3. Extensions of Topologies

By Shogo IKENAGA and Iwao YOSHIOKA

Department of Mathematics, Osaka Gakugei Daigaku (Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1965)

Let (X, τ) be a topological space and $\tau \subset \tau^*$. Then τ^* will be called a simple extension of τ if and only if there exsists an $A \subset X$ such that $\tau^* = \{O \cup (O' \cap A) \mid 0, 0' \in \tau\}$. In this case we write $\tau^* = \tau(A)$. This definition is due to N. Levine [2]. N. Levine has obtained some interesting results about simple extensions of topologies [2].

It is the purpose of this note to consider the simple extensions of regular or other several topologies. In the next, we shall consider a generalization of simple extensions in § 3.

Let (X, τ) be a topological space and $\tau^* = \tau(A)$. Then we shall notice that for each $x \notin A$, the τ -open neighborhood system of x is a τ^* -open base of x and for each $x \in A$, the family $\{V(x) \cap A \mid V(x):$ τ -open neighborhood of $x\}$ is a τ^* -open base of x. Thus it is sufficient to consider these open bases.

The notations which will be used in this note are chiefly following. A° denotes the complement of A. \overline{A} and \overline{A}^{*} denote the closure operators relative to τ and τ^{*} respectively. By U(x), V(x), and W(x) we denote τ -open neighborhoods of x. $(A, \tau \cap A)$ denotes the subspace Aof (X, τ) , that is, $\tau \cap A$ denotes the relative topology of A with respect to τ .

The following facts have been shown in Lemma 3 of [2]. Let (X,τ) be a topological space and $\tau^* = \tau(A)$. Then $(A, \tau \cap A) = (A, \tau^* \cap A)$ and $(A^{\circ}, \tau \cap A^{\circ}) = (A^{\circ}, \tau^* \cap A^{\circ})$. This follows from the above remark about the τ^* -open base of x.

§1. Simple extensions of regular topologies. In this section, we shall obtain a result about simple extensions of regular topologies which is better than N. Levine's theorem [2] and its application.

Let (X, τ) be a topological space and A a subset of X. We shall say that A is R-open in (X, τ) if and only if for each $x \in A$, there exists a V(x) such that $V(x) \cap \overline{A} \subset A$, i.e., A is open in $(\overline{A}, \tau \cap \overline{A})$.

Theorem 1.1. Let (X, τ) be a regular space and $\tau^* = \tau(A)$. Then the following conditions (i)~(iii) are equivalent:

- (i) A is R-open in (X, τ) ;
- (ii) $\overline{A} \cap A^c$ is closed in (X, τ) ;
- (iii) (X, τ^*) is regular.

Proof. It is evident that (i) and (ii) are equivalent. Then we

shall only prove that (i) and (iii) are equivalent.

(i) \rightarrow (iii): Let $x \notin A$ and let V(x) be an arbitrary τ^* -neighborhood of x. Since V(x) is also a τ -neighborhood of x and (X, τ) is regular, there exists a U(x) such that $\overline{U(x)} \subset V(x)$. U(x) is a τ^* -neighborhood of x and since $\tau \subset \tau^*$, $\overline{U(x)} \subset \overline{U(x)} \subset V(x)$. Let $x \in A$ and $V(x) \cap A$ an arbitrary τ^* -neighborhood of x. From (i), there exists a U(x)such that $U(x) \subset V(x)$ and $U(x) \cap \overline{A} \subset A$. By regularity of (X, τ) , there exists W(x) such that $\overline{W(x)} \subset U(x)$. Then $W(x) \cap A$ is a τ^* neighborhood of x and $\overline{W(x)} \cap A \subset W(x) \cap A \subset U(x) \cap \overline{A} = U(x) \cap A \subset V(x) \cap A$. Hence the regularity of (X, τ^*) is proved.

(iii) \rightarrow (i): Assumed that A is not R-open in (X, τ) . Then there exists a point $x \in A$ such that for any V(x), $V(x) \cap \overline{A} \not\subset A$. We shall next prove that for each τ^* -neighborhood $V(x) \cap A$, $\overline{V(x)} \cap \overline{A} \not\subset A$. Since $V(x) \cap \overline{A} \not\subset A$, there exists a point $y \in V(x) \cap \overline{A} - A$. Hence $y \notin A$ and τ -neighborhood system of y is a τ^* -open base of y. Since $y \in V(x)$ and $y \in \overline{A}$, for any U(y), $U(y) \cap V(x) \cap A \neq \phi$. Hence $y \in \overline{V(x) \cap A}$.

This theorem is a generalization of Theorems 2 and 3 in [2].

Corollary 1.1. Let (X, τ) be a regular space. If $(X, \tau(A))$ and $(X, \tau(B))$ are regular, then $(X, \tau(A \cap B))$ is regular.

