A Certain System of Parameters in a Local Ring 21.

By Yasuo KINUGASA

Department of Mathematics, Tokyo Metropolitan University (Comm. by Zyoiti SUETUNA, M.J.A., Feb. 12, 1965)

Let R be a (noetherian) local ring with maximal ideal \mathfrak{M} : denoted by (R, \mathfrak{M}) . First we set the following

Definition. In a local ring (R, \mathfrak{M}) we call a system of parameters a_1, \cdots, a_r of R satisfying the conditions; $a_i \notin \mathfrak{M}^2 + \sum\limits_{i \leq i} a_i R \ (1 \leq i \leq r)$ a special system of parameters of R, where $r=Alt.R^{1}$ (altitude of R = Krull dimension of R).

In this note, by using this notion of a special system of parameters. we shall prove the following:

Theorem. In a local ring (R, \mathfrak{M}) the following three conditions are equivalent to each other:

- (1) R is a Macaulay local ring.
- (2) If a_1, \dots, a_r is a system of parameters of R, then
- $hd_{\scriptscriptstyle R}\sum_{i=1}^r a_i R^{\scriptscriptstyle (1)} < \infty$. (3) There exists a special system of parameters $a_{\scriptscriptstyle 1},\, \cdots,\, a_{\scriptscriptstyle r}$ such that $hd_R \sum_{i=1}^r a_i R < \infty$.

For the proof of the theorem we need the following lemmas.

Lemma 1. Let \mathfrak{A} be an ideal of a local ring (R,\mathfrak{M}) and $\mathfrak{P}_1, \dots, \mathfrak{P}_n$ be prime ideals of R. If \mathfrak{B} is an ideal of R such that $\mathfrak{B} \not\subseteq \mathfrak{A}$ and $\mathfrak{B} \not\subseteq \bigcup_{i=1}^n \mathfrak{P}_i$, then $\mathfrak{B} \not\subseteq \mathfrak{A} \cup \mathfrak{P}_1 \cup \dots \cup \mathfrak{P}_n$.

Proof. See [2, p. 70. Prop. 2].

Lemma 2. In a local ring (R, \mathfrak{M}) there exists a special system of parameters.

We shall show how to construct inductively such a system Proof. of parameters. It is obvious if Alt. R=0. Let r=Alt. $R\geq 1$ and let $\mathfrak{P}_1, \dots, \mathfrak{P}_n$ be the minimal prime divisors of zero. Take a_1 such that $a_1 \in \mathfrak{M}, a_1 \notin \mathfrak{M}^2$ and $a_1 \notin \mathfrak{P}_i \ (i=1, \cdots, n)$ by Lemma 1. Then the height of a_iR is one. After choosing a_i, \dots, a_t (t < r), we can take a_{t+1} in M such that $a_{t+1} \notin \mathfrak{M}^2 + \sum\limits_{j=1}^t a_i R$ and $a_{t+1} \notin \mathfrak{D}_i$ $(i=1, \cdots, m)$ by Lemma 1, where \mathfrak{D}_j 's are the minimal prime divisors of $\sum\limits_{j=1}^t a_j R$. It is obvious that the height of $\sum\limits_{j=1}^{t+1} a_j R$ is t+1. Thus, we obtain a special system of parameters a_1, \dots, a_r of R.

Remark. If a_1, \dots, a_r is a special system of parameters of R

¹⁾ Concerning notations see [3].

then $a_1, \dots, a_{t-1}, a_{t+1}, a_t, a_{t+2}, \dots, a_r$ is also a special system of parameters of R. Consequently, if a_1, \dots, a_r is a special system of parameters of R, then $a_{\sigma_1}, \dots, a_{\sigma_r}$ is also a special system of parameters of R for any parmutation σ of the set $\{1, 2, \dots, r\}$.

Lemma 3. Let a_1, \dots, a_r be a special system of parameters of a local ring (R, \mathfrak{M}) and $\mathfrak{D} = \sum_{j=1}^{r} a_{j}R$. If $0: \mathfrak{M} = 0$, then there exists a special system of parameters a'_{1}, \dots, a'_{r} , with a'_{1} as a non-zerodivisor in R, and such that $\mathfrak{Q} = \sum a_i'R$.

