13. Associated Varieties and Gelfand-Kirillov Dimensions for the Discrete Series of a Semisimple Lie Group

By Hiroshi Yamashita
Department of Mathematics, Kyoto University
(Communicated by Kiyosi ITÔ, M. J. A., Feb. 14, 1994)

1. Introduction. Let G be a connected semisimple Lie group with finite center, and K be a maximal compact subgroup of G. The corresponding complexified Lie algebras are denoted respectively by \mathfrak{g} and \mathfrak{f}. We assume Harish-Chandra's rank condition rank $G=$ rank K, which is necessary and sufficient for G to have a non-empty set of discrete series, or of squareintegrable irreducible unitary representations of G.

In this paper, we describe the associated varieties of Harish-Chandra (g, K)-modules of discrete series, by an elementary and direct method based on [3]. The description is as in

Theorem 1. If H_{A} is the (\mathfrak{g}, K)-module of discrete series with HarishChanda parameter $\Lambda=\lambda+\rho_{c}-\rho_{n}$ (see §3), then its associated variety $\mathscr{V}\left(H_{\Lambda}\right) \subset \mathfrak{g}\left(\right.$ see §2) coincides with the nilpotent cone $K_{C} \mathfrak{p}_{-}$, which is equal to $\operatorname{Ad}(K) p_{-}$. Here K_{C} denotes the analytic subgroup of adjoint group $G_{C}:=$ $\operatorname{Int}(\mathfrak{g})$ of \mathfrak{g}, with Lie algebra \mathfrak{f}, and $\mathfrak{p}_{-}=\sum_{\beta \in \Lambda_{n}^{-}} \mathfrak{g}_{\beta}$ is the sum of root subspaces \mathfrak{g}_{β} of \mathfrak{g} corresponding to the noncompact roots β such that $(\Lambda, \beta)<0$.

We further give in Theorem 4 an explicit formula for the GelfandKirillov dimensions $d\left(H_{\Lambda}\right) \operatorname{dim} \mathscr{V}\left(H_{\Lambda}\right)$ of discrete series in the case of unitary groups $G=S U(p, q)$, by specifying the unique nilpotent G_{C}-orbits in g which intersect \mathfrak{p}_{-}densely. Note that this important invariant $d\left(H_{\Lambda}\right)$ coincides with the degree of Hilbert polynomial of H_{Λ}.

We know that Theorem 1 can be deduced from deep results in [1, III] and [4] by passing to D-module via Beilinson-Bernstein correspondence. However, the associated variety is an object attached directly to each finitely generated $U(\mathrm{~g})$-module. From this reason, we give here a direct path to the theorem avoiding the above detour by D-module. Our proof of Theorem 1 is simple in the sense that it uses only some basic results of [3] on the realization of H_{A} as the kernel space of differential operator \mathscr{D}_{λ} on G / K of gradient-type. Nevertheless, this method gives us new conclusions also (Theorem 3). For instance, we find that the associated variety of discrete series can be expressed in terms of the symbol mapping of \mathscr{D}_{λ}.
2. Associated varieties for $U(\mathfrak{g})$-modules. Let $U(\mathfrak{g})$ be the enveloping algebra of \mathfrak{g}, and $\left(U_{k}(\mathfrak{g})\right)_{k=0,1, .}$ be the natural increasing filtration of $U(\mathrm{~g})$, with $U_{k}(\mathfrak{g})$ the subspace of $U(\mathfrak{g})$ generated by elements $X^{m}(0 \leq m \leq k$, $X \in \mathfrak{g})$. We identify the associated graded ring gr $U(\mathfrak{g})=\bigoplus_{k \geq 0} U_{k}(\mathfrak{g}) /$ $U_{k-1}(\mathrm{~g})\left(U_{-1}(\mathrm{~g}):=(0)\right)$ with the symmetric algebra $S(\mathrm{~g})=\bigoplus_{k \geq 0} S^{k}(\mathrm{~g})$ of g in the canonical way. Here $S^{k}(\mathrm{~g})$ denotes the homogeneous component of
$S(\mathfrak{g})$ of degree k.
For a finitely generated $U(\mathfrak{g})$-module H, take a finite-dimensional subspace H_{0} of H such that $H=U(\mathfrak{g}) H_{0}$, and set $H_{k}:=U_{k}(\mathfrak{g}) H_{0}(k=1,2, \ldots)$. Then $\left(H_{k}\right)_{k}$ gives an increasing filtration of H, and corresponding one gets a finitely generated, graded $S(\mathfrak{g})$-module $M:=\bigoplus_{k \geq 0} M_{k}$ with $M_{k}=H_{k} /$ H_{k-1}.

