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Abstract: We consider entire functions of the form f= ae’, where ai( 0), g are
entire functions and the orders of all a are less than one. If all the zeros of f are real, then

f-- e aeh’, where h are linear functions. Using this result, we can prove that f ale if
all zeros of fare positive, which also generalizes a result obtained by A. Eremenko and L. A.
Rubel.
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1. Introduction and main results. For i-->
1 and z C, let g (z)be entire functions. Let
a (z) be a non-zero entire function with p (a)
< 1, where p(g) denotes the order of an entire
function g. Let B1 denote the class of entire func-
tions of the form

f-- ae’,
i=1

where e’- is non-constant for =/= j.
If all the a are polynomials, then such f is

said to be in the class B. Clearly, B is a proper
subset of B1.

Let Z(g) be the zero set of an entire func-
tion g. In [2], by using H. Cartan’s theory of holo-
rnorphic curves. A. Eremenko and L. A. Rubel
proved the following theorem.

Theorem A. Letf B. If Z(f) is a subset
of the positive real axis, except possibily finitely
many points, then f= pea where p is a polyno-
mial and g is an entire function.

Therefore, it is natural to ask whether we
can say something about the form of f if f B
and Z(f) is a subset of the real axis. By adapting
some of the arguments used in [6] and Nevanlin-
na value distribution theory for functions mero-
morphic in a khalf plane, we can answer this ques-
tion even for the case f B1. In fact, we
obtained the following results.

Theorem 1. Let f B. If Z (f) is a subset

of the real axis, except possibly finite points, then
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f (z eo(z)= a (z )e’z, where b C, g and

a( O) are entire functions with p(a) < 1.
Using theorem 1, we can generalize theorem A

to the following theorem.
Theorem 2. Let f B. If Z(f) is a subset

of the positive real axis, except possibly finite points,
then f ae, where g, a are entire functions with

p(a) < 1.
Our basic tool is J. Rossi’s half-plane ver-

sion of Borel theorem. J. Rossi proved this ver-
sion in [6] by using Tsuji’s half-plane version of
Nevanlinna theory. Therefore, we shall start with
the basic notations of Tsuji’s theory (cl. [4] and

[7]); assuming the readers are familiar with the
Nevanlinna Theory and its basic notations (el.

Let n,(t, oo) be the number of poles of f in
it t

{z" [z [ N , zl 2 1}, where f is meromor-
phic in the open upper half-plane. Define

n.(t, )
N.(r, ) N.(r, f)

t2
dt,

m.(r, ) mu(r, f)

1 -arcsinr-
+ i0) dO

)ars.- log [f(rsinOe [rsin20,
1

Nu(r, a) N.(r, f_ a), mu(r, a)

1
=m.(r, f_a (a ) and

T.(r, f) m.(r, f) + Nu(r, f).
Remark 1. We can also define m (f, f),

Nt (r, f), T (r, f) for functions meromorphic in

the open lower half-plane in the obvious way.
Lemma 1 [4]. Let f be meromorphic in lmz
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> 0(< 0). Define rn.,(r, f) ---- log+lf(re)l
dO. Then

fr mo,(t, f) fr mu(t, f)
t

dt <_ t dt

fr m,2(t, f) fr m(t, f)
t

dt <- t
dt).

Lemma2[6]. Letn >-- 2, S: {fo,...,fn} be
a set of meromorphic functions such that any proper
subset of S is linearly independent over C. If S is

linearly dependent over C, then for all r except poss-
ibly on a set of finite measure,

T.(r) O{E [N.(r, 1/f) + N.(r, fg)]
=o + logT.(r) + logr},

where T.(r) max{T.(r, f/f)[ 0 i, j n}.
Remark 2. If we replace rn. (r, f), Nu (r,

f) and T. (r, f) by the standard Nevanlinna
functionals m(r, f), N(r, f), T(r, f) in Lemma
2, we shall obtain the original full-plane version
of Borel theorem.

Lemma 3 [5]. Let gi be a transcendental en-

tire function and h be a non-zero entire fnction
such that T(r, h) o(T(r, gi)) as r-- oo, for 1
<- <_ n. Suppose ni=lg(z): h (z), then =10
(0, g) <--n-- 1.

