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11. Some Families of Generalized Hypergeometric Functions
Associated with the Hardy Space of Analytic Functions

By Yong Chan KIM*) and H. M. SRIVASTAVA* *)

(Communicated by Kiyosi IT6, M.J.A., Feb. 14, 1994)

Abstract: Recently, several inclusion theorems associated with the

Hardy space of analytic functions were proven for various families of

generalized hypergeometric functions belonging to one or the other subclas-

ses of the class of normalized analytic functions in the open unit disk .
The main objective of this paper is to develop a remarkably simple proof of

a unification (and generalization) of many of these inclusion theorems. Some
relevant historical remarks and observations are also presented.

1. Introduction and definitions. Let N denote the class of functions

f (z) normalized by

(1.1) f(z) z + anzn,
which are analytic in the open unit disk . Also let denote the class of all
functions in N which are univalent in o. We denote by * and Y( the sub-
classes of consisting of all functions in N which are, respectively, starlike
and convex in . Then it follows readily that f(z) 3g = zf’(z) , which
indeed is the familiar Alexander theorem (cf., e.g., Duren [3, p.43, Theorem
2.12]). We note also that * .

Let (0 < p )denote the Hardy space of analytic functions
f(z) in , and define the integral means M(r, f) by

{1 0)If(re dO) (0 < p < )
(1.2) M(r, f) f(reO) (p ).

Definition 1. A function f(z), analytic in , is said to belong to the
Hardy space (0 < p N ) if
(1.3) lim{M(r,f)} < (0 <pN ).

For 1 N p N , Z is a Banach space with the norm f]] defined by
(cf., e.g., Duren [2, p. 23]; see also Koosis [11])
(1.4) l[f[[ lim{M(r,f)} (1 NpN ).

Furthermore, is the familiar class of bounded analytic functions in ,
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whereas 2 is the class of power series ,, anzn
with

Definition 2. Let/j(j 1,...,1) and/zj(j" 1,...,m) be complex num-
bers such that 0, 1, 2, " 1,... ,m). Then the generalized
hypergeometric function F(z) is defined by

F(z) ,F(2x,...,2, a,..., a z)

(1.5) ,...,
().... (x,). z", (a),"" (#), n[ (1 m + 1),

where (2)n denotes the Pochhammer symbol defined, in terms of Gamma
functions, by
(.6) F( + n) (n= 0)
(2)"= F(2) t(2( + 1)...(2 +n-- 1) (n N {1,2,3,...})"

We note that the F series in (1.5) converges absolutely for (cf., e.g.,
Erdlyi et al. [4, Chapter 4])
(i)
(ii) z ifl= m+ 1;
(iii) z D {z:z Cand [z[ 1} if l m+ 1;
provided further that

j=l

unless the series terminates.
Inluion horm for crtain gnralizO hyprgomric funfion,

associated with the Hardy space , were proven recently by Jung et al. [5]
by applying a on-paramr famil of inal opao, an b Kim
[] b making u of a fractional integral opraor involvin h Gau
hypergeoetric function F in the kernel (see also [15, Chapter 25]). Each of
h inclusion horm alo invo1 h ubcla anO ()of h
class , which are given by

Definition 3. A function f(z) is said to be in the class
afifi h inqualiy:
(.7) Re{f ’(z)} > (z;0
o ha, obvioul,
<.) () :(o) (o<1).

It should be remarked in passing that the class was studied rather

mafica11 b MacGregor [12] who inOO rfrrO o numrou arlir
wor ivii vario proprfi of ucion who Orivafiv ha a
poifiv ral par. A a mar of fac, a mor ral cla of funcfion han
ho aifin h inquali R{f’()} 0 ( )i h cla of
ctose-to-convex functions considered by Kaplan [6]. (See also Duren [3].)
A inrtin ificfion (aO ralizafion) of th aformnfioO in-

cluio horm of Jun e I. [5] anO Kim et I. [7] wa proven, by man of
a rmarkabl impl chniQu, b rivaava [13]. W choo o rcall ri-
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vastava’s result as
Theorem 1 (Srivastava [13]). Let the function z F,n(2l,. ..,

l,...,am; z) (l <-m + 1) be in the class (7) (0 <--7 1). Suppose also
that the function (z) is defined, in terms of a generalized hypergeometric func-
tion, by

2,. .,, q,. .,as
(1.9) #(z) z +sFm+ z (l <- m + 1; s N)

/-l,..’,/-Lm, 1," "’,s
for (real or complex) parameters o,...,cs and fl,... ,fls such that flj 0, 1,
--2,... (j= 1,...,s).