The annihilator ideal $\mathrm{Ann}_{S(\mathfrak{g})} M:=\{D \in S(\mathfrak{g}) \mid D v=0(\forall v \in M)\}$ of M in $S(\mathrm{~g})$ defines an algebraic cone in \mathfrak{g} :

$$
\begin{equation*}
\mathscr{V}(H):=\left\{X \in \mathfrak{g} \mid f(X)=0\left(\forall f \in \mathrm{Ann}_{S(\mathrm{~g})} M\right)\right\} \tag{2.1}
\end{equation*}
$$

which is independent of the choice of a subspace H_{0}. Here $S(\mathfrak{g})$ is viewed as the polynomial ring over g through the Killing form of \mathfrak{g}. The variety $\mathscr{V}(H)$ and its dimension $d(H):=\operatorname{dim} \mathscr{V}(H)$ are called respectively the associated variety and the Gelfand-Kirillov dimension of H (cf. [5, 6, 8]).
3. Discrete series for G. We now fix some notation on the discrete series representations of G (cf. [2]). Take a compact Cartan subgroup T of G contained in K. Let Δ be the root system of g with respect to the complexified Lie algebra $\mathcal{E}^{\circ} T$. The totality of compact (resp. noncompact) roots in Δ will be denoted by Δ_{c} (resp. Δ_{n}). Fix once and for all a positive system Δ_{c}^{+}of Δ_{c}. Let Ξ be the set of Δ_{c}^{+}-dominant, Δ-regular linear forms Λ on such that $\Lambda+\rho$ is T-integral through the exponential map. Here $\rho:=(1 / 2) \sum_{\alpha \in \Delta^{+}} \alpha$ with $\Delta_{+}=\{\alpha \in \Delta \mid(\Lambda, \alpha)>0\}$.

By Harish-Chandra, there exists a natural bijective correspondence, say $\Lambda \rightarrow \pi_{\Lambda}$, from Ξ onto the set of (equivalence classes) of discrete series representations of G. By taking the K-finite part for π_{Λ}, one gets an irreducible Harish-Chandra (g, K)-module, which we denote by $H_{\Lambda_{*}}$ from now on.

For a Δ_{c}^{+}-dominant, T-integral linear form $\mu \in \mathfrak{f}^{*}$, let $\left(\tau_{\mu}, V_{\mu}\right)$ denote the irreducible K-module with highest weight μ. Set for a $\Lambda \in \Xi$,
(3.1) $\quad \lambda:=\Lambda-\rho_{c}+\rho_{n}$, with $\rho_{c}:=(1 / 2) \cdot \sum_{\alpha \in \Delta_{c}^{+}} \alpha, \rho_{n}:=\rho-\rho_{c}$.