Proof. 0: $\mathfrak{M}=0$ implies 0: $\mathfrak{D}=0$ since \mathfrak{D} is an \mathfrak{M} -primary ideal. Then we have b in $\mathfrak Q$ such that $b=s_1a_1+\cdots+s_ra_r$ $(s_i\in R), b\notin \mathfrak M^2$ and b is a non zero divisor in R by Lemma 1. We may assume $s_r \notin \mathfrak{M}$ since $b \notin \mathfrak{M}^2$ and $a_1, \dots, a_{j-1}, a_r, a_{j+1}, \dots, a_{r-1}$ is a special system of parameters of R (Remark to Lemma 2). It is obvious that $\mathfrak{Q}=$ $\sum\limits_{j=1}^{r-1}a_jR+bR$. If $b=s_1a_1+\cdots+s_ra_r\in\mathfrak{M}^2+\sum\limits_{j=1}^{r-1}a_jR$ then $s_ra_r\in\mathfrak{M}^2+$ $\sum_{j=1}^{r-1} a_j R$, hence we have $a_r \in \mathfrak{M}^2 + \sum_{j=1}^{r-1} a_j R$ since s_r is a unit in R. This contradicts to the condition $a_r \notin \mathfrak{M}^2 + \sum_{j=1}^{r-1} a_j R$. Thus we have a special system of parameters $a_1, \dots, a_{r-1}, \overset{\overline{j-1}}{b}$ of R. Put $a_1' = b, a_i' = a_i$ ($i = a_i$) $2, \dots, r-1$) and $a'_r = a_1$, then a'_1, \dots, a'_r is a special system of parameters of R by Remark to Lemma 2.

Lemma 4. In a local ring (R, \mathfrak{M}) , if $0: \mathfrak{M} \neq 0$, then $hd_R M = \infty$ for every finite R-module M which is not free.

Proof. See [3, (28.1)].

Lemma 5. Let \mathfrak{D} be an ideal of a local ring (R, \mathfrak{M}) and x be an element of \(\mathbb{O}\) which is not contained in \(\mathbb{M}^2\). Assume furthermore that x is not a zero-divisor in R. Then we have $hd_R \mathfrak{D} = 1 + hd_{R/xR}$ (\mathfrak{Q}/xR) .

Proof. See $\lceil 3, (27.4) \rceil$.

Lemma 6. Let (R, \mathfrak{M}) be a local ring. If x_1, \dots, x_d is an R-

sequence $(x_j \in \mathfrak{M})$, then $hd_R \sum\limits_{j=1}^d x_j R < \infty$.

Proof. We shall prove this lemma by induction on d. If $d \leq 1$ the proof is obvious. Let d > 1 and $\operatorname{syz}_R^1\left(\sum\limits_{j=1}^d x_j R\right) = \left\{\sum\limits_{j=1}^d c_j X_j \left|\sum\limits_{j=1}^d c_j x_j = 0, c_j \in R \text{ and } X_j\text{'s are indeterminates}\right\}$. Furthermore define R-homomorphism $\varphi : \operatorname{syz}_R^1\left(\sum_{j=1}^d x_j R\right) \to R$ by $\varphi\left(\sum_{j=1}^d c_j X_j\right) = c_d$. We have immediately Image $\varphi = \sum_{j=1}^{d-1} x_j R$ and Kernel $\varphi = \operatorname{syz}_R^1\left(\sum_{j=1}^{d-1} x_j R\right)$ since $\left(\sum_{j=1}^{d-1} x_j R\right)$: $x_d R = \left(\sum_{j=1}^{d-1} x_j R\right)$. Thus we have the following exact sequence:

$$0 \longrightarrow \operatorname{syz}_R^1\left(\sum_{j=1}^{d-1} x_j R\right) \longrightarrow \operatorname{syz}_R^1\left(\sum_{j=1}^d x_j R\right) \longrightarrow \sum_{j=1}^{d-1} x_j R \longrightarrow 0.$$

By our inductive assumption we have $hd_R\sum_{i=1}^{d-1}x_iR<\infty$ and

$$hd_{R}\left(\operatorname{syz}_{R}^{1}\left(\sum\limits_{j=1}^{d-1}x_{j}R
ight)\right)<\infty$$
 .

Hence we have $hd_R\left(\operatorname{syz}_R^1\left(\sum_{j=1}^d x_jR\right)\right) < \infty$ (See [3], (26.6)). This implies $hd_R\sum_{j=1}^d x_jR < \infty$.

Proof of the theorem

- (1) \Rightarrow (2): The proof follows from Lemma 6.
- $(2) \Longrightarrow (3)$: The proof is obvious.

