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Abstract: A parameterized family of continuous functions which was considered by

the first author is re-visited in the case when they are monotonically increasing. We prove that

the functions are not only continuous and strictly increasing but also singular, i.e., their

derivatives are zero almost everywhere.
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1. Introduction. The first author defined

in [6] a family of continuous functions Fa para-

meterized by a ð0 < a < 1Þ and proved that they are

nowhere differentiable if 2=3 � a < 1 and nondiffer-

entiable almost everywhere if 0:5592 � � � < a < 2=3.

Since the author was interested in nowhere differ-

entiable functions in [6], he did not pay much

attention to the case where 0 < a < 1=2. In fact, the

function Fa with 0 < a < 1=2 are monotonically

increasing and, obviously, differentiable almost

everywhere.

The purpose of the present note is to prove that

Fa are continuous, strictly increasing, and singular

if 0 < a < 1=3 or 1=3 < a < 1=2. (A function is

called singular if it is not a constant function and

at the same time its derivative is zero almost

everywhere.)

Examples of monotone singular functions are

known, but many are, as in the case of the Cantor

function, not strictly monotone. Salem’s functions

and Minkowski’s question mark function are known

to be strictly monotone singular functions. Our

functions Fa provide us with new examples of such

functions.

2. Approximation process. We first recall

the definition of Fa in [6]. Fa is defined as the limit of

the uniformly converging sequence of functions fn,

which are piecewise linear continuous functions.

They are geometrically constructed in the following

way. We first define f0ðxÞ � x for 0 � x � 1. Then

fn’s are constructed so that they are linear in

k3�n � x � ðkþ 1Þ3�n ðk ¼ 0; 1; � � � ; 3n � 1Þ, that

fn are continuous throughout ½0; 1�, and that fnþ1

is defined from fn by applying the operation

shown in Fig. 1. (Each small interval ½k3�n; ðkþ
1Þ3�n� is divided into three equal parts. Accord-

ingly, the graph of fn consists of 3n line segments.)

Although fn depends on a, its dependence on a

is not explicitly written for the sake of notational

simplicity. We then set Fa ¼ limn!1 fn.

By the definition, F1=2 is the Cantor function

and F1=3ðxÞ ¼ x. It is also easy to prove that Fa

is strictly increasing if 0 < a < 1=2.

Remark 1. Prof. R. Daniel Mauldin and Dr.

K. Kawamura kindly showed us that our functions

with a > 1=2 are special cases of those considered by

J. Lee [4]. The construction in [4] is analytic and

more general than ours; ours is geometric and has

the merit of simplicity.

The first author proved in [6] that

Theorem 1. If 2=3 � a < 1, then the func-

tion Fa is continuous and nowhere differentiable.

If 0 < a < 0:5592 � � �, then Fa is differentiable

almost everywhere. If 0:5592 � � � < a < 2=3, then

Fa fails to be differentiable in a set of measure

one.

He could not answer the question of the differenti-

ability of F0:5592��� but recently Kobayashi [2]

proved that it is non-differentiable almost every-

where.

Definition 1 ðNormal numberÞ. Suppose

that b > 0 is an integer. For any x 2 ½0; 1�, let

x ¼ �1

b
þ

�2

b2
þ

�3

b3
þ � � �

be its b-adic expansion, where �n 2 f0; 1; 2; � � � ;
b� 1g ðn ¼ 1; 2; � � �Þ. Let N be a positive integer
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and let a ð0 � a < bÞ be a given integer. We

then write by Abða;N; xÞ the number of those

�nð1 � n � NÞ such that �n ¼ a. If for any

a ¼ 0; 1; � � � ; b� 1 we have

lim
N!1

1

N
Abða;N;xÞ ¼

1

b
;

then x is called simply normal to the base b.

The following theorem is well-known (see,

e.g., [3]):

Theorem 2. The set of simply normal num-

bers in ½0; 1� has full measure, i.e., its complement is

a null set.

The use of normal numbers was suggested to

us by Dr. K. Kobayashi. As is shown below, and

also used beautifully in [8], the use of normal

numbers simplifies mathematical arguments con-

siderably.

