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59. Resolvent Kernels on a Martin Space

By Masatoshi FUKUSHIMA
Institute of Mathematics Yoshida College Kyoto University

(Comm. by Kinjir6 KUNU(I, M..A., April 12, 1965)

Let R be a Green space, M be its Martin boundary and/ be the
harmonic measure on M relative to a fixed loint of R. As a result
of the author’s previous paper 3, we can see that, if every point
of M is an exit boundary loint of R,

(1)

represents the Dirichlet integral on R, up to a constant, of the harmonic
function with boundary value u(), e M, where U(, ) is Feller’s
kernel (cf. Doob

We shall apply this fact to form a system of resolvent kernels
on (RM)R which dominate on RR the resolvent kernels of a
Brownian motion on R. As the generalized normal derivatives of the
potentials defined by these kernels, we may have zero function on M.
The construction of these kernels is our main purpose.

To this aim, we shall first define a system of operators R,0
on L(g) such that, for every e L:(g), R satisfies

for any v in a certain function class, where U is a-order Feller’s
kernel. Next, we shall prove the positivity of R(a0) and the
continuity of R in a certain sense. Finally, using {R, a0}, we
shall form resolvent kernels satisfying the properties cited above.

1. Positive operators R(a0) on L:(g).
Let p(t, x, y) t 0, x, y e R be the transition function of a Brownian

motion on R. Its resolvent kernel is defined by

(, )- e-(,

Pot the artin K-function K(, ),

K(x,
R

We call e M an exit boundary Foint if and only if K(x, )#0 for

some xe R and a>0. For , e M, a>0, U(,)-a K(x,)K(x,)dx
J

is monotone increasing in a and we call U(, )= lim U(, )Feller’s
kernel (cf. [3).

From now on, we assume that
(A.1) almost every (p) point of M is exit,
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(A.2) U(, )[(d)/(d)< + for some
J

We note that (A.1) and (A.2) hold when R is a bounded domain of
Che N-dimensional Euclidean space.

Now ,ut )u()p(d)(d)
D(u, u)-D(u, u)+ 2 U(u, u) and ] u VD(u, u), >O.
We consider a function space

2-{u" D(u, u)< + , U(] u], [u I)< + }.
is independent of a(>0) and forms a Hilbert space with the inner

product
1

U(, r])u(r])t(dr]) will be denoted by Uu(),
Easily we see that

( 3 III u IIl- ff(u()-u(r])) U(, )- U(, )(d)(d)-2 u(): UI()v(d) u
M

Since U(,) U(, ), , e M, a> 0 and inf UI() is strictly positive,

the formula (3) leads us to the following

Lemma 1. (i) L:(V), andfor any u
.where ()-(2 inf UI())-.

(ii) If ue and v is a contraction of u (cf. [1), that is,
’]v()]]u()] and v()-v() u()-u() for any , M, then

It follows from Lemma 1 (i) that, for e L(V), there exists a

function of uniquely (denoted by R) such that the equation (2)
holds for any v e . We can also associate R e with the function

?=Uaw, w e2,>O. Lemma 1 (ii) assures the positivity of R
(cf.

Theorem 1. ) R 0 a.e(V) if 0 a.e(V) (a> 0).
(ii) R UI 1 a.e() (a> 0).
(iii) For e L:(V), a> O, > O,
R-R+R(U Ua)Ra- 0 a.e(p).

2. The quasi continuity of R’.
Let 0 be fixed throughout this section. For every positive

integer m, we define D(u, u) by

u)- ,(u()-u())U(, )p(d)(d).D(u,

For m put D(u, u) D(u, u) + 2 U(u, u), [] u D(u, u) and

IM
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’-{u" D(u, u)< + o, U([ u l, lu )< + }.
g)’ is independen of m and forms a Hilber space with the inner

1 )product D(g, )-(([][+ ][ -(]]]- [[)). For e (p) there

exists an unique element Ri of ’ such that

D(R, v) 2 ()v()(d)

holds for any v e’. We denote by C the totality of continuous
functions on M.

CLemma 2. ) If Ua(C)cC for any >0, then R( )C.
(ii) R converges to R in the following sense.

R-R 0 as m+ e L:(p).
Now for the open set EM, we define C(E) by C(E)--

inf D(u, u). It follows from the analogous formula to (3) for D,
>1

that or the continuous unetion g on and >0, the inequality

( 4 C{ "] [>}D(g, g) holds. (el. [1]).

(4) and Lemma 2 imply the next
Theorem 2. (the quasi continuity of R,eC). Let be

continuous. If Ua(C)C for every 0, then, for any integer m
(), $here exists an increasing sequence of closed subsets E (k-
1, 2, ...) of M such that lim C(M-E)-0 and R is continuous

on E (k- 1, 2,...).
3. Resolvent kernels on (R U M) R.

For every y e R, (.)-K(y, .), a>O, is a boundary function of
L:(p). We shall define R(x,y),a>O, on (RuM)R as follows"
For e M, y e R, R(, y)-R(), where (.)- K(y, .). For x e R,
y e R, R(x, y)-G(x, y)+ K(x, )R(, y)(d).

Consider the function u(x)-Hu(x)+u(x), where Hu is a BLD
harmonic function with a fine boundary function u and u is a potential
of a measure on R. We assume that every BLD harmonic function

Hv with a fine boundary unction v e is integrable on R with
respect to t.he absolute variation of w.

We call F is a generalized normal derivative of u on M, if

+ e e
M JR

for any v e (cf. [2]).
Theorem 3. Let y be an arbitrarily fixed point of R. Then,

for every x e R and a.e(#) x e M,
(i) R(x, y)0,
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(ii) R(x, y)-R(x, y)+(a-)lR(x,, z)R(z, y)dz-O, ,
Further, (iii) atoR(x, y)dy= 1, for every x e R and a.e(10 x e M.

(iv) Iff is a bounded function with a compact support on R, their

Rf(x)-oR(x, y)f(y)dy has the zero function as its generalized

normal derivative on M.
(v) If f is a continuous function with a compact support

R, then lim Rf(x)=f(x) x e R.
Remark. To R(x, y), a>0, x, y e R, there corresponds a con-.

servative Markov process on R. Such a method of the construction
of resolvent kernels is applicable to the case in which R, dx, and
G(x, y)are, respectively, the state space, the excessive measure and
the symmetric Green function of the more general Markov process
than an absorbing barrier Brownian motion.
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