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Abstract: In this note we establish the validity, in the case of unipotent group schemes

over non-perfect fields, of an analog of Serre’s conjectures for algebraic groups, which relates

properties of Galois (or flat) cohomology of unipotent group schemes to finite extensions of

non-perfect fields. We also establish an interesting property of Russell’s defining equations of

connected smooth one-dimensional unipotent groups over a field k.

Key words: Serre’s conjectures; unipotent groups; Galois cohomology.

Introduction. If G is a smooth (i.e.,

absolutely reduced) affine group scheme defined

over a perfect field k then one may define its

first Galois cohomology H1ðk;GÞ :¼ H1ðGalðks=kÞ;
GðksÞÞ, where Galðks=kÞ denotes the absolute Galois

group of k. In [Se1; Chap. III, Sec. 2.2, Sec. 2.3 and

Sec. 3.1] Serre formulated his famous conjectures I

and II (see also [Se2; Sec. 4 and 5]). Recall them

briefly (cf. [Se2; pp. 236, 237]), as follows:

(I) Let k be a perfect field. Then

cdðkÞ � 1 if and only if H1ðk;GÞ ¼ 0

for all connected smooth k-groups G.

(This is now celebrated Steinberg’s Theorem [St];

it was extended by Borel - Springer [BS] to the

case of arbitrary (not necessarily perfect) fields

while restricting to connected reductive groups

only).

(II) Let k be a perfect field. Then

cdðkÞ � 2 if and only if H1ðk;GÞ ¼ 0

for all semisimple simply connected k-groups G.

We refer to [Se2,BaP1,BaP2,BFT,Gi], for more

recent results in the direction of Serre’s conjecture

(II), the general case of which is still open. In (I) if

one drops the condition of perfectness of the field,

one needs to restrict oneself to the case of connected

reductive groups. It is due to the fact (see,

e.g. [Se1]), that if G is a smooth connected (resp.

and unipotent) group defined over a perfect field

k then its unipotent radical is defined over k (resp.

its first Galois cohomology H1ðk;GÞ is trivial),

but these facts are no longer true if we drop the

perfectness condition on k. In fact, even over some

fields, such as global (resp. local) function fields,

every smooth unipotent groups of dimension one

which is not isomorphic to Ga (the additive group)

(resp. if charðkÞ is not 2) has infinite Galois

cohomology (see, [TT]).

In the first section of this paper, for any field k

and for any unipotent k-group scheme G, we prove

the existence of a normal composition series G ¼
G0 > G1 > � � � > Gn ¼ f1g of k-subgroup schemes

of G, such that Giþ1 is normal and of codimension 1

in Gi, for all i � 0. Then, by using Whaples’

methods [W1,W2,W3], we propose a necessary

and sufficient condition on k which ensures the

triviality of the first Galois cohomology set for all

smooth unipotent groups defined over k. One of the

characterizations is the statement, which is an

analog of Serre’s characterization of cohomological

dimension of the base field, via the triviality of the

first Galois cohomology of algebraic groups (see (I),

(II) above). We establish an analog of Serre’s

conjectures for unipotent group schemes via Theo-

rems 3 and 6. Then using this, we describe relations

between various statements regarding finite exten-

sions of degree p or divisible by p of a given field k

(Theorem 9). In the second section, we study the
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equations defining smooth connected unipotent

groups of dimension one. In [Ru], P. Russell shows

that every smooth connected unipotent k-groups of

dimension 1 is k-isomorphic to a k-subgroup of G2
a

defined by a p-polynomial of the form

F ðx; yÞ :¼ yp
n � ðxþ a1x

p þ � � � þ arx
prÞ;ð1Þ

where some ai 62 kp. This explicit equation proves

to be of great importance in the study of arithmetic

of unipotent group schemes over fields and rings

(cf. e.g. [KMT,Oe,WW]). In [KMT], many results

in [Ru] have been generalized. For example, it has

been shown that the number n in (1) is uniquely

determined by G (see Corollary of Theorem 2.4.3,

[KMT]). Using results of [KMT], we show further

that the set fi j ai 62 kpg also depends only on G.

