45. A Note on Wada's Group Invariants of Links

By Makoto SaKuma
Department of Mathematics, College of General Education, Osaka University

(Communicated by Kunihiko Kodaira, m. J. A., May 13, 1991)

In [3], Wada investigated group invariants of links derived from representations of the n-string braid group B_{n} to the automorphism group Aut $\left(F_{n}\right)$ of the free group F_{n} of rank n. He classified "shift type representations" through computer experiment, and interpreted the group invariants of links derived from these representations in terms of the link groups with one exception. The exceptional representation $\gamma: B_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right)$ is given as follows (see [3, § 5]).

$$
\begin{align*}
x_{i} \gamma\left(\sigma_{i}\right) & =x_{i}^{2} x_{i+1}, \\
x_{i+1} \gamma\left(\sigma_{i}\right) & =\bar{x}_{i+1} \bar{x}_{i} x_{i+1}, \tag{1}\\
x_{j} \gamma\left(\sigma_{i}\right) & =x_{j} \quad(j \neq i, i+1) .
\end{align*}
$$

Here $\left\{\sigma_{1}, \cdots, \sigma_{n-1}\right\}$ is the standard generator system of B_{n}, and $\left\{x_{1}, \cdots, x_{n}\right\}$ is a free basis of F_{n}. Wada's group invariant $G_{r}(L)$ of a link L associated with γ is defined as follows: Let b be an element of B_{n} such that the closed braid obtained from b is isotopic to L. Then,

$$
\begin{equation*}
G_{r}(L)=\left\langle x_{1}, \cdots, x_{n} \mid x_{i} \gamma(b)=x_{i}(1 \leq i \leq n)\right\rangle . \tag{2}
\end{equation*}
$$

The purpose of this note is to prove the following theorem, which answers the question of Wada in [3, § 5].

Theorem. $\quad G_{r}(L) \cong Z * \pi_{1}\left(\Sigma_{2}(L)\right)$, where $\Sigma_{2}(L)$ is the 2-fold covering of S^{3} branched over L.

Proof of theorem. Let B_{n+1} be the ($n+1$)-string braid group, and let $\sigma_{i}(0 \leq i \leq n-1)$ be the element of B_{n+1} as shown in Figure 1.

Fig. 1
We sometimes consider B_{n} as the subgroup of B_{n+1} generated by $\left\{\sigma_{1}, \cdots, \sigma_{n-1}\right\}$. Let $F_{n+1}=\left\langle x_{0}, x_{1}, \cdots, x_{n}\right\rangle$ be the free group of rank $n+1$, and let $\gamma: B_{n+1} \rightarrow$ Aut $\left(F_{n+1}\right)$ be the representation defined by (1). Put $a_{i}=x_{i-1} x_{i} \in F_{n+1}(1 \leq i$ $\leq n)$. Then $\left\{x_{0}, a_{1}, \cdots, a_{n}\right\}$ is a free basis of F_{n+1}, and for each $\sigma_{i} \in B_{n}(1 \leq$ $i \leq n-1)$, we have $x_{0} \gamma\left(\sigma_{i}\right)=x_{0}$, and

$$
\begin{align*}
a_{i} \gamma\left(\sigma_{i}\right) & =a_{i} a_{i+1}, \\
a_{i+2} \gamma\left(\sigma_{i}\right) & =\bar{a}_{i+1} a_{i+2}, \\
a_{j} \gamma\left(\sigma_{i}\right) & =a_{j} \quad(j \neq i, i+2) .
\end{align*}
$$

Let L^{\prime} be the ($n+1$)-string closed braid obtained from $b \in B_{n} \subset B_{n+1}$. Since the subgroups $\left\langle x_{0}\right\rangle$ and $\left\langle a_{1}, \cdots, a_{n}\right\rangle$ are $\gamma(b)$-invariant, we have

$$
\begin{aligned}
G_{r}\left(L^{\prime}\right) & \cong\left\langle x_{0}, x_{1}, \cdots, x_{n} \mid x_{i} \gamma(b)=x_{i}(0 \leq i \leq n)\right\rangle \\
& \cong\left\langle x_{0}\right\rangle *\left\langle a_{1}, \cdots, a_{n} \mid a_{i} \gamma(b)=a_{i}(1 \leq i \leq n)\right\rangle
\end{aligned}
$$

Similarly, we see

$$
G_{r}\left(L^{\prime}\right) \cong\left\langle x_{0}\right\rangle * G_{r}(L) .
$$

Hence we have
(4)

$$
G_{r}(L) \cong\left\langle a_{1}, \cdots, a_{n} \mid a_{i} \gamma(b)=a_{i}(1 \leq i \leq n)\right\rangle .
$$