Then q)(z) and, more precisely,
(1.1o) #(z) < (z (z:z C and z[ --< 1}),
provided that

R ) > o.
1=1 1--1

The main object of the present paper is to develop a generalization, ana-
logous to Theorem 1, of the following result which was given elsewhere by
Kim and Srivastava [8] as an application of a certain one-parameter additive
family of operators considered earlier by Komatu ([9]; see also [10]) (and,
more recently, by Srivastava and Owa [14]).

Theorem 2 (Kim and Srivatava [8]). The generalized hypergeometric

function (z) defined by

(1.11) (z) Z ,+sFm+,

is in the Hardy space 2 if

z (l--< m+ 1;s N)

bers such that
:/: 0,

and let oo be defined by

(2.1)
j=l 1=1

Then the generalized hypergeometric function q)(z) defined by (1.9) is in the
Hardy space f (and, more precisly, the assertion (1.10) holds true) if
(2.2) z Fm(z) * Y and Re(w) > 2
or if
(2.3) z Fm(z) Y c * and Re(w) > 1.

In place of the one-parameter additive family of operators (used else-
where to prove Thcorem 2), our proof of the general result (Theorem 3) is

(1.12) z ,Fm(Z) S* and s N\ {1, 2)
or if
(1.13) z Fm(z) 3q and s N\ {1}.

2. Inclusion theorem for and its subclasses. Our main result (depict-
ing the inclusion property associated with the Hardy space and the classes, *, and bq) is contained in

Theorem 3. Let the parameters c,...,Cs and fli,...,fls be complex num-
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based largely upon the coefficient inequalities asserted by the following
Lemma (cf. de Branges [1]; see also Duren [3, pp. 44-451). Let the func-

tion f(z) be defined by (1.1).
Then

(2.4) f D*Dbgla.I <-- n (n N* N\{1})
and

(2.5) f / * la < 1 (n N*).
Furthermore, strict inequality holds true for all n unless f is a rotation of the
Koebe function

(.) go(z)

in (2.4), and of the function

z nz (zall)
(1 z) n----1

z 22z (zO)(2.7) Lo(z) 1 z =
in (2.5).

Proof of Theorem 3. For the sake of convenience, we write
(). (,) (a). (as)

(2.8) 9n (P)n" @) and An (fl)n"" (fls)n (n No N U {0}).

Thus, by apply,in..g the assertion (2.4) of the Lemma, the hypothesis

zF (n-- 1)!z =z+ z s
LPz,...,Pm; ’.-.

implies that
19n-1[ <- n (nN*).(2.9) (n 1)!

Next, from the definition (1.6) and Stirling’s asymptoic expansion for the
Gamma function (cf., e.g., Erdelyi et al. [4, p. 47, Section 1.18]), it is not diffi-
cult to show for An defined by (2.8) and with fixed parameters and

fl (j 1 ,s) that
(2.10) An A-1 - -)n [1 + O(n (n--oo),
where, for convenience,

F(%) F(as)
(2.11) A F() F(s)
and o) is given, as before, by (2.1).

Now, for the function q(z) defined by (1.9), we have

which, for z a//, yields

(2.12)

where

(2.13) }c.} ( : i)! IA.I (n N*).

Making use of (2.9) and (2.10), we find from (2.13) that
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M 1
(2,4) c. AI n’’-

(n _> N N ;M > 0),

which proves that the power series of the function (z) converges absolute-
ly for each z a//, provided that to is constrained precisely as in the asser-
tion (2.2).

This evidently completes our remarkably simple (and direct) proof of
the assertion (2.2) of Theorem 3. The proof of the assertion (2.3) of Theorem
3 would similarly make use of the following consequence of (2.5):

I&_l
<_1 (n(2.15) (n 1)

instead of the inequality (2.9).
3. Applications. Each of the assertions (2.2) and (2.3) of Theorem 3 is

very general in character. By setting
(3.1) a landfl 2 (j= 1 ,s),
and by further resticting s so that (which, in this special case, equals s) is

constrained as in the assertions (2.2) and (2.3), we are led at once to a mild

generalization of Theorem 2, contained in the following
Corollary. The generalized hypergeometric function (z) defined by (1.11)

is in the Hardy space (and, more precisely, the assertion (1.10) holds true
when is replaced by if
(3.2) z F(z) * and s N (1, 2}
or if
(3.3) z Fm(z) * and s N (1).

Many more interesting consequences of Theorem 3 can be deduced by
assigning suitable special values to the various parameters involved in the
generalized hypergeometric function #(z) defined by (1.9).
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