Proof. From the condition (ii) of Theorem 1.1, we can easily see that $A \cap B$ is also *R*-open in (X, τ) .

Under the same conditions of Corollary 1.1, we can easily see that $(X, \tau(A \cup B))$ and $(X, \tau(A^{\circ}))$ are not necessarily regular.

Theorem 1.2. Let (X, τ) be a completely regular space and $\tau^* = \tau(A)$. Then a necessary and sufficient condition that (X, τ^*) be completely regular is that A is R-open in (X, τ) .

Proof. The necessity is obvious from Theorem 1.1. Let A be R-open in (X, τ) . Case 1: $x \notin A$. Let V(x) be an arbitrary τ^* neighborhood of x. Since V(x) is, of course, a τ -neigborhood of x, there exists a continuous mapping f from (X, τ) into the closed interval [0, 1] such that f(x)=0 and $f(V(x)^c)=1$. Since $\tau \subset \tau^*$, f is continuous in (X, τ^*) . Case 2: $x \in A$. Let $V(x) \cap A$ be an arbitrary τ^* -neighborhood of x. Since (X, τ^*) is regular by Theorem 1.1, there exists an $U(x) \cap A$ such that $U(x) \cap A \subset V(x) \cap A$. Since $(A, \tau \cap A) =$ $(A, \tau^* \cap A), (A, \tau^* \cap A)$ is completely regular (because any subspace of a completely regular space is completely regular). Hence there is a continuous mapping h from $(A, \tau^* \cap A)$ into [0, 1] such that h(x)=0 and $h(A-U(x) \cap A)=1$. We define a mapping f so that for $y \in A, f(y)=h(y)$ and for $y \notin A, f(y)=1$. Since $\overline{U(x) \cap A \subset A}$, it follows that f is a continuous mapping from (X, τ^*) into [0, 1]. Clearly f(x)=0 and $f(X-V(x) \cap A)=1$. Therefore (X, τ^*) is comNo. 1]

pletely regular. This completes the proof.

This theorem is a generalization of Theorem 4 in [2].

Theorem 1.3. Let (X, τ) be a metrizable space and $\tau^* = \tau(A)$. In order that (X, τ^*) be metrizable, it is necessary and sufficient that A be R-open in (X, τ) .

Proof. The necessity is obvious from Theorem 1.1. Let A be R-open in (X, τ) . Since (X, τ) is T_1 and regular, (X, τ^*) is also T_1 and regular. Nagata-Smirnov theorem asserts that regular T_1 -space is metrizable if and only if its topology has a σ -locally finite open base (cf. [3], [4]). The topology τ has a σ -locally finite open base $\mathfrak{B} = \bigcup_{i=1}^{\infty} \mathfrak{B}_i$, where each \mathfrak{B}_i is a locally finite collection of open sets. It is evident that $\mathfrak{B} \smile \bigcup_{i=1}^{\omega} \{V \cap A \mid V \in \mathfrak{B}_i\}$ is an open base of (X, τ^*) and \mathfrak{B}_i and $\{V \cap A \mid V \in \mathfrak{B}_i\}$ are locally finite collections of τ^* -open sets. Therefore, (X, τ^*) is metrizable. This completes the proof.

§ 2. Simple extensions of several topologies.

Theorem 2.1. Let (X, τ) be a connected space and $\tau^* = \tau(A)$. If A is dense in (X, τ) , then (X, τ^*) is connected.

Proof. Assume that (X, τ^*) is not connected. Then there exist two non-void τ^* -open sets G_1 and G_2 such that $G_1 \cup G_2 = X$ and $G_1 \cap G_2 = \phi$. On the other hand, (X, τ) is connected and hence either G_1 or G_2 is not open in (X, τ) , say G_1 . Then there is a point $x \in G_1$ such that for any V(x), $V(x) \cap G_2 \neq \phi$. Case 1: $x \notin A$. Since V(x) is any τ^* -neighborhood of $x, x \in \overline{G}_2^*$ which contradicts. Case 2: $x \in A$. Now there is a point $y \in V(x) \cap G_2$ for each V(x). If $y \notin A$, then there is a τ^* -neighborhood V(y) such that $V(y) \subset G_2$, since G_2 is τ^* open. Since $V(x) \cap V(y)$ is a τ -neighborhood of y and $\overline{A} = X, \phi \neq$ $(V(x) \cap V(y)) \cap A \subset (V(x) \cap A) \cap G_2$. If $y \in A$, then there is a $V(y) \cap A$ such that $V(y) \cap A \subset G_2$. In the same way, $\phi \neq (V(x) \cap V(y)) \cap A \subset$ $(V(x) \cap A) \cap G_2$. Hence $x \in \overline{G}_2^*$ which is a contradiction. This completes the proof.

