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119. Normed Rings and Spectral Theorems, VI.

By Késaku YoSIiDA.
Mathimatical Institute, Nagoya Imperial University.
(Comm. by T. TAKAGI, M.LA., Oct. 12, 1944.)

1. Introduction. The arguments in 8 of the fifth note® was in-
sufficient since the lemma 2 is valid for zeL),(G) only. The purpose
of the present note is i) to give a complete proof of (19)—the Plan-
cherel’s theorem—in 8 of the fifth note and ii) to show that the
Bochner-Raikov’s representation theorem® may be obtained easily from
the Plancherel’s theorem. In this way, the Fourier analysis may be
subsumed under the operator theory in Hilbert space formulated in
terms of the normed ring.

We will make use of, in this note, the results and the notations
in the fifth note.

2. Proof of (19). The set {¢z(x)=l+$Gx(g)x(g)dg; z2=Aetu,

xel, (G)} is dense in the space C(X U X.) of continuous functions 7(X)

on the character group X of G compactified by adjoining the formal
character X.. This results from the Gelfand-Silov’s abstraction® of
Weierstrass’ polynomial approximation theorem. We have

| T.= 3131&1’7 | 72| é}biir:O’Vll_z;—"Hl=sBp | @) |
by IT.I<ZIlz2l;. Hence,
for any continuous function 7(X) on X \/ X., there exists one
*) and only one operator T such that limsup|e, (X)—T(X)|=0
n>e % n
implies li_ln 1T, —Tl=0.
Let xe Li(G) ~ C(G) and put
I (pa2)) =2(0).
J is additive, homogeneous and positive on {p.(X)}:
e (0)=0  implies  J(p())=0.

The proof was given by the lemma 3. The Plancherel’s theorem may
be proved if we show that

(**) J ( ;o,,;(x)) =Jx¢x(x)dx , dX=the Haar’s measure on X.

This formula together with the definition

1) Proc. 20 (1944), 269.
2) C.R. URSS: 28, 4 (1940).
8) Rec. Math, 9 (51), (1941).
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qo,,(X)=sGw(g)x(g)dg, dg=the Haar’s measure on G.

constitutes (19).

Let N={p.(X); xe Li(G) ~C(G)} and let I'={p(X); (%) is conti-
nuous and =0 in a certain vicinity U, of Z.} and denote by %, the
linear envelope of N and I We first show that J may be extended
additive homogeneous and positive on ;. This extension is surely
possible if the following conditions are satisfied :

Let ¢(X)eI", then
=) { inf J(s(0)= sup J(e0)).

c’(x)egt
29 KOS

For the proof of (***) let Xp={X;P(X) 30} and take ye Li( N
C(@) such that the closure X, < {X; ¢,(X) 3 0}. Put T(X)=¢(X) /| p,(X) |2
and let

Jim sup [ e, (=T |=0, ¢, (0)=T{),
{ lim sup | ¢, (=T | =0, ¢, ) =T),
n>w
20 = A+ T, Tn € Li(G) N C(GR), Wn=tne+Yn, Un€L(G) ~C(G).

Then, by (*) there exists one and only one operator 7T such that
lim| T, — Tl =0, ,l.ifi" T,,— Tl =0.

We have thus
lim J(.,(0) | 9,0 [F) =lim 2, %y *y*(0)
=lim (T, -v,y)=lim (Tw, -y, y) =lim w. * y * y™(0)
=lim J(24,(0 | 2, ).

Since 2z, *y*y* and w.*y*y*ey(G) N C(G), (**+) is completely
proved.

Therefore®, remembering J ( X +x')) = (x’(g)x(g))(o) =2(0)=
J (%(X)), we have for p(x)el,

(x+y J (%(x))=§x?o(%)dx, dX=the Haar measure on X.
Hence, by the proof of (***), we have
{ J(TW e ) =(T-5,0)={ T0O|pu0Pdt,
T(X)el, ye Li(G) ~ C(G).
Thus, by letting T'(X) tend to 1, we see that ¢,(X) e Ly(X) and hence
(ony’ { I (00| s £)=(Ta- 3, 9)= [ 0s0) | 00 P2,
%, y € L(G@) ~ C(G).

1) M. Krein: C. R. URSS, 30, 6 (1941). The closure of the set {x; @x)-E0} is
compact in X,
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Since Ly(G) is demse in Ly(G) L@, (**)” also holds good for
YyeLiG) NL(®. Let V, be a symmetric and compact neighbour-

hood in G of 0 such that 0 < j Ldg <o, lim V,=0 and put 4,(9)=
characteristic function of V, divided by gvdg. Then, we have, from
(=", "’

@(0)=1lim (Toyn, ya)=lim Sx%(%) | ¢y, (0) Pdx= L%(l)dx ,

since® X(g) is uniformly continuous in the aggregate of variables ¥, g
such that x(0)=1. Q.E.D.

3. Bochner-Raikov’s theorem. A measurable function f(g) is
called pesitive definite if f(—g)=f(g) and

[ #@—nwtgnEagin = o

for every xeLy,G). Such f(g) is essentially bounded and we may
assume

f (0)=e§s. sup |f(g)].

We will prove Bochner-Raikov’s theorem to the effect that

S (g)=sXX(g)F(dx) a.e. on G

with a uniquely determined continuous from above measure countably
additive on Borel sets < X.

Proof. Let X;=symmetric and compact neighbourhood in X of
the zero 0 such that XdX#O, lim X;=0. Then, since X(g)f(g) is
i 2> 00
positive definite with f(g),

#0=16\], 1odx) /([ ar)

is also positive definite, viz.
(fi*y, )20  for every  yeLuy(G).
By the Plancherel’s theorem, the continuous function (S 7{(g)olx)2 e Li(G)
xg

and hence eLyG). Thus fAg)e Li(G) ~ LAG). Therefore, again by
Plancherel’s theorem,

(rxxx) ﬁ(g)=sxX(g),ofi(X)dx a.e. on G in the mean.

Moreover we have

Ger,9)={ o0 | s0) Pdx 20

1) See 2).
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by the positive-definiteness of fi(g) and the Plancherel’s theorem.
Since {¢,(X); ye Ly(G)} is dense in the space of continuous functions on
XU X, vanishing at X.., we have ¢,(X) =0 on X. By taking average

of (x***) over a vicinity of 0 in G, we see that Sx¢fi(x)dx_§fi(0)=f (0).

Hence the set {Sgofi(x)dx} is compact as a set of measures. There-
fore, there exists a subsequence {i'} of {¢} such that

F(d)=lim ¢ (0)dx  (limit as measures),

lim f(@)=f@)=| 2OF@) ae. on G
Q.E.D.