Then the π_{Λ}, looked upon as a K-module, contains τ_{λ} with multiplicity one, and the highest weight of any K-type of π_{A} is of the form: $\lambda+\sum_{\alpha \in \Delta^{+}} n_{\alpha} \alpha$ with integers $n_{\alpha} \geq 0$. We call τ_{λ} the lowest K-type of π_{Λ}.
4. $(S(g), K)$-modules $\operatorname{Gr} \mathscr{A}(\tau)$. For a finite-dimensional K-module (τ, V), let $\mathscr{A}(\tau)$ be the space of real analytic functions $f: G \rightarrow V$ satisfying $f(g k)=\tau(k)^{-1} f(g)(g \in G, k \in K)$. The group G acts on $\mathscr{A}(\tau)$ by left translation, and $\mathscr{A}(\tau)$ becomes a $U(\mathrm{~g})$-module through differentiation. Let $\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{p}$ be the complexified Cartan decomposition of \mathfrak{g}. Setting for each integer $k \geq 0$,
(4.1) $\mathscr{A}_{(k)}:=\left\{f \in \mathscr{A}(\tau) \mid\left(X^{m} f\right)(1)=0(\forall X \in \mathfrak{p}, 0 \leq \forall m \leq k)\right\}$
and $\mathscr{A}_{(k)}:=\mathscr{A}(\tau)$ for $k<0$, one gets a decreasing K-stable filtration $\left(\mathscr{A}_{(k)}\right)_{k \in \boldsymbol{Z}}$ of $\mathscr{A}(\tau)$ such that $U_{m}(\mathfrak{g}) \mathscr{A}_{(k)} \subset \mathscr{A}_{(k-m)}$ for $k, m \geq 0$, and correspondingly we have a graded $(S(\mathfrak{g}), K)$-module

$$
\begin{equation*}
\operatorname{Gr} \mathscr{A}(\tau):=\bigoplus_{k} \mathscr{A}_{(k)} / \mathscr{A}_{(k+1)} . \tag{4.2}
\end{equation*}
$$

Now take two bases $\left(X_{i}\right)_{i=1}^{s}$ and $\left(X_{i}^{*}\right)_{i=1}^{s}$ to the vector space \mathfrak{p} such that $B\left(X_{i}, X_{j}^{*}\right)=\delta_{j}^{i}$ (Kronecker's δ) for the Killing form B of \mathfrak{g}. We put
$\iota_{k}(f):=\sum_{|\nu|=k+1}(1 / \nu!) \cdot\left(X^{*}\right)^{\nu} \otimes\left(X^{\nu} f\right)(1) \in S^{k+1}(\mathfrak{p}) \otimes V\left(f \in \mathscr{A}_{(k)}\right)$,
where $X^{\nu}:=X_{1}^{\nu_{1}} \cdots X_{s}^{\nu_{s}},\left(X^{*}\right)^{\nu}:=\left(X_{1}^{*}\right)^{\nu_{1}} \cdots\left(X_{s}^{*}\right)^{\nu_{s}}$ and $\nu!=\nu_{1}!\cdots \nu_{s}$! for multi-indices $\nu=\left(\nu_{1}, \ldots, \nu_{s}\right)$ of length $|\nu|:=\nu_{1}+\cdots+\nu_{s}=k+1$. Observe that $\iota_{k}(f)$ is independent of the choice of $\left(X_{i}\right)_{i}$ and $\left(X_{i}^{*}\right)_{i}$, and that ι_{k} naturally gives a K-isomorphism:

$$
\begin{equation*}
\tilde{c}_{k}: \mathscr{A}_{(k)} / \mathscr{A}_{(k+1)} \simeq S^{k+1}(\mathfrak{p}) \otimes V, \tag{4.3}
\end{equation*}
$$

where K acts on $S^{k+1}(\mathfrak{p})$ through the adjoint action.
Lemma 1. The map $\tilde{\iota}:=\bigoplus_{k} \tilde{\iota}_{k}$ gives a graded $(S(\mathfrak{g}), K)$-isomorphism from $\operatorname{Gr} \mathscr{A}(\tau)$ onto $S(\mathfrak{p}) \otimes V$, where $S(\mathfrak{g})$ acts on $S(\mathfrak{p}) \otimes V$ by differentiation: $Y \cdot\left(X^{k} \otimes v\right)=k B(X, Y) X^{k-1} \otimes v$ for $Y \in \mathfrak{g}, X^{k} \otimes v \in S^{k}(\mathfrak{p}) \otimes V(k=$ $0,1, \ldots)$.