Since the conditions of N. Levine's theorem [2, Theorem 9] is that A is dense and connected in (X, τ) (hence (X, τ) is connected), this theorem is a generalization of Theorem 9 in [2].

Let (X, τ) be a topological space and $\tau^* = \tau(A)$. Now we shall consider the case $A^c \in \tau$. Then A is clearly open and closed in (X, τ^*) . Hence (X, τ^*) is the union of two disjoint open and closed subspaces $(A, \tau \cap A)$ and $(A^c, \tau \cap A^c)$. In general, let P be a topological property satisfying the following conditions:

(1) If (X, τ) has property P, then any open (or closed) subspace of (X, τ) has property P;

(2) Let A and B be separated sets in (X, τ) , i.e., $\overline{A} \cap B = A \cap \overline{B} = \phi$. If the subspaces $(A, \tau \cap A)$ and $(B, \tau \cap B)$ have property

P, then $(A \cup B, \tau \cap (A \cup B))$ has property P.

Theorem 2.2. Let (X, τ) be a topological space and $\tau^* = \tau(A)$ and $A^{\circ} \in \tau$. The space (X, τ^*) has property P if and only if $(A, \tau \cap A)$ and $(A^{\circ}, \tau \cap A^{\circ})$ have property P.

Proof. Let (X, τ^*) has property *P*. Since *A* and *A^c* is open and closed in (X, τ^*) , $(A, \tau \cap A)$, and $(A^c, \tau \cap A^c)$ have property *P* from (1). If $(A, \tau \cap A)$ and $(A^c, \tau \cap A^c)$ have property *P*. Since *A* and *A^c* are separated in (X, τ^*) , $(A \cup A^c, \tau^* \cap (A \cup A^c)) = (X, \tau^*)$ has property *P* from (2).

Almost all topological properties except the connectness satisfy property P. Therefore, Theorem 2.2 is a generalization of Theorems 2, 4 and 5 in [2].

§ 3. Extensions of regular or connected topologies. In this section, we shall consider a generalization of simple extensions, i.e., ordinary extensions of topologies.

Let (X, τ) a topological space and let $\mathfrak{A} = \{A_{\alpha}\}$ be a collection of subsets of X. We define a topology $\tau \mathfrak{A}$ which shall be called a extension of τ by \mathfrak{A} in the following way. For $x \notin \bigcup A_{\alpha}$, a new open base of x is the original open neighborhood system of x and for $x \in \bigcup A_{\alpha}$, a new open base of x is the family which consists of all intersections of an original open neighborhood of x and an intersection of any finite number of sets (containing x) of \mathfrak{A} .

Let (X, τ) be a topological space and let \mathfrak{A} be a collection of subsets of X. For convenience, by F, G and H we shall represent the intersections of any finite number of sets of \mathfrak{A} . We shall say that \mathfrak{A} is R-open in (X, τ) if and only if for each F and for each $x \in F$, there exists a V(x) and a G containing x so that for each $y \in V(x) \cap \overline{G} - F$, there exists an H containing y such that $y \notin \overline{H \cap G}$.

Since the intersection of a finite number of R-open sets is also R-open from Corollary 1.1, it is evident that the collection which consists of R-open sets is R-open. But the converse is false. Because, for any subset $A \subset X$, the collection $\{A, A^c\}$ is R-open. If for any α , the collection \mathfrak{A}_{α} is R-open, then a collection $\bigcup \mathfrak{A}_{\alpha}$ is R-open.

Theorem 3.1. Let (X, τ) be a regular space and let $\mathfrak{A} = \{A_{\alpha}\}$ be a collection of subsets of X. The space $(X, \tau \mathfrak{A})$ is regular if and only if \mathfrak{A} is R-open in (X, τ) .

Proof. Sufficiency. Suppose that \mathfrak{A} is *R*-open in (X, τ) . For $x \notin \bigcup A_{\alpha}$, the regularity at x is obvious. For $x \in \bigcup A_{\alpha}$, let $V(x) \cap F$ be an arbitrary $\tau \mathfrak{A}$ -neighborhood of x. From the assumption, there exists a $U(x) \cap G$ such that $U(x) \cap G \subset V(x) \cap F$ and it satisfies the condition of the above definition. Since (X, τ) is regular, there is a

W(x) such that $\overline{W(x)} \subset U(x)$. Then $W(x) \cap G$ is a $\tau \mathfrak{A}$ -neighborhood of x. We shall show that $\overline{W(x)} \cap \overline{G}^{\circ} \subset V(x) \cap F$, where \overline{M}° denotes the closure of M in $(X, \tau \mathfrak{A})$. Since $\overline{W(x)} \cap \overline{G}^{\circ} \subset \overline{W(x)} \cap \overline{G} \subset U(x) \cap \overline{G}$ and for any point $y \in \overline{W(x)} \cap \overline{G}^{\circ}$ and for any $V(y) \cap H(y \in H)$, $\phi \neq$ $(V(y) \cap H) \cap (W(x) \cap G) \subset V(y) \cap (H \cap G)$, it follows that $y \notin V(x) \cap \overline{G} - F$, i.e., $y \in F$. Hence $\overline{W(x)} \cap \overline{G}^{\circ} \subset V(x) \cap F$.

