14. Structure of Logarithmic K3 Surfaces

By Shigeru Iitaka
Department of Mathematics, Faculty of Science
University of Tokyo, Hongo, Tokyo 113
(Communicated by Kunihiko Kodaira, m. J. A., Feb. 13, 1978)

1. By a surface, we shall mean a non-singular algebraic surface defined over C. For complete surfaces, we have birational invariants such as geometric genus p_{g}, irregularity q and Kodaira dimension κ, by means of which the birational classification of surfaces has been discussed.

For open surfaces, in addition to those invariants, we have logarithmic geometric genus \bar{p}_{g}, logarihmic irregularity \bar{q}, and logarithmic Kodaira dimension $\bar{\kappa}$, which are proper birational invariants. For definition of them, see [2], [3], [5].

A $K 3$ surface S is defined to be a complete surface S with $p_{g}(S)=1$ and $q(S)=\kappa(S)=0$. Moreover, if S is (relatively) minimal, the canoical divisor $K(S) \sim 0$ (which means that $K(S)$ is linearly equivalent to 0). Now, a logarithmic K3 surface S is defined to be a surface S with $\bar{p}_{g}(S)=1$ and $\bar{q}(S)=\bar{\kappa}(S)=0$. In this note we study the structure of logarithmic $K 3$ surfaces. Details will appear elsewhere.
2. A pair (\bar{S}, D) of a complete surface \bar{S} and a divisor D with normal crossings is called a ∂-surface and $S=\bar{S}-D$ is called the interior of (\bar{S}, D). We say that (\bar{S}, D) is relatively ∂-mimimal if $\bar{S}-D$ has no exceptional curves of the first kind and if D is minimal.

It is obvious that for a given surface S, there exists a ∂-surface (\bar{S}, D) whose interior is S. \bar{S} may be called a completion of S with ordinary boundary D.
3. Let S be a logarithmic $K 3$ surface and let (\bar{S}, D) be a ∂-surface whose interior is S. Then we have the following cases:
I) If $p_{g}(\bar{S})=1$, then \bar{S} is a $K 3$ surface. We put $D_{A}=0$ and D_{B} $=D$.
II_{a}) If $p_{g}(\bar{S})=0$ and there is a component C_{1} of D which is a nonsingular elliptic curve, then \bar{S} is a rational surface and the dual graph associated with D has no loops. We put $D_{A}=C_{1}$ and $D_{A}+D_{B}=D$.
II_{b}) If $p_{g}(\bar{S})=0$ and each component of D is a rational curve, then \bar{S} is a rational surface and the graph of D has one loop. Corresponding to the loop, we have a subboundary D_{A} which is circular (see §4). We put $D=D_{A}+D_{B}$. In each case, we call S a logarithmic surface of type I) or II_{a}) or II_{b}).
4. Let (\bar{S}, D) be a ∂-surface and $\sum_{j=1}^{r} C_{j}$ the irreducible decomposition of D. We say that D is a circular boundary if $r=1$ and C_{1} is a rational curve with only one double point, or if $r=2$ and $\left(C_{1}, C_{2}\right)=2$, or if $r \geqq 3$ and each C_{j} is \boldsymbol{P}^{1} satisfying that

$$
\begin{array}{ll}
\left(C_{i}, C_{j}\right)=1 & \text { for } i-j \equiv \pm 1 \bmod r \\
\left(C_{i}, C_{j}\right)=0 & \text { for } i-j \not \equiv 0, \pm 1 \bmod r
\end{array}
$$

In general, the configuration of components of D defines a $\operatorname{graph} \Gamma(D)$. The cyclotomic number of $\Gamma(D)$ is indicated by $h(\Gamma(D)$).

A divisor Y with normal crossings on a surface S is called a curve of Dynkin type $A D E$ if each component Y_{j} of Y is a non-singular rational curve with $Y_{j}^{2}=-2$ and if the graph $\Gamma(Y)$ corresponds to a direct sum of Dynkin diagrams A_{n}, D_{n}, E_{l}. In particular, $h(\Gamma(Y))=0$.
5. Let (\bar{S}, D) be a ∂-surface whose interior S is a logarithmic $K 3$ surface.

Theorem 1. If $\bar{S}-D_{A}$ has no exceptional curves of the first kind, then $K(\bar{S})+D_{A} \sim 0$.