On the other hand, since L^{\prime} is the split sum of L and a trivial knot, we see

$$
\begin{equation*}
\pi_{1}\left(\Sigma_{2}\left(L^{\prime}\right)\right) \cong Z * \pi_{1}\left(\Sigma_{2}(L)\right) \tag{5}
\end{equation*}
$$

In the following, we prove that $\pi_{1}\left(\Sigma_{2}\left(L^{\prime}\right)\right)$ is isomorphic to $G_{r}(L)$. Let $\mathcal{O}\left(L^{\prime}\right)$ be the π-orbifold group of L^{\prime}; that is, the quotient group of $\pi_{1}\left(S^{3}-L^{\prime}\right)$ by the normal subgroup generated by the squares of the meridians of L^{\prime} (cf. [2]). Then $\mathcal{O}\left(L^{\prime}\right)$ is a split extension of Z_{2} by $\pi_{1}\left(\Sigma_{2}\left(L^{\prime}\right)\right)$. Let $G_{n+1}=$ $\left\langle x_{0}, x_{1}, \cdots, x_{n} \mid x_{i}^{2}=1(0 \leq i \leq n)\right\rangle$, and let $\rho: B_{n+1} \rightarrow \operatorname{Aut}\left(G_{n+1}\right)$ be the representation obtained by deducting the Artin representation (see [1, p. 25], [3, §1]); that is,

$$
x_{i} \rho\left(\sigma_{i}\right)=x_{i+1}, \quad x_{i+1} \rho\left(\sigma_{i}\right)=x_{i+1} x_{i} x_{i+1}, \quad x_{j} \rho\left(\sigma_{i}\right)=x_{j} \quad(j \neq i, i+1) .
$$

(Here each generator σ_{i} is taken to be the inverse of that in [1].) Since the link group is obtained from the Artin representation, the π-orbifold group is given by

$$
\mathcal{O}\left(L^{\prime}\right) \cong G_{n+1} /\left\langle x_{i} \rho(b)=x_{i}(0 \leq i \leq n)\right\rangle .
$$

Put $a_{i}=x_{i-1} x_{i} \in G_{n+1}(1 \leq i \leq n)$, and let τ be the automorphism of the free subgroup $\left\langle a_{1}, \cdots, a_{n}\right\rangle$ defined by

$$
a_{i} \tau=\left(a_{1} \cdots a_{i-1}\right) \bar{a}_{i} \overline{\left(a_{1} \cdots a_{i-1}\right)} .
$$

Then we see

$$
G_{n+1} \cong\left\langle x_{0}, a_{1}, \cdots, a_{n} \mid x_{0}^{2}=1, x_{0} a_{i} \bar{x}_{0}=a_{i} \tau(1 \leq i \leq n)\right\rangle .
$$

Since $x_{0} \rho(b)=x_{0}$ and $\left\langle a_{1}, \cdots, a_{n}\right\rangle$ is $\rho(b)$-invariant, we have

$$
\mathcal{O}\left(L^{\prime}\right) \cong\left\langle x_{0}, a_{1}, \cdots, a_{n} \mid x_{0}^{2}=1, x_{0} a_{i} \bar{x}_{0}=a_{i} \tau, a_{i} \rho(b)=a_{i}(1 \leq i \leq n)\right\rangle .
$$

For each $\sigma_{i} \in B_{n}(1 \leq i \leq n)$, we see the restriction of $\rho\left(\sigma_{i}\right)$ to the free subgroup $\left\langle a_{1}, \cdots, a_{n}\right\rangle$ is equal to the restriction of $\gamma\left(\sigma_{i}\right)$ to the subgroup $\left\langle a_{1}\right.$, $\left.\cdots, a_{n}\right\rangle$ given by (3). Now, let $H\left(L^{\prime}\right)$ be the group defined by

$$
H\left(L^{\prime}\right) \cong\left\langle a_{1}, \cdots, a_{n} \mid a_{i} \rho(b)=a_{i}(1 \leq i \leq n)\right\rangle
$$

Then $H\left(L^{\prime}\right)$ is isomorphic to $G_{\tau}(L)$ by (4). Further, τ induces an automorphism of $H\left(L^{\prime}\right)$, since $\rho(b) \tau=\tau \rho(b)$. Hence $H\left(L^{\prime}\right)$ is naturally isomorphic to the normal subgroup $\mathcal{O}\left(L^{\prime}\right)$ of index 2 , and therefore $G_{r}(L) \cong H\left(L^{\prime}\right) \cong$ $\pi_{1}\left(\Sigma_{2}\left(L^{\prime}\right)\right)$. This completes the proof by (5).

References

[1] J. S. Birman: Braids, links, and mapping class groups. Ann. Math. Studies, 82, Princeton Univ. Press and Univ. of Tokyo Press (1974).
[2] M. Boileau and B. Zimmermann: The π-orbifold group of a link. Math. Z., 200, 187-208 (1989).
[3] M. Wada: Group invariants of links (to appear in Topology).