Necessity. Assume that \mathfrak{A} is not *R*-open in (X, τ) . Then there exist *F* and $x \in F$ which satisfy the following conditions. Let $V(x) \cap G$ be an arbitrary $\tau \mathfrak{A}$ -neighborhood of *x*. Then there exists a point $y \in V(x) \cap \overline{G} - F$ such that for any $H(\ni y)$, $y \in \overline{H \cap G}$, i.e., for any neighborhood $V(y) \cap H$, $(V(y) \cap H) \cap (V(x) \cap G) \neq \phi$. Hence $y \in \overline{V(x) \cap G}^{\circ}$. Since $y \notin F$, $\overline{V(x) \cap G}^{\circ} \not\subset F$. Therefore $(X, \tau \mathfrak{A})$ is not regular. This completes the proof.

This theorem is a generalization of Theorem 1.1, since if a collection which consists of only one set is R-open, then its set is Ropen. The definition of R-open collection is complicated and not beautiful. However, this complicated condition is required even in the case when the collection consists of only two sets.

Theorem 3.2. Let (X, τ) be a metrizable space and let \mathfrak{A} be a σ -locally finite collection of subsets of X. The space $(X, \tau \mathfrak{A})$ is metrizable if and only if \mathfrak{A} is R-open in (X, τ) .

Proof. In the same way as Theorem 1.3, it is sufficient to show that $\tau \mathfrak{A}$ has a σ -locally finite open base, but it is easily seen from the fact that the family consisting of all intersection of any finite number of sets of \mathfrak{A} is σ -locally finite.

This theorem is a generalization of Theorem 1.3, but if we omit the " σ -locally finite", then this assertion is false. For example, let $X = \{(x, y) \mid y \ge 0\}$ and let τ be the usual topology on X. Let $A_{pn} =$ $\{(x, y) \mid (x-p)^2 + (y-n^{-1})^2 < n^{-2}\} \cup \{(p, 0)\}$ and $\mathfrak{A} = \{A_{pn} \mid p : \text{real number}, n=1, 2, \cdots\}$. Then \mathfrak{A} is R-open and not σ -locally finite. The space $(X, \tau\mathfrak{A})$ is well known as the example which is regular and not normal (hence not metrizable) (cf. [1, p. 133, I]).

Theorem 3.3. Let (X, τ) be a connected space and let \mathfrak{A} be a collection of subsets of X. If each intersection of any finite number of sets of \mathfrak{A} is dense in (X, τ) , then $(X, \tau\mathfrak{A})$ is connected.

Proof. Assume that $(X, \tau\mathfrak{A})$ is not connected. Then there exist two non-void $\tau\mathfrak{A}$ -open set O_1 and O_2 such that $O_1 \cup O_2 = X$ and $O_1 \cap O_2 = \phi$. But (X, τ) is connected and hence either O_1 or O_2 is not τ -open, say O_1 . Then there exists $x \in O_1$ such that for any V(x), $V(x) \cap O_2 \neq \phi$. Let $V(x) \cap F$ be an arbitrary neighborhood of x. For every V(x), there exists $y \in V(x) \cap O_2$. Since $y \in O_2$ which is $\tau\mathfrak{A}$ -open, for some $V(y) \cap G$ $(y \in G)$, $V(y) \cap G \subset O_2$. Since $F \cap G$ is dense in (X, τ) , $\phi \neq$ $(V(x) \cap V(y)) \cap (F \cap G) \subset (V(x) \cap F) \cap O_2$. Hence $x \in \overline{G}_2^{\circ}$ which is a contradiction. This completes the proof.

This theorem is a generalization of Theorem 2.1.

References

- [1] J. L. Kelley: General Topology. Van Nostrand, New York (1955).
- [2] N. Levine: Simple extensions of topologies. Amer. Math. Manth., 71, 22-25 (1964).
- [3] J. Nagata; On a necessary and sufficient condition of metrizability. J. Inst. Polytech. Osaka City Univ., 1, 93-100 (1950).
- [4] Yu. M. Smirnov: A necessary and sufficient condition of a topological space. Doklady Akad. Nauk S.S.S.R. N.S., 77, 197-200 (1951).