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44. On the Existence and Regularity of the Solution
of Stokes Problem in Arbitrary Dimension

By Chérif AMROUCHE*) and Vivette GIRAULT**)
(Communicated by Kunihiko KODAIRA, M. J. A.,, May 13, 1991)

Let 2 be a bounded and connected open set of R (N>2) and let f, 4, 9
be three given functions that satisfy the compatibility condition : Lqﬁ(w) dx
=| ¢-n do, where n denotes the exterior normal to I'. Recall the Stokes

prof)lem with unit viscosity:

Find a pair (u.p) such that:

(1)-(38) —Adu+Vp=fin 2, divu=¢inQ, u=gonl.
The homogeneous case corresponds to ¢=0 and g=0.

Let m> —1 be an integer; let » denote an arbitrary real number such
that 1<r< oo and let 7’ be its conjugate: 1/r+1/r'=1. We agree to denote
by X the product space X¥. This note establishes that, for each f in
wmr(2), ¢ in Wr*t(Q) and g in w™**-t~7(I"), problem (1)-(3) has a unique
solution w in W™*»7(2) and p in W™**7(2)/R that depends continuously upon
the data. The regularity hypotheses that we impose on the boundary are
optimal when m>0. For a smoother boundary, these results are of course
not new (cf. Cattabriga [6] and Geymonat [7]), but the proof that we present
here is new.

Our proof is based on the following fundamental orthogonal decompo-
sition, which is very closely related to the Stokes problem:

(4) wrBr QN We (=W (DN V,)eW™ > (NG,
where
Vi,={veWp(Q);divve=0}and G,,={ve Wy (2); —4dv=VFq, q € Lj(D)}.

First, for m >0, we shall establish (4) by showing that the homogeneous
Stokes problem is elliptic in the sense of Agmon-Douglis-Nirenberg [2]; this
will immediately yield the desired result for such m. TUnfortunately, the
material in [2] does not apply when m= —1. We shall instead, solve by
duality a weaker problem (an approach already used by Giga [8]), and then
complete by interpolation our desired result for m = —1.

Proposition 1. Let m e N and let the domain 2 be C™*"'.. Assume
that the homogeneous Stokes problem has a solution ue W5™(2) and pe
wohr(Q).  If in addition fe W™'(2), then ue W™*>7(Q), pe W™**({2) and
(5) % llwmsa.rcoy+ | Dllwnsiray e <CIS llwmrcay-

Proof. Following the proof of Proposition 2.2 in Temam [10], p. 33,
we show that the homogeneous Stokes problem is an elliptic system in the
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sense of Agmon-Douglis-Nirenberg [2] (pp. 38-39 and 42-43). When 2 is

C™**, Theorem 10.5, p. 78 [2], yields a weaker estimate than (5), namely :
% llwmsa.r iy F 1P lrm+ 1.0y e S CLl] f llwmor oy + Qo | |10y -

But, since the domain is bounded and the solution is unique, according to

Remark 2 pp. 668-669 in [1], we can take d,=0. Furthermore, applying

the material of Grisvard [10], the estimate of Theorem 10.5 is also valid

for C™**! domains.

Proposition 1 is not an existence result, but it permits to obtain a
regularity result whenever a solution exists. With this proposition, we
can prove (4).

Proposition 2. Let m e N and let 2 be C™**'. Then the decomposition
(4) holds.

Proof. Let E denote the space in the left-hand side of (4) and F' the
space in the right-hand side. To prove the equality, let us establish that
F is closed and dense in E.

Asg far as the closure is concerned, let «, be a sequence of F' that con-
verges to some element  in W™ *2"(QD N WL (2). Then u, has the form u,
=v,+w, with v, e W™*>"(QD)NV,, and w, e W"*>"(DNG,,,. Furthermore,
by definition, w, satisfies: —4w,=Vgq,, where q, ¢ W™*7(2). Set f,=—4u,
=—4v,+Vq,. Thus, the pair (v,, q,) € W™*>"(2) x W™*1 () is the solution
of a homogeneous Stokes problem with right-hand side f,,. Therefore, since
f. tends to —4du in W™r(2), Proposition 1 implies that the sequences v,, ¢,
are bounded respectively in W™*7(Q)c W7 (2) and W™*+"(Q)/R. As a con-
sequence, w, is also bounded in W™*:r(Q)N Wy (2) and both v,—v and
w,—w weakly in W™t ()N Wy (2), with ve V,, and w € G,,,.

To prove the density, let L be an element of E’ that vanishes on F' and
let us show that L=0. It iseasy to check that L has a unique extension Le
w-4r(Q) that vanishes on V,,®G,,,. Applying a simplified version (cf. for
ingstance [4]) of de Rham’s theorem, this implies in particular that L=rq
for some q € L”(2). Then, introducing the solution z € Wi (Q) of the prob-
lem —A4z=Vq, we have for all we G, ,: (¢, —4dw)=0; i.e. {2, F'p)=0 for all
peL(2). This means that divz=0; hence z=0 and in turn L=0.

With this, the homogeneous Stokes problem reduces to a Laplace
equation.

