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108. Fourier Transforms of Nilpotently Supported
Invariant Functions on a Finite
Simple Lie Algebra™

By Noriaki KAWANAKA
Department of Mathematics, Osaka University

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1981)

0. Let ® be a connected simple algebraic group defined over a
finite field k=F,, and let g=Lie (®), the Lie algebra of . We denote
by ¢ the Frobenius morphism, and by G (resp. ¢) the set &, (resp. g,)
of o-fixed points of & (resp. g). Let Inv(g) be the space of C-valued
Ad (G)-invariant functions on ¢ and Inv (g, the subspace of Inv(g)
consisting of all f € Inv (g) supported by the set g, of nilpotent elements
of g. In §2, we introduce an operation f—f" for f € Inv(g), and in
§ 3, we define the ‘Fourier transform’ & (f) for f € Inv(g,). The main
result (Theorem 3) of this paper says that these two operations coincide
with each other on a relatively large subspace Inv (g, of Inv(g,), if
the characteristic of k is not too small. As a corollary, we can prove
orthogonality relations (Cor. 2) for {#(1,,},, where O runs over the set
of o-stable nilpotent Ad(®)-orbits in g and 1,, is the characteristic
function of O,. This can be considered as a counterpart to a result
[7, 5.6] of T. A. Springer. (He treated the case of strongly regular
(semisimple) orbits rather than nilpotent orbits.) At the end of the
paper we present a curious fact (Theorem 4) on the distribution of
nilpotent elements in g. Although this result is not directly related
to our main results, Theorem 4 and Corollaries 1, 2 show that the
variety g, of nilpotent elements of g sometimes looks like a 2N-dimen-
sional vector subspace of g, where 2N =dim g,.

Details and proofs are omitted and will be published elsewhere.

Acknowledgement. In 1977, G. Lusztig conjectured Theorem
1in a private conversation with the author. The author would like to
express his hearty thanks to G. Lusztig for sharing precious ideas.

1. Let B be a g-stable Borel subgroup of & and T a g-stable
maximal torus contained in 8. Put B=%93, and N(X)=the normalizer
of ¥ in & Then (G, B, N(X),) is a Tits system with the Weyl group
W=N(X),/T,. Let (W, R) be the associated Coxeter system. Then,
to each JCR, there corresponds a o-stable parabolic subgroup %, of
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®& containing B. Let LB, be the unipotent radical of ,. Put P,=(L,).,
V./ = (SBJ)N D,= Lie (SBJ)a and V= Lie (%J)w

If © is a o-stable algebraic subgroup of &, H=9, and A= Lie (9).,
we denote by Inv (H) (resp. Inv (%)) the space of C-valued class func-
tions on H (resp. Ad(H)-invariant functions on %) with the inner
product

SoToa=1H|" 2en [i(@) f(2) | ( :fi e Inv (H))

(resp. (S, foon=IH|" 2lscn J1(2) f®) (f: € Inv (B))).
Imitating the definition of the inducing map ind : Inv (H)—Inv (G), we
define the inducing map ind¢ : Inv (2)—Inv (g) by

indy (f)(A)=[H|—1 era, Ad (x)Aehf(Ad (x)A)
for felInv(h) and Aeg.
2. Let J be a subset of R. For f e Inv(G) (resp. f € Inv(g)), we
define an element f; of Inv (P,) (resp. Inv (p,)) by
.)(“1(90)=|V.7|_1 ZerJf(x?/) (xeP))
(resp. fA(X)=|V,|" 2ireo, J(X+Y) (X ep,))).

S =20 (=1""ind§, (1))
(resp. [ =2 ;cr (—=D""indy, (f,)
is again an element of Inv (@) (resp. Inv(g)).

Theorem 1. (i) (") =S for any f e Inv(G) (resp. Inv (g)).

(i) {fuSe={IT, s e (resp. (i Joo=LI1:T 37y for any fi,f.
€ Inv (G) (resp. Inv (9)).

(iii) Suppose that f is an irreducible character of G. Then f* or
—f* is an wrreducible character.

Remark. This has also been proved by D. Alvis [1] independently.
See also Curtis [2] and Deligne-Lusztig [3].

3. From now on we need the following :

Assumption 1. The characteristic p of k& is good ([9, p. 178]) for
. If ®is of type 4, and p devides I+1, we also assume that & is
simply connected, i.e., &=SL, over k.

Let x(,) be a symmetric, Ad(®)-invariant bilinear form on g
defined over k. If & is not of type A,, we take «(, ) to be non-degen-
erate. If ® is of type 4,, we put

¥(X,Y)=Trace XY (X,Y eg=sl,).

Then

(See [9, p. 184].)

Let g, and Inv(g,) be as in §0. For fe Inv(g,), the (modified)
Fourier transform G(f) (e Inv(g,)) is defined by

0 e t6(XF, VDAY (X e g0);
g(f)(X)_{O (X eg\9o,

where y is a non-trivial additive character of k¥, X—X* is an opposition
automorphism of g (which acts as —1 on the root system of g) and N
=1/2 (dim g,) =the number of positive roots of ®.
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Remark. Usually (see e.g. [8]) the Fourier transform F(f) of a

function f on ¢ is defined by
F(NX)=q @m0 5, xe(X, YNAY) Xeg).

4. Let N be a g-stable subgroup of B, (=the unipotent radical of
B) normalized by 8B, and let n=Lie(M),. We denote by Inv(g,)’ the
subspace of Inv (g, spanned by all elements of the form ind%(1,) for
various . In the proofs of Theorems 2 and 3 below we use a classi-
fication theorem of nilpotent orbits due to Dynkin [4], Kostant [6] and
Springer-Steinberg [9]. The following assumption is made just for
this reason.

Assumption 2. If & is of type E, E.,, K,, F, or G,, we assume
that p>=4m-+3, where m is the height of the highest root of ®&. (If
G is of type A,, B,, C, or D,, Assumption 1 above is already sufficient.)

Remark. It is almost certain that the restrictions on p for excep-
tional groups are too strong.

Theorem 2. For A e g,, we denote by O(A) the Ad (&)-orbit of A,
and by 1,.,, the characteristic function of O(A),.

(i) Let felnv(g,) and Acg, Then f-1y,),<€Inv(g,).

(1) 1y, €Inv(g) for any Acg,.

5. Theorem 3. [f"=%(f) for any f e Inv(g,) .

Remark. As can be easily seen from the case that &=SL, and
p+2, one can not replace Inv (g,)’ with Inv (g,) in Theorem 3.

Combining Theorems 1 and 3, we get:

Corollary 1. (i) F (F())=S for any f € Inv(g,).

(D) (o J0=<FUD),F(D)>,  for any fi,[.€Inv (g, .

By Theorem 2 (ii), we have the following orthogonality relations
as a special case of Corollary 1 (ii).

Corollary 2. Let A,A’eg,. Then

Ny _ 7 .
Srers T Lo JEXF Loy )0 = ([ OA - O =0

6. The next result can be proved under the Assumption 1.

Theorem 4. Let b=Lie(8B), and X be an arbitrary element of g.
Then the number of nilpotent elements in the set b+ X is always q"~.

Remark. Compare with the author’s previous result [5, Theorems
7.2, 7.5] on the distribution of regular unipotent elements in G.
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