Theorem 2. If (\bar{S}, D) is relatively ∂-minimal and if $\bar{S}-D_{A}$ has no exceptional curves of the first kind, then D_{B} is 0 or a curve of Dynkin type $A D E$. Furthermore, if S is of type $I I$, then D_{B} is 0 or a curve of Dynkin type A.
6. In general, let (\bar{S}, D) be a ∂-surface and let $p \in D$. Consider a blowing up $\lambda: \bar{S}^{1}=Q_{p}(\bar{S}) \rightarrow \bar{S}$ with center p. Letting $D^{1}=\lambda^{-1}(D)$, we have

$$
K\left(\bar{S}^{1}\right)+D^{1}=\lambda^{*}(K(\bar{S})+D)+(2-\nu) E
$$

where $E=\lambda^{-1}(p)$ and ν is the multiplicity of D at p. Hence, if $\nu=2$, we call $\lambda:\left(\bar{S}^{1}, D^{1}\right) \rightarrow(\bar{S}, D)$ a canonical blowing up. We have

$$
K\left(\bar{S}^{1}\right)+D^{1}=\lambda^{*}(K(\bar{S})+D)
$$

If $\nu=1$, then defining D^{*} by $D^{1}=E+D^{*}$, we obtain

$$
K\left(\bar{S}^{1}\right)+D^{*}=\lambda^{*}(K(\bar{S})+D)
$$

We say that $\left(\bar{S}^{1}, D^{*}\right)\left(\right.$ or $\left.S^{*}=\bar{S}^{1}-D^{*}\right)$ is a 1/2-point attachment to (\bar{S}, D) (or $S=\bar{S}-D$).
7. Theorem 3. Let (\bar{S}, D) be a relatively ∂-minimal ∂-surface such that D is a circular boundary. If $\bar{\kappa}(\bar{S}-D)=0$, then (\bar{S}, D) is obtained from $\left(\boldsymbol{P}^{2}, H\right)$ by canonical blowing ups and downs and by attaching several 1/2-points. Here H is a sum of three lines which have no common points.

Theorem 4. Let (\bar{S}, C) be a relatively ∂-minimal ∂-surface such that C is an elliptic curve. If $\bar{\kappa}(\bar{S}-C)=q(\bar{S})=0$, then (\bar{S}, C) is obtained from (\boldsymbol{P}^{2}, E), E being a non-singular cubic curve, by canonical blowing ups and by several 1/2-point attachments and detachments.
8. We recall a result concerning quasi-abelian surfaces [6]. Let S be a surface with $\bar{q}(S)=2$ and $\bar{\kappa}(S)=0$. Such a surface is called a
logarithmic abelian surface. Let (\bar{S}, D) be a ∂-surface whose interior is S. Then,
I) If $p_{g}(\bar{S})=1$, then \bar{S} is birationally equivalent to an abelian surface. Put $D_{A}=0$ and $D_{B}=D$.
II) If $p_{g}(\bar{S})=0$ and $q(\bar{S})=1$, then \bar{S} is a ruled surface of genus 1. Let $f: \bar{S} \rightarrow \Delta$ be the Albanese map. Then there is the horizontal component of D with respect to f, which is defined to be $D_{A} . \quad D_{B}$ is to satisfy $D=D_{A}+D_{B}$.
III) If $p_{g}(\bar{S})=q(\bar{S})=0$, then \bar{S} is a rational surface and D consists of non-singular rational curves with $h(\Gamma(D))=1$. Define D_{A} to be a circular subboundary in D and D_{B} to be a divisor satisfying that $D=D_{A}$ $+D_{B}$.

Theorem 5. If $\bar{S}-D_{A}$ has no exceptional curves of the first kind, then $K(\bar{S})+D_{A} \sim 0$. Moreover, suppose that $D=D_{A}+D_{B}$ is minimal. Then $D=D_{4}$.

Theorem 6. In general, let S be an algebraic surface. Suppose that S is measure-hyperbolic. Then $\bar{\kappa}(S)=2$ or $\bar{\kappa}(S)=-\infty$ and $\bar{q}(S)=0$.

References

[1] S. Iitaka: On D-dimensions of algebraic varieties. J. Math. Soc. Japan, 23, 356-373 (1971).
[2] -: Logarithmic forms of algebraic varieties. J. Fac. Sci. Univ. of Tokyo, 23, 525-544 (1976).
[3] -: On logarithmic Kodaira dimension of algebraic varieties. Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, 175-189 (1977).
[4] -: Some applications of logarithmic Kodaira dimension (to appear in Proc. Int. Symp. Algebraic Geometry, Kyoto).
[5] ——: Classification of algebraic varieties. Proc. Japan Acad., 53, 103-105 (1977).
[6] -: A numerical characterization of quasi-abelian surfaces (to appear).
[7] ——: Minimal models in proper birational geometry (preprint).
[8] -: Minimal circular boundaries and logarithmic K3 surfaces (to appear in Proc. Algebraic Geometry, Kinosaki).
[9] -: Homogeneous Lüroth theorem and classification of algebraic surfaces (preprint).
[10] Y. Kawamata: Addition theorem of logarithmic Kodaira dimension for morphisms of relative dimension one (to appear in Proc. Int. Symp., Kyoto).
[11] -: On deformations of compactifiable complex manifolds (to appear).
[12] -: An equi-singular deformation theory via embedded resolution of singularities (preprint).
[13] F. Sakai: On logarithmic canonical maps of algebraic surfaces of general type (preprint).

