13. Logics without Craig's Interpolation Property

By Yuichi Komori
Department of Mathematics, Shizuoka University
(Communicated by Kunihiko Kodaira, m. J. A., Feb. 13, 1978)

It has been shown by Craig, Schütte and Gabbay that Craig's interpolation theorem holds for predicate logics $L K, L J, L J+(a), L J+(b)$ and $L J+(a)+(b)$ (cf. [1]), where
(a) $\forall x \neg \neg A(x) \supset \neg \neg \forall x A(x)$,
(b) $\neg P \vee \neg \neg P$.

In this paper, we shall show that there exist some superclassical predicate logics where Craig's interpolation theorem does not hold and that Craig's interpolation theorem does not hold for any intermediate propositional logic on slice \mathcal{S}_{n} for $3 \leqq n<\omega$.
§ 1. Superclassical predicate logics. The definition of predicate logics is obtained by excluding the condition 1) $L J \subset L \subset L K$ from Definition 1.1 in Ono [4]. By a superclassical predicate logic (SCPL), we mean a predicate logic including the predicate logic $L K$. We denot the set of formulas valid in any model whose domain has n elements by $L(n)$. We can easily see that $L(n)$ is a $S C P L$ and

$$
L K \subsetneq \bigcap_{n<\omega}(n) \subsetneq \cdots \subsetneq L(n) \subsetneq \cdots \subseteq L(2) \subseteq L(1) \subseteq W
$$

Here W denotes the set of all formulas. We write $A_{1}, A_{2}, \cdots, A_{n} \rightarrow B_{1}$, $B_{2}, \cdots, B_{m} \in L$ if the formula $A_{1} \wedge A_{2} \wedge \cdots \wedge A_{n} \supset B_{1} \vee B_{2} \cdots \vee B_{m} \in L$.

Theorem 1.1. Craig's interpolation theorem does not hold for $L(n)(n \geqq 2)$.

Proof. We define the formulas $Q_{n}^{i}(1 \leqq i \leqq n)$ as follows:

$$
Q_{n}^{i}=\left(\bigwedge_{\substack{j=1 \\ j \neq i}}^{n} q_{i}\left(x_{j}\right)\right) \wedge \neg q_{i}\left(x_{i}\right)
$$

Then, we have that $Q_{n}^{1}, Q_{n}^{2}, \cdots, Q_{n}^{n}, p\left(x_{1}\right), p\left(x_{2}\right), \cdots, p\left(x_{n}\right) \rightarrow p(y) \in L(n)$. Therefore, we have

$$
Q_{n}^{1}, Q_{n}^{2}, \cdots, Q_{n}^{n} \rightarrow p(y), \neg p\left(x_{1}\right), \neg p\left(x_{2}\right), \cdots, \neg p\left(x_{n}\right) \in L(n) .
$$

In the above sequent, the antecedent and the succedent contain no predicate symbol in common. And we can show that the antecedent $\rightarrow \oplus L(n)$ and \rightarrow the succedent $\oplus L(n)$. Q.E.D.

We don't know whether Craig's interpolation theorem holds for the $S C P L \bigcap_{n<\omega} L(n)$.
§ 2. Intermediate propositional logics. In the proof of Theorem 1.1, we constructed the sequent $\Gamma \rightarrow \Theta$ such that Γ and Θ contain no predicate symbol in common and $\Gamma \rightarrow \Theta \in L(n)$ and $\Gamma \rightarrow \oplus L(n)$ and $\rightarrow \Theta$
$\oplus L(n)$. By the following theorem, it is known that we can not construct such a sequent in the intermediate propositional logics.

Theorem 2.1. For any intermediate propositional logic L, if $A \supset B \in L$ and A and B contain no propositional variable in common, then $\neg A \in L$ or $B \in L$.

Proof. Suppose that $\neg A \oplus L$ and $B \in L$. By $B \oplus L$, there exist a pseudo-Boolean algebra P and an assignment f of P such that $L \subseteq L(P)$ and $f(B) \neq 1$. Here $L(P)$ denotes the set of formulas valid in P, and 1 and 0 are the largest and the smallest elements of P, respectively. Since $L J \subseteq L, \neg A \notin L J$. By Glivenko's theorem, $\neg A \oplus L K$. So there exists an assignment g of P such that $g(\neg A)=0$ and $g(p)=1$ or $g(p)=0$ for any propositional variable p. Let h be an assignment of P such that $h(p)=g(p)$ if p appears in A and $h(p)=f(p)$ if p appears in B. Then, we have that $h(A \supset B)=g(A) \supset f(B)=1 \supset f(B)=f(B) \neq 1$. Therefore, $A \supset B \oplus L$.
Q.E.D.