We identify $\operatorname{Gr} \mathscr{A}(\tau)$ with $S(\mathfrak{p}) \otimes V$ by this isomorphism \tilde{c}.
5. Operators \mathscr{D}_{λ} and graded modules Gr H_{Λ}. Since the discrete series H_{Λ} contains the lowest K-type $\left(\tau_{\lambda}, V_{\lambda}\right), \lambda=\Lambda-\rho_{c}+\rho_{n}$, with multiplicity one, there exists a unique, up to scalar multiples, (g, K) -module embedding $H_{\lambda} \hookrightarrow \mathscr{A}\left(\tau_{\lambda}\right)$. We regard H_{Λ} as a submodule of $\mathscr{A}\left(\tau_{\lambda}\right)$ through this embedding. Then one gets a graded $(S(\mathfrak{g}), K)$-submodule of $\operatorname{Gr} \mathscr{A}\left(\tau_{\lambda}\right)$:

$$
\operatorname{Gr} H_{A}:=\bigoplus_{k}\left(H_{\Lambda} \cap \mathscr{A}_{(k)}\right) /\left(H_{\Lambda} \cap \mathscr{A}_{(k+1)}\right)
$$

through the decreasing filtration $\mathscr{A}_{(k)}$ of $\mathscr{A}\left(\tau_{\lambda}\right)$ in (4.1).
Using the bases $\left(X_{i}\right)_{i=1}^{s}$ and $\left(X_{i}^{*}\right)_{i=1}^{s}$ of \mathfrak{p} in $\S 4$, we set for $f \in \mathscr{A}\left(\tau_{\lambda}\right)$,

$$
\begin{equation*}
\nabla_{\lambda} f(g):=\sum_{i=1}^{s} R_{X_{i}} f(g) \otimes X_{i}^{*}(g \in G) \tag{5.1}
\end{equation*}
$$

where R_{D} denotes the left G-invariant differential operator on G corresponding to $D \in U(\mathfrak{g})$. Then ∇_{λ} does not depend on the choice of dual bases, and it defines a first order, left G-invariant differential operator from $\mathscr{A}\left(\tau_{\lambda}\right)$ to $\mathscr{A}\left(\tau_{\lambda} \otimes \operatorname{Ad}_{\mathfrak{p}}\right)$. Here $\mathrm{Ad}_{\mathfrak{p}}$ denotes the adjoint representation of K on \mathfrak{p}.

Let ($\tau_{\lambda}^{ \pm}, V_{\lambda}^{ \pm}$) be respectively the K-submodules of $V_{\lambda} \otimes \mathfrak{p}$ generated by highest weight vectors of weights $\lambda \pm \beta$ for some $\beta \in \Delta_{n}^{+}=\Delta_{n} \cap \Delta^{+}$, and $P_{\lambda}: V_{\lambda} \rightarrow V_{\lambda}^{-}$be the projection along the decomposition $V_{\lambda} \otimes \mathfrak{p}=V_{\lambda}^{+} \oplus V_{\lambda}^{-}$.

The above ∇_{λ}, composed with P_{λ} yields a G-invariant differential operator \mathscr{D}_{λ} from $\mathscr{A}\left(\tau_{\lambda}\right)$ to $\mathscr{A}\left(\tau_{\lambda}^{-}\right)$:

$$
\begin{equation*}
\mathscr{D}_{\lambda} f(g):=P_{\lambda}\left(\nabla_{\lambda} f(g)\right) \quad\left(f \in \mathscr{A}\left(\tau_{\lambda}\right)\right) \tag{5.2}
\end{equation*}
$$