In fact, we prove a slightly more general result (see

Proposition 10).

We recall some basic definitions about the

theory of unipotent groups over fields (see, e.g.

[KMT,Oe,Ti,SGA3; Exp. XVII]). The smooth affine

algebraic groups considered here are the same as

linear algebraic groups in the sense of [Bo]. Let k be

a field. An affine algebraic group scheme defined

over k is called unipotent if it is k-isomorphic to a

closed k-subgroup scheme of the matrix group

consisting of all upper triangular matrices with all

1 on their main diagonal (see [SGA3; Exp. XVII]).

For simplicity, we call smooth unipotent k-group

schemes just unipotent k-groups. We recall after

Tits that a unipotent k-group scheme G is called k-

wound if every k-homomorphism (or even k-mor-

phism) Ga ! G is constant. A polynomial P :¼
P ðx1; . . . ; xnÞ in n variable x1; . . . ; xn with coeffi-

cients in k is said to be universal if P ðknÞ ¼ k. We

say that P is additive if P ðxþ yÞ ¼ P ðxÞ þ P ðyÞ,
for any two elements x 2 kn; y 2 kn, where kn :¼
k� � � � � k (n times). If this is the case, P is the

so-called p-polynomial, i.e, a k-linear combination

of xpmi;j

i . Denote by H1
fppfðk;GÞ the flat cohomology

of G.

1. Triviality of the first Galois cohomol-

ogy group. In this section, we first show by using

Tits results [Ti], that for all unipotent k-group

schemes G of dimension n, there exists a composi-

tion series of normal k-subgroup schemes Gn ¼ G >

Gn�1 > � � � > G1 > G0 ¼ f1g such that dimGi ¼ i.

In fact, this fact is already implicitly contained

in [Ti], (and in [Ke] one may find another proof in

the case of smooth connected group schemes).

Then, we give equivalent conditions for a non-

perfect field k which are sufficient and necessary for

the triviality of the first Galois cohomology of an

arbitrary smooth unipotent group defined over k.

Proposition 1. Let G be a unipotent k-group

scheme of dimension � 1. Then there exists a

normal k-subgroup scheme G0 of codimension 1 in

G. If, moreover, G is smooth (resp. connected, resp.

connected and smooth), G0 can be chosen smooth

(resp. connected, resp. connected and smooth), too.

Remarks. 1) We can choose G0 even con-

nected. Indeed, if G0 was chosen, then it is clear that

its connected component ðG0Þ� is also normal in G

and has codimension 1 there.

2) This proposition is useful in the regard, that one

may use induction on the dimension and dévissage,

i.e., one may consider the initial unipotent group

scheme as an extension of two other groups, of

smaller dimension, or order, etc..., to study various

properties of unipotent group schemes over fields.

Corollary 2. Let G be a unipotent k-group

scheme of dimension n. Then there is a composition

series of normal k-subgroup schemes Gn ¼ G >

Gn�1 > � � � > G1 > G0 ¼ f1g such that dimGi ¼ i.

If moreover G is smooth (resp. connected, resp.

connected and smooth), the k-subgroup schemes

Gi can be chosen smooth (resp. connected, resp.

connected and smooth), too.

Proof. Use induction on dimension of G. �

Remarks. If G is a k-wound unipotent group

scheme, then one can show [TT1] that it has

a composition series of characteristic k-wound k-

subgroups with commutative k-wound factors of

exponent p, but one cannot expect in general G to

have a composition series such that all factors are

one-dimensional and also k-wound. In fact, assume

that over any non-perfect field of characteristic

p > 0 every k-wound unipotent group G had a

composition series such that all factors were also k-

wound and one-dimensional. Then it also holds for

global function fields. By an induction argument

and using [Oe; Théorème 3.1, p. 65], we can show

that for all k-wound unipotent groups G defined

over the global function field k, if the above

assumption were true, it would imply that GðkÞ
were finite. But it would contradict Example 3.4,

p. 68 of Oesterlé [Oe], which shows that there exists

a k-wound unipotent group G of dimension p� 1

such that GðkÞ is infinite, where k can be any global

function field of characteristic p > 2.
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Theorem 3. Let k be an arbitrary field of

characteristic p > 0. The following statements are

equivalent:

1) k has no Galois extensions of degree divisible by p;

2) k has no separable extensions of degree divisible

by p;

3) Every separable p-polynomial in one variable is

universal;

4) H1ðk;GÞ ¼ 0 for all smooth unipotent k-groups G.