3. Main theorem. From now on, we as-

sume that 0 < a < 1=2. We prove

Theorem 3. Suppose that 0 < a < 1=2 and

that a 6¼ 1=3. Then Fa is a continuous, strictly

increasing, and singular function.

Proof. Continuity is proved in [6]: it follows

from the uniform convergence of fn to Fa. Strict

monotonicity is easily proved. Suppose now that

x 2 ð0; 1Þ has the following ternary expansion:

x ¼ �1

3
þ

�2

32
þ

�3

33
þ � � � ð�n ¼ 0; 1; 2Þ:ð1Þ

For a fixed n, let the number of 0; 1; 2 among

�1; �2; � � � ; �n be denoted by pn; qn, and rn, respec-

tively. We obviously have pn þ qn þ rn ¼ n. Then it

follows that

f 0
nðxÞ ¼ ð3aÞpnþrnð3� 6aÞqn

¼ 3a1�qn=nð1� 2aÞqn=n
h in

:

If x is simply normal to the base three and if

a2=3ð1� 2aÞ1=3 < 1=3ð2Þ

then f 0
nðxÞ ! 0 as n ! 1. (2) is true if

27ð1� 2aÞa2 < 1 or 54a3 � 27a2 þ 1 > 0:

Hence, if we set X ¼ 3a, (2) holds true if

2X3 � 3X2 þ 1 > 0:

The validity of this is verified in elementary fashion

for 0 < X < 1 and 1 < X < 3=2.

We have therefore proved that if 0 < a < 1=3

or 1=3 < a < 1=2, then f 0nðxÞ ! 0 for almost all x.

We already know (see [6]) that fn converges

to Fa uniformly in ½0; 1�. But these facts do not

imply by themselves that F 0
a is zero almost every-

where.

To prove F 0
a ¼ 0 almost everywhere, we pro-

ceed as follows. Note first that Fa is monotonically

increasing, whence it is differentiable almost every-

where. Accordingly, there exists a set E such

that its Lebesgue measure is one, that F 0
aðxÞ exists

for x 2 E, and that all x 2 E are simply normal. In

particular, limn!1 f 0
nðxÞ ¼ 0 for x 2 E. Also, we

may assume that none of k3�nðk ¼ 0; 1; � � � ; 3n; n 2
NÞ belongs to E.

Let an arbitrary x 2 E and an arbitrary posi-

tive integer n be fixed. Choose a k such that k3�n <

x < ðkþ 1Þ3�n. If ðkþ 1Þ3�n � x > x� k3�n, then

set xn ¼ ðkþ 1Þ3�n. Otherwise, set xn ¼ k3�n. Ac-

cordingly, 1
2 3

�n � jx� xnj � 3�n. By the construc-

tion, for all m � n, the graph of fm in k3�n � x �
ðkþ 1Þ3�n is contained in the rectangle k3�n � x �
ðkþ 1Þ3�n; fnðk3�nÞ � y � fnððkþ 1Þ3�nÞ. We

therefore have

Fig. 1. The operation from fn to fnþ1. Before the oper-

ation (top). After the operation (bottom). This operation

is performed in each subinterval ½k=3n; ðkþ 1Þ=3n�.
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FaðxÞ � FaðxnÞ
x� xn

����
���� � 2 � 3n fn

k

3n

� �
� fn

kþ 1

3n

� �����
����

¼ 2 3a1�qn=nð1� 2aÞqn=n
h in

:

Since jx� xnj ! 0, and since E is chosen so that

the derivative exists, F 0
aðxÞ must vanish. Since E

has a full measure, we are done. �

Although we have used the specific manner of

construction of Fa in the proof above, a different

proof is available if we use a theorem by L. Tonelli

[12]. Since his theorem seems to be largely forgotten

now, the proof below may be of some interest.

Before we state it, we recall the concept of

convergence in measure.

Definition 2. We say that a sequence of

functions ðvnÞ1n¼1 converges in measure, which we

shall denote by �, to a function v if and only if

lim
n!1

�ðfx : jvnðxÞ � vðxÞj > "gÞ ¼ 0

for all " > 0.