Passing to the gradation, we get an $(S(\mathfrak{g}), K)$-module map

$$
\text { (5.3) } \operatorname{Gr}\left[\mathscr{D}_{\lambda}\right]: S(\mathfrak{p}) \otimes V_{\lambda}=\operatorname{Gr} \mathscr{A}\left(\tau_{\lambda}\right) \rightarrow \operatorname{Gr} \mathscr{A}\left(\tau_{\lambda}^{-}\right)=S(\mathfrak{p}) \otimes V_{\lambda}^{-}
$$

It follows from results of Schmid, Hotta-Parthasarathy and Wallach that the L^{2}-kernel of \mathscr{D}_{λ} realizes the discrete series π_{Λ} for each $\Lambda \in \Xi$. In order to prove Theorem 1, we employ $\operatorname{Gr}\left[\mathscr{D}_{\lambda}\right]$ rather than \mathscr{D}_{λ} itself, and use the following

Theorem HP (cf. [3]). One has $\operatorname{Gr} H_{A}=\operatorname{Ker}\left(\operatorname{Gr}\left[\mathscr{D}_{\lambda}\right]\right)$ provided the lowest hightest weight $\lambda=\Lambda-\rho_{c}+\rho_{n}$ of H_{A} is sufficiently Δ_{c}-regular.
6. Outline of proof of Theorem 1. First Step. Let H_{Λ}^{*} be the K-finite dual of discrete series H_{Λ}. Note that $H_{A}^{*} \simeq H_{-w_{0} \Lambda}$ as (g, K)-modules, where w_{0} is the element of Weyl group of Δ_{c} such that $w_{0} \Delta_{c}^{+}=-\Delta_{c}^{+}$. We are going to prove

$$
\begin{equation*}
\mathscr{V}\left(H_{A}^{*}\right)=K_{C} \mathfrak{p}_{+}=\operatorname{Ad}(K) \mathfrak{p}_{+} \text {with } \mathfrak{p}_{+}:=\sum_{\beta \in \Delta_{n}^{*}} \mathfrak{g}_{\beta} \tag{6.1}
\end{equation*}
$$

which is equivalent to the claim of Theorem 1.
First, Theorem HP allows us to deduce the following

Proposition 1. For sufficiently Δ_{c}-regular $\lambda=\Lambda-\rho_{c}+\rho_{n}$, the associated variety $V\left(H_{\Lambda}^{*}\right)$ of H_{A}^{*} is expressed by means of $\operatorname{Gr}\left[\mathscr{D}_{\lambda}\right]$ as

$$
\mathscr{V}\left(H_{A}^{*}\right)=\left\{X \in \mathfrak{g} \mid f(X)=0\left(\forall f \in \operatorname{Ann}_{S(\mathfrak{g})} \operatorname{Ker}\left(\operatorname{Gr}\left[\mathscr{D}_{\lambda}\right]\right)\right)\right\}
$$

Second Step. Let v_{λ} be a nonzero highest weight vector of V_{λ}. For each integer $k \geq 0$, let $Q_{k}^{+}(\lambda)$ denote the K-submodule of $S^{k}(\mathfrak{p}) \otimes V_{\lambda}$ generated by subspace $S^{k}\left(\mathfrak{p}_{+}\right) \otimes v_{\lambda}$. Then one easily observes that

$$
\begin{equation*}
\operatorname{Ker}\left(\operatorname{Gr}\left[\mathscr{D}_{\lambda}\right]\right) \cap\left(S^{k}(\mathfrak{p}) \otimes V_{\lambda}\right) \supset Q_{k}^{+}(\lambda) . \tag{6.2}
\end{equation*}
$$

We can prove the following proposition with the aid of [3, Lemma 5.2].
Proposition 2. For each $k \geq 0$, there exists a constant $c_{k}>0$ for which the equality holds in (6.2) if $(\lambda, \alpha)>c_{k}\left(\forall \alpha \in \Delta_{c}^{+}\right)$.