Remarks. 1) Recall that a field k is called

Kaplansky field if every p-polynomial is universal

(see [Va,W2]). By Theorem 1 of [W2], k is

Kaplansky field if and only if it has no finite

extensions of degree divisible by p. So this theorem

can be considered as an analog of Theorem 1 of

Whaples [W2].

2) In [Ru], P. Russell remarks that if k has no

normal extension of degree p ¼ charðkÞ then

H1ðk;GÞ is trivial for all smooth connected unipo-

tent k-group G of dimension 1 (and then, as one

sees below, the same is true for smooth connected

unipotent groups of arbitrary dimension). In fact,

the conclusion is trivially true since any non-perfect

field k always has a normal extension of degree

p ¼ charðkÞ, thus, if k has no normal extension of

degree p, then k is perfect. However, notice that

if a field k has no normal extensions of degree p

then it is not necessarily true that every separable

p-polynomial in one variable is universal (condition

3 in Theorem 3). For, if this were true then the

condition that ‘‘k has no normal extensions of

degree p’’ would imply the condition 1) in Theorem

3, but it would contradict a Whaples’ result which

is stated as follows:

Theorem 4 (Whaples [W1]). Let n be any

positive integer. There exists a field K which has

algebraic extensions of degrees divisible by n but

has no extensions of degree � n.

In fact, the proof of the above theorem even shows

that, we can choose K such that K has Galois

extensions of degrees divisible by n, but no exten-

sions of degree � n.

3) Let G be a profinite group, p a prime number. We

recall that (see [Se1; Chapter I, Sec.3]) p-cohomo-

logical dimension of G, denoted by cdpðGÞ, is the

lower bound of the integers n such that for every

discrete torsion G-module A, and for every q > n,

the p-primary component of HqðG; AÞ is null. One

defines (as in [Se1; Chap. I, Sec. 1, 1.3]) super-

natural numbers as formal products
Q

p p
np , where

p runs over the set of all prime numbers, and np

is either a non-negative integer or 1. One then

defines the product, greatest common divisor

(g.c.d), least common multiple (l.c.m.) of a family

of supernatural numbers in an obvious manner

(loc.cit). For a profinite group G and its closed

subgroup H we define the index ½G : H� as l.c.m. of

all indices f½ðG=UÞ : ðH=ðH \ UÞ�g, where U runs

over all open normal subgroups of G. In particular,

the order of G is ½G : f1g�. We have the following

proposition.

Proposition 5 ([Se, Chap. I, Sec.3.3, Corol.

2]). In order that cdpðGÞ ¼ 0 it is necessary and

sufficient that the order of G be prime to p.

On the other hand, by Galois theory, k has no Galois

extensions with Galois groups of (supernatural)

order divisible by p if and only if the Galois group

G ¼ Galðks=kÞ has the (supernatural) order prime to

p. Hence, we can restate a part of Theorem 3 in

cohomological terms as an analog of (or a comple-

ment to) Serre’s conjectures (I) and (II) as follows:

Theorem 6 (Analog of Serre’s conjectures for

unipotent group schemes). Let k be a field of

characteristic p > 0 and let cdpðkÞ :¼ cdpðGalðks=kÞÞ
be the cohomological p-dimension of k. Then

a) cdpðkÞ ¼ 0 if and only if H1
fppfðk;GÞ ¼ 0 for all

smooth unipotent k-groups G.

b) k is perfect and cdpðkÞ ¼ 0 if and only if

H1
fppfðk;GÞ ¼ 0 for all unipotent k-group schemes G.

