2

and

S(y,0) = |t 3l* +2 ) [l 0%yl
1
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n

+IE Aol + llgdeol” = Y o)’

J=1
+[lhl® = > A B D,
Ja|<2

Therefore we have
¥D(v,v) + S(v,v)

n
> [t 07”2 ) It ol + 1t Al
=1

+ 47211000 + llgdro]* + [1Ao]|* + ] fol*
= > ll* = 4?1190
j=1 j=1

= 3t BD

la]<2

where B = O(t?¢"/?) as t tends to —oo. Using the
same method in [3], if |Tp| is sufficiently large, then
we conclude that there exists a positive constant C
such that

[Pl > C 3 5P 2el el D

|| <2

for any v € C5°((—o0,Tp) x S"~1), which is a better
estimate than the desired one (3.7) (see from page
214, line 2 to page 215, line 12 in [3]). O

By Proposition 3.3 and Proposition 3.4 we
can see Theorem 2.1 in the standard manner.
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