We define the formula P_{n} by $P_{0}=p_{0}$ and $P_{n+1}=\left[\left(p_{n+1} \supset P_{n}\right) \supset p_{n+1}\right]$ $\supset p_{n+1} . \quad L P_{n}$ denotes $L J+P_{n} . \quad S_{n}$ denotes the logic determined by the linear model with $n+1$ values. $L P_{n}$ and S_{n} are the minimum and the maximum elements of \mathcal{S}_{n}, respectively.

Hosoi [2] gave a cut free Gentzen-type system for $L P_{n}$. Hence, we have conjectured that Craig's theorem holds for $L P_{n}$. But it is not true. $\quad \Gamma_{n}(n \geqq 1)$ denotes the sequence

$$
\left(p_{n} \supset p_{n-1}\right) \supset p_{n-1}, \cdots,\left(p_{2} \supset p_{1}\right) \supset p_{1}, \neg \neg p_{1}, p_{n-1} \supset p_{n}, \cdots, p_{1} \supset p_{2}
$$

Lemma 2.2. $\quad \Gamma_{n} \rightarrow p_{n} \in L P_{n}(n=1,2,3, \cdots)$.
Proof. We prove this by the induction on n. If $n=1$, then this sequent is $\neg \neg p_{1} \rightarrow p_{1}$ and $\neg \neg p_{1} \rightarrow p_{1} \in L P_{1}=L K$. By the inductive hypothesis, $\Gamma_{n-1} \rightarrow p_{n-1} \in L P_{n-1}$. We use the Gentzen-type system in [2].

$$
\begin{align*}
& \underline{p_{n} \rightarrow} p_{n} \\
& \frac{p_{n}, \Gamma_{n-1} \rightarrow p_{n}, p_{n-1} \quad\left[\Gamma_{n-1} \rightarrow p_{n-1}\right]}{} \\
& \quad \frac{\Gamma_{n-1} \rightarrow p_{n}, p_{n} \supset p_{n-1} \quad p_{n-1} \rightarrow p_{n-1}}{\left(p_{n} \supset p_{n-1}\right) \supset p_{n-1}, \Gamma_{n-1} \rightarrow p_{n}, p_{n-1}} p_{n} \rightarrow p_{n} \\
& \frac{p_{n-1} \supset p_{n},\left(p_{n} \supset p_{n-1}\right) \supset p_{n-1}, \Gamma_{n-1} \rightarrow p_{n}, p_{n}}{\Gamma_{n} \rightarrow p_{n} .}
\end{align*}
$$

R_{n} denotes the formula $\left[\left(p_{n} \supset p_{n-1}\right) \supset p_{n-1}\right] \wedge\left(p_{n-1} \supset p_{n}\right) \supset p_{n}$.
Lemma 2.3. There exists no formula P of one propositional variable p_{n-1} such that $\Gamma_{n-1} \rightarrow P \in S_{n}$ and $P \rightarrow R_{n} \in S_{n}(3 \leqq n<\omega)$.

Proof. By Nishimura [3], there exists no formula of one variable other than Nishimura's basic formulas if we identify equivalent formulas in $L J$. In Figure 1, we illustrate Fig. 1 in [3], but the order is the reverse of the original. We have (1), (2) and (3) if we consider the following models in Fig. 2, respectively.
(1) $\neg p_{n-1} \rightarrow R_{n} \notin S_{2}$.
(2) $\neg \neg p_{n-1} \rightarrow R_{n} \notin S_{3}$.
(3) $\Gamma_{n-1} \rightarrow p_{n-1} \notin S_{n}$.

By (1), any formula P such that $P \geqq \neg p_{n-1}$ in Fig. 1 can not be an interpolant. By (3), any formula P such that $P \leqq p_{n-1}$ in Fig. 1 can not be an interpolant. Hence, by (1), (2) and (3), we have this lemma.

Fig. 1
(1)
(2)

Fig. 2
Q.E.D.

Theorem 2.4. Craig's interpolation theorem does not hold for any logic on \mathcal{S}_{n} if $3 \leqq n<\omega$.

Proof. Suppose $L \in \mathcal{S}_{n}$. Because $L P_{n} \subseteq L, \Gamma_{n-1} \rightarrow R_{n} \in L$ by Lemma 2.2. $\quad \Gamma_{n-1}$ and R_{n} have no common propositional variable other than p_{n-1}. As $L \subseteq S_{n}$, the above sequent has no interpolant by Lemma 2.3.
Q.E.D.

References

[1] D. M. Gabbay: Semantic proof of the Craig interpolation theorem for intuitionistic logic and extensions, Part I, II. Logic Colloquium '69 (edited by Gandy and Yates), North-Holland Publ. Co., 391-410 (1971).
[2] T. Hosoi: On intermediate logics. III. J. Tsuda College, 6, 23-38 (1974).
[3] I. Nishimura: On formulas of one variable in intuitionistic propositional calculus. J. Symbolic Logic, 25, 327-331 (1960).
[4] H. Ono: A study of intermediate predicate logics. Publ. RIMS, Kyoto Univ., 8, 619-649 (1973).