(3) \Rightarrow (1): We shall complete the proof by using induction on the altitude of R. If Alt. R=0, R is always a Macaulay local ring. Let $r=\mathrm{Alt}$. $R\geq 1$ and $\mathbb{Q}=\sum\limits_{j=1}^r a_jR$. If $0:\mathfrak{M}\neq 0$, by Lemma 4 \mathbb{Q} is a free module since $hd_R\mathbb{Q}<\infty$. On the other hand we have $(0:\mathfrak{M})\mathbb{Q}=0$ and $0:\mathfrak{M}\neq 0$. Hence we conclude $\mathbb{Q}=0$, which contradicts to the assumption. Thus we have $0:\mathfrak{M}=0$. By the fact $0:\mathfrak{M}=0$ we may assume that a_1 is a non zero divisor in R (Lemma 3). It is obvious that the set of a_2 modulo a_1R , \cdots , a_r modulo a_1R is a special system of parameters of R/a_1R since a_1, \cdots, a_r is a special system of parameters of R. On the other hand we have $hd_R\mathbb{Q}=1+hd_{R/a_1R}(\mathbb{Q}/a_1R)$ by Lemma 5 and Alt. $R=\mathrm{Alt}$. R/a_1R+1 . Hence R/a_1R is a Macaulay local ring by the assumption of induction. This implies that R is a Macaulay local ring since a_1 is a non-zero-divisor in R.

Appendix

By using the notion of the special system of parameters we have the Theorem (Cf. Theorem of [4]). In a local ring (R, \mathfrak{M}) , the following conditions are equivalent:

- (1) R is a Gorenstein local ring.²⁾
- (2) There exists an M-primary ideal Ω generated by a special system of parameters satisfying the following:

For any special system of parameters a_1, \dots, a_r which generates \mathfrak{Q}_i , all $\mathfrak{Q}_{(n,i)}$ are irreducible, where $\mathfrak{Q}_{(n,i)} = \sum_{j=1}^{i-1} a_j R + \sum_{j=i}^r a_j^n R$ ($r = Alt, R, i = 1, \dots, r$ and $n = 1, 2, \dots$).

Proof. (1)=(2) is obvious. For the proof of implication (2)=(1) it will be sufficient only to prove that R is a Macaulay local ring. We shall prove it by induction on the altitude of R. If Alt. R=0, the proof is obvious. If Alt. $R\ge 1$, each $\mathfrak{D}_{(n,1)}=\sum\limits_{j=1}^r\alpha_j^nR$ is irreducible and $\mathfrak{D}_{(n,1)}\subsetneq\mathfrak{D}_{(n-1,1)}$ ($n\ge 2$). So we have $\mathfrak{D}_{(n,1)}\colon\mathfrak{M}\subseteq\mathfrak{D}_{(n-1,1)}^{(n)}$ ($n\ge 2$). While we have $\bigcap\limits_{n=1}^\infty\mathfrak{D}_{(n,1)}\subseteq\bigcap\limits_{n=1}^\infty\mathfrak{M}^n=0$, therefore $0\colon\mathfrak{M}=\left(\bigcap\limits_{n=2}^\infty\mathfrak{D}_{(n,1)}\right)\colon\mathfrak{M}=\bigcap\limits_{n=2}^\infty(\mathfrak{D}_{(n,1)}\colon\mathfrak{M})\subseteq\bigcap\limits_{n=2}^\infty\mathfrak{D}_{(n-1,1)}=0$. Since $0\colon\mathfrak{M}=0$, we have a special system

²⁾ See [1].

³⁾ See [5, p. 248, Th. 34].

of parameters a_1, \dots, a_r with a_1 as a non zero divisor which generates $\mathfrak D$ by Lemma 3. For any special system of parameters $\overline b_2, \dots, \overline b_r$ of R/a_1R , which generates $\mathfrak D/a_1R$, a_1,b_2,\dots,b_r is a special system of parameters of R which generates $\mathfrak D$, where $\overline b_j = b_j$ modulo a_1R . Let $\mathfrak D'_{(n,i)}$ be the ideal of R/a_1R generated by $\overline b_2, \dots, \overline b_{i-1}, \overline b_i^n, \dots, \overline b_r^n$ ($i=2,\dots,r,n=1,2,\dots$). Then all $\mathfrak D'_{(n,i)}$ are irreducible since all $a_1R+b_2R+\dots+b_{i-1}R+b_i^nR+\dots+b_r^nR$ are irreducible by our assumption. Hence R/a_1R is a Macaulay local ring by our inductive assumption since Alt. R= Alt. R/a_1R+1 . This implies that R is a Macaulay local ring.

References

- [1] H. Bass: On the ubiquity of Gorenstein rings. Math. Zeitschr., 82, 8-28 (1963).
- [2] N. Bourbaki: Algèbre Commutative. Hermann, Paris (1961).
- [3] M. Nagata: Local rings. (Interscience Tracts, 1962).
- [4] D. G. Northcott and D. Rees: Principal systems. Quart. J. Math., 8, 119-127 (1957).
- [5] O. Zariski and P. Samuel: Commutative Algebra, Vol. 1. Van Nostrand, Princeton (1958).