Third Step. Let $\mathscr{L}\left(K_{C} \mathfrak{p}_{+}\right)=\left\{f \in S(\mathfrak{g}) \mid f(X)=0\left(\forall X \in K_{C} \mathfrak{p}_{+}\right)\right\}$be the ideal of $S(\mathfrak{g})$ defined by the cone $K_{C} \mathfrak{p}_{+}$. Noting that this ideal is finitely generated since $S(\mathfrak{g})$ is Noetherian, we deduce from Proposition 2,

Theorem 2. One has $\mathrm{Ann}_{S(\mathrm{~g})} \operatorname{Ker}\left(\operatorname{Gr}\left[\mathscr{D}_{\lambda}\right]\right) \subset \mathscr{L}\left(K_{C} \mathfrak{p}_{+}\right)$for every $\lambda=\Lambda$ $-\rho_{c}+\rho_{n}$. Moreover the equality holds in this inclusion if the parameter λ is sufficiently Δ_{c}-regular.

Final Step. Let B be the Borel subgroup of K_{C} with Lie algebra ${ }^{+}$ $\sum_{\alpha \in \Delta_{c}^{+}} \mathfrak{g}_{\alpha}$. Notice that \mathfrak{p}_{+}is B-stable and that $K_{C}=\operatorname{Ad}(K) B$ by the Iwasawa decomposition of K_{C}. We then find that $K_{C} \mathfrak{p}_{+}=\operatorname{Ad}(K) \mathfrak{p}_{+}$is a closed subset of \mathfrak{g} because of the compactness of K.

Now Proposition 1 and Theorem 2 yield the desired (6.1) for sufficently Δ_{c}-regular λ. With the Zuckerman translation principle in mind (cf. [7, I, $3.4]$), we conclude that (6.1) holds for every λ. This completes the proof of Theorem 1.
7. The above discussion leads us also to the following conclusions.

Theorem 3. Assume that λ be sufficiently Δ_{c}-regular. Then,
(i) the annihilator ideal of $S(\mathrm{~g})$-module $\mathrm{Gr} H_{A}$ coincides with its radical.
(ii) One has $\mathscr{V}\left(H_{\Lambda}^{*}\right)=\left\{X \in \mathfrak{p} \mid P_{\lambda}(v \otimes X) \neq 0\left(\exists v \in V_{\lambda} \backslash(0)\right)\right\}$.

We remark that $V_{\lambda} \otimes \mathfrak{p} \ni(v, X) \mapsto P_{\lambda}(v \otimes X) \in V_{\lambda}^{-}$is just the (complexified) symbol mapping of \mathscr{D}_{λ} at the origin $o=K \in G / K$.
8. Gelfand-Kirillov dimensions $d\left(H_{A}\right)$ for $S U(p, q)$. By applying Theorem 1, we can give an explicit formula for the Gelfand-Kirillov dimensions $d\left(H_{\Lambda}\right)=\operatorname{dim} K_{C} \mathfrak{p}_{-}$of discrete series for $G=S U(p, q)(n=p+q$, $q>0$).
8.1. Realize the group G as

$$
G=\left\{\left.g \in S L(n, C)\right|^{t} \bar{g} I_{p, q} g=I_{p, q}\right\} \text { with } I_{p, q}=\left(\begin{array}{cc}
I_{p} & 0 \\
O & -I_{q}
\end{array}\right)
$$

where I_{r} is the identitiy matrix of degree r, and ${ }^{t} g$ (resp. \bar{g}) denotes the transposed (resp. the complex conjugate) of a matrix g. Then we have $g=\boldsymbol{g l}(n, \boldsymbol{C})$ and $\mathrm{t}=\left\{Z=\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right) \mid t_{i} \in C, \operatorname{tr} Z=0\right\}$. The root system Δ (resp. $\Delta_{c} \subset \Delta$) of g (resp. \mathfrak{f}) with respect to t is of type A_{n-1} (resp. $A_{p-1} \times A_{q-1}$), and it is given respectively by

$$
\Delta=\left\{e_{i j} \mid 1 \leq i, j \leq n, i \neq j\right\}, \Delta_{c}=\left\{e_{i j} \in \Delta \mid 1 \leq i, j \leq p \text { or } p<i, j \leq n\right\}
$$ with $e_{i j}(Z):=t_{i}-t_{j}(Z \in \mathrm{t})$.