Theorem 3. Let m e N and let 2 be C™*"'. For each fe W™(Q2), the
homogeneous Stokes problem has a unique solution uwe W™*%7(2) and p e
Wm+tr(Q) R and,

(6) 1% llwm+a.ray 11D lwms1r 0 e LCW S llwm.reay-

Proof. Let ve W (2) be the solution of the problem —4v=f in Q.
It stems from the well-known regularity properties of this operator that
ve Wm*br(Q) with continuous dependence on f. Then, by virtue of Pro-
position 2, v=u+w, with ue W™ (@ NV,,and we W™*>" (D NG,,. But
since —Adw =Fp, with p e W™++7(Q), we derive immediately that the pair «
and p satisfies: —du+Vp=f, div u=0.
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Then the non homogeneous problem follows by using an adequate
lifting operator.
Theorem 4. Let me N and let 2 be C™*"'. For each fe W™"(Q), e

wWrr(Q) and g € W™E-Vnr([") such that: (x)dx=| g-nds, the non ho-
2 ¢ r

mogeneous Stokes problem (1)-(8) has a unique solution ue W™*»(Q) and
pe W™ ()| R and,
(7)) Nllwmrorcay D lwmsrrayr < CU S lwmeray @ llwmerray F 1 llwmsa-simrery)-

Proof. Owing to the compatibility condition, (cf. [3] or [4]), we can
associate with ¢ and g a function u, e W™*»7(Q2), such that div u,=¢ in 2,
u,=¢g on I' and
(8) %o llwm+2.r 0y SCUBllwmsr.r 2y F 9 llwrmsa=syrrery)-
This reduces the problem to a homogeneous one and the result follows
from Theorem 3.

There is no proof of the a priori estimates of Proposition1 for m=—1
and so we cannot handle this case directly. But we can solve by duality a
simplified version of the Stokes problem that corresponds to m=—2. The
following proposition is party due to Giga [8].

Proposition 5. . Let 2 be C*'. For each ge W-""(I") satisfying g-n
=0, the problem

(9)-a1) —dv+Vqg=0 in 2, dive=01in 2, v=g on I,
has a unique solution v € L"(2) and g € W-(2) /R and,
a2 10 l|zr oy 12w =12y S C N Gl =1ir iy -

Proof. TFirst let us show that if v ¢ L’(Q2) satisfies (9) and (10) then
the trace of v on I belongs to W-¥»"(I'), so that the bounday condition
(11) makes sense. On one hand, the fact that div v=0 implies that v.-n e
W-v»7(["). On the other hand, it follows from (9) and (10) that veT,
where T={weL(Q); dwe X, divw=0} and X={weWy"(Q); divwe
Wym(2)}. Then a density argument yields the Green’s formula:

(13) <'v, gz >=<'v, 4p>—{dv, 85, VéeY, WveT,

where Y=W?*"(2)N X. By observing that the range space of the operator
d/on on Y is the space Z={w e W'»"(I"); w-n=0}, and that its dual space
Z' has the identification: Z'={ge W-'~"(I"); g-n=0}, we see that, by
virtue of (13), the tangential trace of v belongs precisely to Z’.

Now, the proof is based on a duality argument developed by Lions-
Magenes [11]. Applying (18), we readily derive that problem (9)-(11) has
the equivalent variational formulation (that can also be found in [8]): find
ve L (2) and g € W-7(2) /R such that:

I v(—du+Vp)dx—{q, div u>=<g, au> YueY, VpeW:(Q).

9 on/r
But, owing to Theorem 4, for each feL"(2) and ¢e Wp"(@)NL;(2)
(where L;'(2) denotes the subspace of functions of L(2) with zero mean
value), there exists a unique solution # € Y and p e W»"(2) /R of the prob-
lem:
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—du+Vp=f in 2, divu=¢ in 2, u=0 on I

Moreover, it follows from the continuity of the mapping 3/an : W*"'(2)
—W'n"(I") and the estimate (7), that the mapping (f,4)—<g,dou/on),
defines an element of the dual space of L”(Q)X[Wr”(2)NL;'(2)], with
norm bounded by C| g|lw-wrrry. Then the theorem follows from Riesz’
representation theorem.

The next corollary, which relaxes the compatibility condition on the
data g, is an easy consequence of Proposition 5.

Corollary 6. Proposition 5 is also valid for each g e W-4"7(I") satis-
fying {g-n,1>=0.

Then by interpolating between the results of Corollary 6 and Theorem
4 with m=0, f=0 and ¢=0, we obtain:

Corollary 7. Let 2 be C“'. For each geW¥n"(I') satisfying

f g-nde=0, the solution of problem (9)-(11) has the regularity : v e W"(Q)
r

and q e L'(2)/R and,
12 llwsr oy +1122reay e < Cll 9 lwr-irr ey
From this and the isomorphism properties of the divergence operator,
we derive:
Corollary 8. Let 2 be C*'. For each ¢ e L;(Q2), problem (1)—(3), with
JS=0and g=0, has a unique solution ue Wy"(2) and p e L'(2)/R and,

14 [ %llwsry +1Plzr 0y L Cl B llzr oy .
This last corollary permits to complete the statement of Proposition 2;
it gives the analogue of the well-known decomposition: WD=VpV:

(cf. for instance [9]).

Proposition 9. If 2 is C*!, then Wiy (Q) =V, DG,,,.

Finally, applying the same arguments as in Theorems 3 and 4, we
easily derive:

Theorem 10. Let 2 be C*'. For each fe W-7(2), ¢ L"(2) and g e
wi-tunr(Iy satisfying: j ¢(x)da:=j g-nde, problem (1)-(3) has o unique
2 r

solution ue W(2) and p e L'(2) /R and,
1% lw.rcoy 411D 2oy e SO S -1y F 1 Bllzr oy 1| 9 lwra-sirir ey }-
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