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9. A Note on a Generalization of Prime Ideals

By Sumiko KURATA
Ube Chiic High School

(Communicated by Kosaku Yo0SIpA, M. J. A., Feb. 18, 1978)

1. Generalizing the concepts of prime ideals and primary ideals
in rings, Murata et al. [1] introduced the notions of f-prime ideals and
f-primary ideals in rings, and they obtained the uniqueness of f-
primary decomposition of ideals under the assumptions that

(@) each ideal is f-related to itself,

(8) for any ideal A and any ideal B not contained in 7(4), A: B
#0,

(p) if S is an f-system with kernel S*, and if for any ideal
A, SNA=0, then S*NA+0,

) for any f-primary ideal Q, Q: Q=R.

Y. Kurata and S. Kurata [2] also discussed the isolated component and
the isolated set of ideals having f-primary decompositions.

It is then natural to ask whether these assumptions are independent
or there are some relations between them. The purpose of this note
is to examine these questions. For all undefined notions see [1].

The author wishes to thank Prof. K. Murata for his advice and
suggestions for improving this note.

2. Throughout this note R is an associative ring and assume that
for each element a ¢ R we associate an ideal f(a) in R which is uniquely
determined by a and satisfies the following conditions:

(I) ae f(a),

an zefw+A=>f@)<f(a)+A for any ideal A.

The principal ideal (a) generated by a« is an example of the f(a)
and we call simply f principal if f(a)=(a) for all a ¢ R. Asis pointed
out in [1], if f is principal, then the assumptions («) to (6) are all sat-
isfied. However we can point out that there is a ring R and a non-
principal f for which all of («) to (6) are satisfied.

Let R be as in [1, Example 2.3]. Then the ideals in R are R, M, K
and (0). We define f(a)=(a, M) for each a € R. This f is not principal
and 0 is f-related to each ideal, i.e. () is satisfied.

Ideals R and M are f-prime, K and (0) are not f-prime and so we
have

r(R)=R, r(K)=R, r(M)=M and »(0)=M,
from which we see that K is f-primary and (0) is not f-primary. To
show that (p) is satisfied, we may note that each of M: R, M: K, (0): R
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and (0): K contains 0.

Let S(S*) be any f-system with kernel S* and A an ideal in R.
We want to show that SN A0 implies S*NA+0. In case A=R or
A=DM this is clear. Let A=K, SNK+0 and take se SNK. Then
F(8)NS*£0 by definition. For each s’ ¢ f(s)NS* we can find ac R
such that s’as’ ¢ S*. By the definition of the multiplication of R, s’as’
e K and thus we see that S*NK=0. Likewise SN(0)## implies
S*N(0)+@. This shows that (y) is satisfied.

Finally to show that () is satisfied, we have to check that R: R
=K:K=M: M=R, but this is easy and we will omit it.

3. On the other hand, there is an example of R and f which does
not satisfy any of («) to (6). Let R be a field. Then we have either

f(0)=@0) and f(a)=R fora (#0)ecR
or
f(@)=R for all a ¢ R.
The former is principal and satisfies all of (@) to (6). However the
latter does not satisfy any of (@) to (5). Each non-zero element of f(0)
is not a zero-divisor mod (0). So 0 is not f-related to (0) and hence
(a) is not satisfied.

Since C((0))=R* is multiplicatively closed, (0) is f-prime and
7((0))=(0). The ideal R is not contained in #((0)) and certainly (0): R
is empty. Thus (8) is not satisfied.

R(R*) is also an f-system and RN(0)#@ and R*N(0)=0, from
which we see that (y) is not satisfied.

To show that () is not satisfied, we may note that (0) is f-primary
and (0): (0) is empty.

As is pointed out in [1] whenever R has no right zero-divisors, (a)
is equivalent to the fact that f is principal and hence in this case

() implies (B), (y), and (9).
This however can be strengthened at once when R is a field from the
consideration above.

Proposition 1. For a field R, each of («) to () is equivalent.

4, Returning to the general case, we now assume that R has an
identity 1. For an ideal A in R, we set

*={l—a:aecA}
and
S,={aeR: f(a)NSE+0}.
Then S* is a multiplicatively closed subset of R and S, becomes an f-
system with kernel S%. As is easily seen, a € S, if and only if f(e)+ A
=R, and S¥N A0 if and only if A=R, or equivalently, 0 ¢ S%.

If there exists an ideal AR such that S,N A0, then (y) is not
satisfied for the f-system S,(S%). Consequently we have

Proposition 2. If R has an identity and if (y) is satisfied, then
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S,NA must be empty for all proper ideals A in R.

For example, if there exists a maximal ideal A and an element
a € A such that f(e)£ A4, then (y) is never satisfied, and [1, Example
3.1] is a special case of this.

We also have

Proposition 3. If R has an identity 1, then (a) implies that S,NA
s empty for all proper ideals A in R.

Proof. Suppose that («) is satisfied and that S,NA+@ for some
ideal A (#£R). Take aeS,NA. Then f(a)+A=R and so we can
find o’ € f(a) and o/’ € A such that 1=0'+0a”. Since a is f-related to
A, thereexists c¢ A suchthata/'cc A. Hence wehavec=da'c+a’ce A,
a contradiction. Thus S,N A must be empty for all proper ideals A
in R.

The following proposition shows that the converses of these prop-
ositions are also true under an additional assumption on E.

Proposition 4. Suppose that R has an identity and that the
intersection of all the maximal ideals in R is zero. Then the following
conditions are equivalent :

1) f is principal.

2 (o).

@ .

4) S.NA=0 for all maximal ideals A in R.

Proof. It is enough to show that (4) implies (1). So assume (4),
and let A be any maximal ideal and take any a e A. Then by the as-
sumption a ¢ S, and so f(a@) +A=R. It follows that A=f(a)+A and
thus we have f(@)<A. From this we claim that f is principal. If
f(0)==(0), then we can find a non-zero element @ € f(0) and a maximal
ideal A such that a2 A. Since 0 ¢ A4, f(0)<A and hence ¢ must be in
A, a contradiction. Thus we have f(0)=(0) and f is principal.

5, Assume again that R has an identity 1. In this case, since
SQ)=R, (0) means that for any f-primary ideal @ in R f(b)<Q for
all b e Q, or equivalently, for any ideal A which is represented as an

intersection of f-primary ideals, f(a)<A4 for allac A. From this we
have

Proposition 5. If R has an identity and if any ideal in R can be
represented as an intersection of f-primary ideals, then (5) is equivalent
to saying that f is principal. So we have the implications

@=>@), @B and (K.
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