Fix a positive system $\Delta_{c}^{+}:=\left\{e_{i j} \in \Delta_{c} \mid i<j\right\}$ of Δ_{c}. Let $\Pi_{p, q}$ be the
totality of maps h from $F(n):=\{1,2, \ldots, n\}$ to the set $\{a, b\}$ of two elements a and b, such that $\#\left(h^{-1}(\{a\})\right)=p$ and $\#\left(h^{-1}(\{b\})\right)=q$, where \# (S) denotes the cardinal number of a set S. For an $h \in \Pi_{p, q}$, arrange the elements of $h^{-1}(\{a\})$ and $h^{-1}(\{b\})$ respectively as

$$
(w(1), w(2), \ldots, w(p)) \text { with } w(1)<w(2)<\ldots<w(p)
$$

$(w(p+1), w(p+2), \ldots, w(n))$ with $w(p+1)<w(p+2)<\ldots<w(n)$, and we put

$$
\begin{equation*}
\Delta^{+}(h):=\left\{e_{i j} \in \Delta \mid w(i)<w(j)\right\} \tag{8.1}
\end{equation*}
$$

through this w. Then we easily find that $h \mapsto \Delta^{+}(h)$ gives a one-one correspondence from $\Pi_{p, q}$ onto the set of positive systems of Δ including Δ_{c}^{+}.

Now let $h \in \Pi_{p, q}$. Take a discrete series (\mathfrak{g}, K)-module H_{Λ} with $\Delta^{+}(h)$-dominant parameter $\Lambda \in \Xi$. By Theorem 1 , we see that $d[h]:=$ $d\left(H_{\Lambda}\right)$ is independent of the choice of such a Λ. The map $\Pi_{p, q} \ni h \rightarrow$ $d[h]$ completely describes the Gelfand-Kirillov dimensions for discrete series of $G=S U(p, q)$.

We put $\Pi:=\cup_{n=1}^{\infty} \Pi(n)$ (disjoint union), where the set $\Pi(n):=$ $\cup_{p+q=n} \Pi_{p, q}$ consists of all mappings from $F(n)$ to $\{a, b\}$. Extend $h \rightarrow d[h]$, defined on each $\Pi_{p, q}$, to a function $d[\cdot]$ on Π in the canonical way.
8.2. Let $h \in \Pi(n)(n>0)$. In order to specify the Gelfand-Kirillov dimension $d[h]$, we introduce an equivalence relation $\stackrel{h}{\sim}$ on the set $F(n)$ by $i \stackrel{h}{\sim} j \Leftrightarrow h$ takes the same value on the segment $[i, j]$.
Take a complete system $I_{h} \subset F(n)$ of representatives of the coset space $F(n) / \stackrel{n}{\sim}$, and let $\zeta_{n}: F(n) \backslash I_{h} \mapsto F(n-|h|)$, be the unique bijection such that

$$
i<j \Leftrightarrow \zeta_{h}(i)<\zeta_{n}(j) \text { for } i, j \in F(n) \backslash I_{h},
$$

where $|h|:=\#\left(I_{h}\right)$. We define $R h \in \Pi(n-|h|)$ by $R h:=h \circ \zeta_{h}^{-1}$. Note that $R h$ is independent of the choice of a set of representatives I_{h}.

Applying R repeatedly, we obtain from each $h \in \Pi(n)$ a finite sequence ($\left.R^{k}(h)\right)_{0 \leq k \leq l}$ of elements of Π with
(8.2) $\quad R^{k}(h) \in \Pi\left(n_{k}(h)\right), \quad n_{k}(h)=n-\sum_{j=0}^{k-1}\left|R^{j}(h)\right|$.