Theorem 4 ([12]). If the sequence of func-

tions ðunðxÞÞ1n¼1, given on the interval ða; bÞ, con-

verges almost everywhere to a function uðxÞ and

if the lengths of the curves associated to un tend to

the length of the curve of u, then

u0
nðxÞ ! u0ðxÞ;

where the convergence is in (Lebesgue) measure.

With this theorem at hand, we can easily prove

the required statement. As elementary calculations

reveal, the lengths of the graphs of functions ðfnÞ
indeed converge to the length of the curve Fa. In

fact, the length of the graph of fn is obviously

increasing in n. It is computed as

Xn
k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�2n þ ð1� 2aÞ2n�2ka2k

q
n

k

� �
2k;

hence is bounded byXn
k¼0

3�n þ ð1� 2aÞn�kak
h i n

k

� �
2k

¼ 3�nð1þ 2Þn þ ð1� 2aÞn 1þ
2a

1� 2a

� �n

¼ 2:

It therefore converges to a certain value, say, L. Let

the length of the graph of Fa be denoted by L0. By
definition, L0 is the supremum of the length of

polygonal curves inscribed to the graph of Fa. Since

the graph of fn is such a polygonal curve, we have

L0 � L. Suppose now that L0 > L. Then, by the

definition, there exists a polygonal curve whose

vertices are on the graph of Fa and its length is

greater than L. On the other hand, fn converges

uniformly to Fa. Note also that all the vertices of

the graph of fn are also on the graph of fm for all

m � n. Then it is easy to derive a contradiction

from these facts. Therefore the convergence of the

lengths is established.

Now Tonelli’s theorem tells us that

lim
n!1

�ðfx : jf 0nðxÞ � F 0
aðxÞj > "gÞ ¼ 0

for all " > 0. Let us set G ¼ fx : F 0
aðxÞ 6¼ 0g. Since

convergence in measure is equivalent to

Z1

0

jf 0
nðxÞ � F 0

aðxÞj
1þ jf 0

nðxÞ � F 0
aðxÞj

dx ! 0;

and since f 0
nðxÞ ! 0 almost everywhere, we haveZ

G

jF 0
aðxÞj

1þ jF 0
aðxÞj

dx ¼ 0:

But this can happen only if G is a null set. �

For the reader’s convenience, we draw graphs

of F0:2 and F0:4 in Fig. 2.

4. A generalization. The following gener-

alization is immediate: We replace the functional

operation with the one indicated in Fig. 3. Here b 2
ð0; 1Þ is another parameter. Let Fa;b denote the

function obtained in the limit. Again this function is

a special case of what was considered by [4] if a > b.

Since we are interested in monotone functions

in this paper, we assume that 0 < a < b < 1, which

seems to be neglected in [4].

Theorem 5. Suppose that 0 < a < b < 1 and

that ða; bÞ 6¼ ð1=3; 2=3Þ. Then Fa;b is a continuous,

strictly monotone, and singular function.

Proof. Let x have the ternary expansion (1)

and pn; qn, and rn be defined as in section 3. We

then have

f 0
nðxÞ ¼ 3napnðb� aÞqnð1� bÞrn :

Applying the same argument as in the previous

section, we see that

aðb� aÞð1� bÞ < 1

27
¼) Fa;b is singular:

On the other hand, it holds that for all 0 < a <

b < 1 except for ða; bÞ ¼ ð1=3; 2=3Þ, aðb� aÞð1� bÞ <
1
27 holds true. This can be verified by the arithmetic-

geometric inequality
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1

3
¼ aþ ðb� aÞ þ ð1� bÞ

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðb� aÞð1� bÞ3

p

with the equality if and only if a ¼ b� a ¼ 1� b.

The remaining part of the proof is the same as that

of Theorem 3. �

Remark 2. The most famous, continuous,

strictly increasing, and singular function would be

Salem’s function [8], which is sometimes called the

Riesz-Nágy function. The function is generalized

in [7]. Salem’s function is perhaps the simplest, but

not the oldest. The oldest known example would be

Minkowski’s question mark function [5]. His func-

tion was generalized by [11]. Other information can

be found in [1,9,10].
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