Proof (Sketch). We need only prove b), since

part a) follows from above. By considering the

infinitesimal k-group scheme �p represented by

the k-algebra k½T �=Tp, the direction (() is clear.

For the direction ()), we need only show that

H1
fppfðk;GÞ ¼ 0 for all infinitesimal k-group schemes

G. Any such a group scheme G has a central

composition series

G ¼ G0 > G1 > � � � > Gn ¼ f1g;

where each successive quotient Gi=Giþ1 ’ �p for all

0 � i � n� 1 (see [SGA3; Exp. XVII, Théorème

3.5]). Since H1
fppfðk; �pÞ ¼ k=kp ¼ 0, it follows by

dévissage that the same holds for G. �

Next we deduce from above some corollaries.

We give one example of non-perfect fields k

satisfying equivalent conditions of Theorem 3.

We have the following

Corollary 7. There are non-perfect non-

separably closed fields k such that for all smooth

unipotent groups G over k we have H1ðk;GÞ ¼ 0.
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Proof. Indeed, let k0 be an arbitrary non-

perfect non-separably closed field of characteristic

p, such that its absolute Galois group G :¼
Galðk0;s=k0Þ is not a p-group, i.e., it has order

>not of the form p�, where � � 1 and that there

exists a prime q 6¼ p dividing the order of G, and G is

not a q-group. (For example, one may take p odd,

k0 ¼ FpðtÞ the rational function field in one variable

over Fp, and q ¼ 2.) Thus its q-Sylow subgroup Sq is

non-trivial and Sq 6¼ G. Take k ¼ k
Sq

0;s, the fixed field

of Sq in k0;s. Then Galðk0;s=kÞ ¼ Sq is a non-trivial

pro-q-group and k is a desired field. For, it follows

from Theorem 3, Proposition 5 and Theorem 6

above, that every separable p-polynomial in one

variable with coefficients in k is universal over k.

Now we prove that k is non-perfect by showing that

t 62 kp, for any t 2 k0 � kp0. Otherwise, let t ¼ �p 2
kp. In the tower of extension fields k0 � k0ð�Þ � k,

k0ð�Þ=k0 is purely inseparable extension and also

separable since k=k0 is separable. Thus k0ð�Þ ¼ k0,

and t ¼ �p 2 kp0, a contradiction. Also, k is non-

separably closed, since Sq 6¼ f1g. �

Corollary 8. Let k be an arbitrary field of

characteristic p > 0 and let k0 be a finite extension

of k. Then, H1ðk;GÞ ¼ 0 for all smooth unipotent

k-groups G if and only if H1ðk0; G0Þ ¼ 0 for all

smooth unipotent k0-groups G0.
The proof follows from Theorems 3, 6 and from

[Se1; Chap. II, Prop. 10]. From above we derive

the following second main result of this section.

Theorem 9. Let k be any field of character-

istic p > 0. Consider the following statements

1) k has no extensions of degree p;

2) k has no extensions of degree divisible by p;

3) k has no normal extensions of degree p;

4) k has no normal extensions of degree divisible

by p;

5) k has no Galois extensions of degree p;

6) k has no Galois extensions of degree divisible by p;

7) Every separable p-polynomial in one variable is

universal;

8) Every p-polynomial in one variable is universal.

9) H1ðk;GÞ ¼ 0 for any smooth unipotent k-group G.

Then we have the following diagram of relations

1) ⇒ 3) ⇒ 5)
⇑ ⇑ ⇑
2) ⇔ 4) ⇒ 6)
� �
8) ⇒ 7) ⇔ 9)

1) �⇐ 3) �⇐ 5)
�⇓ �⇓ �⇓
2) ⇔ 4) �⇐ 6)
� �
8) �⇐ 7) ⇔ 9)

All other related implications or non-implications

between the statements above follow from these

diagrams.

Remarks. 1) One might add the 10-th con-

dition, saying that H1
fppfðk;GÞ ¼ 0 for all unipotent

k-group schemes G, which is equivalent to condi-

tions 2) and 8), but it is a bit difficult to draw the

square above of relations with ten vertices.