Lemma 4. For n >_ 2 and each 1 <_ <_ n,
let a denote a non-zero entire function with p (ai)
< 1 and bi be a non-zero complex number. Then,
there exists a positive constant A such that for suffi-
ciently large r, T (r, al (z) + =.a (z)ebz) >_
Ar.

The proof of Lemma 4. It is not difficult to
prove for n 2. Assume n >_ 3. Let 9(z) al(z)
+ i=.a (z) e b’z n-1n

and G (z) -a (2) + :=2a
btz

e Then T(r, G) O(r) for large r. From g
bnG + ane and a simple calculation give

(anbn + a"n an G’/G)en g’-- gG’/G.
It is well-known that (for large r) T(r, G’/G)
o(T(r, G)) and T(r, g’) <_ AT(Br, g), where
A, B -> 1. Hence,

T(r, <_ T(r, g’-gG’/G) + T(r,enz)
anbn + a’n- anG’/G) + O(1) <_ CT(Br, g) +
o(r)
Therefore, for large r, T(r, g) >_ Ar for some
suitable positive constant A.

2. Proofs of Theorems. The proof of
Theorem 1 f B1 implies that f= n
expgi, where a ( 0), g are entire functions
with T(r, a) O(r) for some fixed positive e
<1.

If n 1, then we are done. For n _> 2, sup-
pose that exp(g- g) is non-constant for =# j.
From these and using the full-plane version of
Borel theorem, we can show that the functions f
aexpg are linearly independent. Set fo--f,

then the set {fo,...fn} will satisfies the inde-

pendence criteria of Lemma 2.
Suppose that Z (f)is a subset of the real

axis, except possibly finite points. Then, Nu (r,
1/fo) -O(logr). For 1 <_ i<_ n, we also have
N(r, l/f/) O(r), since

N(r, 1/f)= rn(t’-tl/ai) dt <_ rn(t’ tl/a) dt

N(r, 1/a) + O(1) O(r).
It follows from Lemma 2 that Tu(r) O(r)

and hence Tu(r, f/f) O(r) for all i, j. Since

Tu (r, f/f) N (r, f/f) + m (r, f/f), we also
have m(r, f/f) O(r). Similarly, m(r, f/f)

O(r). Now,
T(t, f/f) N(t, f/f) + m(t, f/f) O(t) +

mo, (t, f/f) + m,2 (t,
Then by Lemma 1, we have

T(r, f/f) O(1/r) <_ fr T(t:,/f).dt- O(r-).

Consequently, T (r, f/f O (r2- ). This
implies that the order of exp(g- g )is less
than 2 and hence equal to one.

n eai-a) where giNow, f: eal (a + _-2a
gi is linear for 2 <--i <--n. This also completes
the proof.

The proof of Theorem 2. Let f B such
that Z (f)is a subset of the positive real axis,
possibly finite points. By Theorem 1, either (i)f

aea
or (ii)f(z) e

a<z) (a (z) + X’-_2a (z)e’,
where g, a( 0) are entire functions, p(a) < 1
and the bi s are non-zero complex numbers. We
only need to consider case (ii).

Let G(z) a(z) + (z)e’=2a h --al,
g --G, g (z) a(z)e’ for 2 _< i <_ n. Then
Z(G) Z(f), X__lg(z) h(z), and T(r, h)
o(T(r, e)) as r tends to infinity for 1 <_ <_ n.
By Lemma 3 i__6 (0, g) <-- n 1. Since 6 (0,
g) 1 for --> 2, it follows that 6(0, G) 6(0,
gl) O.

Hence there exists an unbounded sequence
1

{r} such that N(r, O, G) >- -T(ri, G). By Lem-
ma 4,

frr, N(t’O’
dt >_ frr, N(r’O’

dt
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1 T(r,G) L I__Ar__z 1>- 2 dt >- 2 t dt=-A > O.

N(t,0, G)
Therefore, i dt does not conver
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and W. Fuchs [1], 6(0, G) > 0, which is a con-
tradiction. Hence f must equal to the required
form, ae.

Remark 3. It is obvious that Theorem A
can also be derived from the present arguments
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