Here l is the non-negative integer such that $\left|R^{l}(h)\right|=n_{l}(h)>0$.
Theorem 4. The Gelfand-Kirillov dimension of an $h \in \Pi(n)=$ $\cup_{p+q=n} \Pi_{p, q}(n>0)$ is given as

$$
\begin{equation*}
d[h]=(1 / 2) \cdot \sum_{k=0}^{l}\left(2 n_{k}(h)-r_{k}\right)\left(r_{k}-1\right)=(1 / 2) \cdot\left(n^{2}-\sum_{k=0}^{l}(2 k+1) r_{k}\right) \tag{8.3}
\end{equation*}
$$

with $r_{k}=\left|R^{k}(h)\right|$, by means of the finite sequences $\left(R^{k}(h)\right)_{0 \leq k \leq 1}$ and $\left(n_{k}(h)\right)_{0 \leq k \leq 1}$ in (8.2).

Example. Case of $G=S U(p, 2)(p \geq 2)$. In this case, the set $\Pi_{p, 2}$ is divided into 7 subfamilies according to the positions of two elements $i_{1}, i_{2} \in$ $F(n)$ such that $h\left(i_{1}\right)=h\left(i_{2}\right)=b$, and the corresponding quantities $\left(r_{k}\right)_{0 \leq k \leq l}$ and $d[h]$ are given explicitly as follows.

type	$(h(i))_{i}$	$\left(r_{k}\right)_{k}$	$d[h]$
I	$(b b a \ldots a)$	$(2,2,1, \ldots, 1)$	$2 p$
II	$(b a \ldots a b a \ldots a)$	$(4,1, \ldots, 1)$	$3 p$
III	$(b a \ldots a b)$	$(3,1, \ldots, 1)$	$2 p+1$
IV	$(a \ldots a b b a \ldots a)$	$(3,3,1, \ldots, 1)(p \geq 4)$	$4 p-4$
		$(3,2)(p=3)$	8
		$(3,1)(p=2)$	5
V	$(a \ldots a b a \ldots a b a \ldots a)(p \geq 3)$	$(5,1, \ldots, 1)$	$4 p-2$
VI	$(a \ldots a b a \ldots a b)$	$(4,1, \ldots, 1)$	$3 p$
VII	$(a \ldots a b b)$	$(2,2, \ldots, 1)$	$2 p$

The details of this note will appear elsewhere.

References

[1] W. Borho and J.-L. Brylinski: Differential operators on homogeneous spaces. I. Invent. math. , 69, 437-476 (1982); III. ibid., 80, 1-68 (1985).
[2] M. Duflo: Représentations de carré intégrable des groupes semi-simples réels. Exposé 508, Séminaire Bourbaki 1977/78, pp. 22-40 (1978).
[3] R. Hotta and R. Parthasarathy: Multiplicity formulae for discrete series. Invent. math., 26, 133-178 (1974).
[4] W. Schmid: Construction and classification of irreducible Harish-Chandra modules. Harmonic Analysis on Reductive Groups (eds. W. Barker and P. Sally). Birkhäuser, pp. 235-276 (1991).
[5] D. A. Vogan: Gelfand-Kirillov dimension for Harish-Chandra modules. Invent. math. , 48, 75-98 (1978).
[6] -: Associated varieties and unipotent representations. Harmonic Analysis on Reductive Groups (eds. W. Barker and P. Sally). Birkhäuser, pp. 315-388 (1991).
[7] H. Yamashita: Embeddings of discrete series into induced representations of semisimple Lie groups. I. Japan. J. Math. (N.S.), 16, 31-95 (1990); II. J. Math. Kyoto Univ., 31, 543-571 (1991).
[8] -: Criteria for the finiteness of restriction of $U(\mathrm{~g})$-modules to subalgebras and applications to Harish-Chandra modules (to appear in J. Funct. Anal.) (The results have been reported in Proc. Japan Acad., 68A, 316-321 (1992)).