2) From above (Theorem 3 and Corollary 7) we

see that the two conditions in Theorem 6 are not

the same.

3) We give an example, which shows that the

condition

‘‘H1ðk;GÞ ¼ 0 for all smooth unipotent k-groups G’’

and the condition

‘‘H1ðk;GÞ ¼ 0 for all connected and smooth unipo-

tent k-groups G’’

are not the same. Indeed, take any field k of

characteristic p > 0 such that certain separable p-

polynomial fðT Þ in one variable with coefficients in

k (e.g. the Artin - Schreier map }) is not surjective

as a map kþ ! kþ. Take a 2 kþ n fðkþÞ. We claim

that for the perfect closure K :¼ k�p1 of k, we have

Kþ 6¼ fðKþÞ. If not, Kþ ¼ fðKþÞ, and we have

a 2 fðKþÞ, so a ¼ fðxÞ, x 2 K. By assumption, we

have k 6¼ kðxÞ. Since x is a root of the separable

polynomial fðT Þ � a, kðxÞ=k is a separable exten-

sion. But kðxÞ � K and K=k is purely inseparable,

hence so is kðxÞ=k. Thus k ¼ kðxÞ, which is impos-

sible. Therefore fðKþÞ 6¼ Kþ. Let G :¼ KerðfÞ.
Then G is a finite (smooth) étale unipotent k-group

scheme with H1ðK;GÞ ¼ Kþ=fðKþÞ 6¼ 0, while

H1ðK;HÞ ¼ 0 for all connected smooth unipotent

k-groups H, since K is perfect.

2. Equations defining commutative uni-

potent groups of exponent p. We first recall

some notations and results in Part 1 of [KMT].

Let k be a non-perfect field of characteristic p > 0.

It is known that the endomorphism ring R :¼
Endk�grðGaÞ can be identified with the noncommu-

tative polynomial k-algebra with one indeterminate

F subjected to the relation F� ¼ �pF , for all � 2 k.

A pair ðn; �Þ with n 2 N and � ¼
P

aiF
i 2 k½F � is

called admissible if either (i) n ¼ 0 or (ii) a0 6¼ 0 and

ai 62 kp for some i > 0. For a commutative affine k-

group scheme G, denote MðGÞ :¼ Homk�grðG;GaÞ,
which is a left R-module, hence also a left k½F �-
module in a natural way. On the other hand,

any given left k½F �-module M can be considered

as a (commutative) p-Lie algebra with zero multi-
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plication and p-power given by m½p� ¼ Fm; for all

m 2 M. The universal envelopping k-algebra UðMÞ
of M has a natural Hopf algebra structure, and the

affine k-group scheme corresponding to UðMÞ is

denoted by DðMÞ. It has been shown that (cf. [DG;

Chap. IV, Sec. 3, no. 6.2, p. 520]) there is an anti-

equivalence between the category of commutative

k-group schemes with the category of left k½F �-
modules, via G 7! MðGÞ; M 7! DðMÞ, where the

algebraic k-group schemes correspond to finitely

generated modules.

LetMðn; �Þ be the left k½F �-module on a set of 2

generators x; y defined by the relation Fny ¼ �x,

� 2 k½F �. Then, there is a natural bijective corre-

spondence G 7! MðGÞ; M 7! DðMÞ between the

unipotent groups G of dimension 1 and left k½F �-
modules M ¼ Mðn; �Þ, where ðn; �Þ are admissible

pairs. More precisely, if G is defined by the equation

yp
n ¼ a0xþ a1x

p þ � � � þ arx
pr , where a0 6¼ 0 and ai =2

kp for some i, then to G one assigns MðGÞ :¼
Mðn; �Þ, where � ¼ a0 þ a1F þ � � � þ arF

r. For � ¼
P

aiF
i 2 k½F �, let �ð�Þ ¼

P
ap

�

i F i.

Proposition 10. Let k be a non-perfect field

of characteristic p > 0, and let G1; G2 be unipotent

smooth k-groups of dimension 1, defined by

fðx; yÞ 2 G2
ajyp

m ¼ xþ a1xþ � � � þ arx
pr ; 9i; ai 62 kpg,

fðx; yÞ 2 G2
ajyp

n ¼ x þ b1x þ � � � þ bsx
ps ; 9j; bj 62 kpg

respectively. If the groups Homk�grðG1; G2Þ and

Homk�grðG2; G1Þ are both nontrivial then m ¼ n

and the following two sets of indices coincide:

fi j ai 62 kpg 	 fi j bi 62 kpg:

Proof (Sketch). We first prove the second

statement of Proposition 10 in the particular case

when n ¼ m ¼ 1.

Lemma 11. Let k be a non-perfect field of

characteristic p > 0, and let G1; G2 be unipotent

smooth k-groups of dimension 1, defined by

fðx; yÞ 2 G2
ajyp ¼ x þ a1x þ � � � þ arx

pr ; 9i; ai 62 kpg;
fðx; yÞ 2 G2

ajyp ¼ x þ b1x þ � � � þ bsx
ps ; 9j; bj 62 kpg

respectively. Assume that Homk�grðG1; G2Þ and

Homk�grðG2; G1Þ are nontrivial. Then we have

fi j ai 62 kpg 	 fi j bi 62 kpg:

Now, we proceed to prove the proposition. Let

� ¼ 1þ a1F þ � � � þ arF
r; � ¼ 1þ b1F þ � � � þ bsF

s:

Then we have G1 ’ DðMðm;�ÞÞ; G2 ’ DðMðn; �ÞÞ,
where ðm;�Þ; ðn; �Þ are admissible pairs and

by assumption, Homk½F �ðMðm;�Þ;Mðn; �ÞÞ and

Homk½F �ðMðn; �Þ;Mðm;�ÞÞ are nontrivial. Assume

that n > m. Then by [KMT], Theorem 5.3.1, we

have Homk½F �ðMðm;�Þ;Mðn; �ÞÞ ¼ 0. So n � m.

Similarly, m � n and we get n ¼ m. Let G0
1 ¼

G
ðpn�1Þ
1 and G0

2 ¼ G
ðpn�1Þ
2 . Then from [KMT],

Proposition 5.4.1 it follows that Homk�grðG0
1; G

0
2Þ

and Homk�grðG0
2; G

0
1Þ are nontrivial. Let r0 ¼

maxfi j ai 62 kpg; s0 ¼ maxfj : bj 62 kpg: Thus we

have G0
1 ’ DðMð1; �0ÞÞ; G0

2 ’ DðMð1; �0ÞÞ, where

� ¼ 1þ a1F þ � � � þ ar0F
r0 , � ¼ 1þ b1F þ � � � þ

bs0F
s0 . By Lemma 11, we get fi j ai 62 kpg 	 fi j bi 62

kpg and Proposition 10 follows �

Corollary 12. Let k be a non-perfect field

of characteristic p > 0, and let G be an unipotent

k-group of dimension 1. If there are k-isomorphisms

of G with the following k-groups

fðx; yÞ 2 G2
ajyp

m ¼ xþ a1x
pþ � � � þ arx

pr; 9i; ai 62 kp}

and

fðx; yÞ 2 G2
ajyp

n ¼ xþ b1x
p þ � � � þ bsx

ps ; 9j; bj 62 kpg.
then m ¼ n and fi j ai 62 kpg 	 fi j bi 62 kpg.
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ques, Tome I, Paris, Masson, 1970.

[Gi] P. Gille, Cohomologie galoisienne des groupes
quasi-déployés sur des corps de dimension
cohomologique � 2, Compositio Math. 125
(2001), no. 3, 283–325.

[KMT] T. Kambayashi, M. Miyanishi and M. Takeuchi,
Unipotent algebraic groups, Lecture Notes in
Math., 414, Springer, Berlin, 1974.

[Ke] G. Kempf, Composition series for unipotent
group varieties, J. Algebra 108 (1987), no. 1,
202–203.
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