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On the Zeros of > a,expg,™’
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Abstract: We consider entire functions of the form f= X a,e”’, where a,(# 0), g, are
entire functions and the orders of all @; are less than one. If all the zeros of f are real, then
f= ¢’ Za,e™ where h, are linear functions. Using this result, we can prove that f = a,e’ if
all zeros of f are positive, which also generalizes a result obtained by A. Eremenko and L. A.

Rubel.
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1. Introduction and main results. For { =
1 and z € C, let g, (z) be entire functions. Let
a; (z) be a non-zero entire function with p (a;)
< 1, where p(g) denotes the order of an entire
function g. Let B, denote the class of entire func-
tions of the form

n
f= 2 a,e”,
i=1

where ¢“”% is non-constant for i # j.

If all the a; are polynomials, then such f is
said to be in the class B. Clearly, B is a proper
subset of B,.

Let Z(g) be the zero set of an entire func-
tion g. In [2], by using H. Cartan’s theory of holo-
morphic curves. A. Eremenko and L. A. Rubel
proved the following theorem.

Theorem A. Let f€ B. If Z(f) is a subset
of the positive real axis, except possibily finitely
many points, then f=peg, where p is a polyno-
mial and g is an entire function.

Therefore, it is natural to ask whether we
can say something about the form of f if f€ B
and Z(f) is a subset of the real axis. By adapting
some of the arguments used in [6] and Nevanlin-
na value distribution theory for functions mero-
morphic in a half plane, we can answer this ques-
tion even for the case f€ B,
obtained the following results.

Theorem 1. Let f € B,. If Z(f) is a subset
of the real axis, except possibly finite points, then

In fact, we
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f(z)=e"3Z0  a, (z)e", where b, € C, g and
a,(# 0) are entire functions with p(a,) < 1.

Using theorem 1, we can generalize theorem A
to the following theorem.
Let f€ B,. If Z(f) is a subset
of the positive real axis, except possibly finite points,
then f= deg, where g, a are entive functions with
ola) <1.

Our basic tool is J. Rossi’s half-plane ver-
sion of Borel theorem. J. Rossi proved this ver-
sion in [6] by using Tsuji’s half-plane version of
Nevanlinna theory. Therefore, we shall start with
the basic notations of Tsuji’s theory (cf. [4] and
[7]); assuming the readers are familiar with the
Nevanlinna Theory and its basic notations (cf.

(3]).

Theorem 2.

Let n, (¢, ) be the number of poles of f in

it t
{(z:|lz— 5| < o |z| = 1}, where f is meromor-
phic in the open upper half-plane. Define

NG, @) = NG, ) = [ ﬁ%‘i)

dt,

m,(r, ©) =m,(r, f)

1 n—arcsinr~! ] ; do
=5 . log™|f(rsinfe”)|
arcsinr

. 2457
rsin 6
NGr, @) = NG, 723), mr, @

=m,(r, f—_l—z) (a # °) and

T,(r, ) =m,(r, )+ N,(r, ).
Remark 1. We can also define m, (», f),
N,(r, f), T,(r, f) for functions meromorphic in
the open lower half-plane in the obvious way.
Lemma 1 [4]. Let f be meromorphic in Imz
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> 0(<0). Define my4(r, f) = an log*|f(re”)|
df. Then

[ o un,

4
(£ mn,Znt(St»f) dts‘f; ml(;y f)dt)

Lemma 2 [6]. Letn =2, S=1{f,..., f,} be
a set of meromorphic functions such that any proper
subset of S is linearly independent over C. If S is
linearly dependent over C, then for all v except poss-
ibly on a set of finite measure,

n

T,(n = O{Z[N,(r, 1/f) + N,(r, f)]

k=0 + logT,(r) + logr},
where T,(r) = max{T,(r, f/HI0=<1i,j<n

Remark 2. If we replace m, (», f), N, (r,
f) and T, (r, f) by the standard Nevanlinna
functionals m (», f), N(r, f), T(r, f) in Lemma
2, we shall obtain the original full-plane version
of Borel theorem.

Lemma 3 [5]. Let g; be a transcendental en-
tire function and h be a non-zero entive function
such that T(r, h) = o(T(r, g;)) as r = %, for 1
< i< n. Suppose 2i_,9,(z) = h(2), then 27,0
0,9) <n—1.

Lemma 4. For n = 2 and each 1 < { <
let a; denote a non-zero entive function with p (a;)
<1 and b; be a non-zero complex number. Then,
there exists a positive constant A such that for suffi-
ciently large v, T (r, a, (2) + Z7_,a, (z)e"") =
Ar.

The proof of Lemma 4. It is not difficult to
prove for # = 2. Assume # = 3. Let g(2) = al(z)
+ 37 ,a,(2)e" and G(2) = a, (2) + =i, a,(2)
¢"?. Then T(r G) = O (») for large ». From g
= G + a,e " and a simple calculation give

(@b, + a', — a,G’/G)e"™ = g — gG’'/G.

It is well-known that (for large ») T(», G'/G) =
o(T(r, G)) and T (r, g’) < AT (Br, g), where
A B = 1. Hence,

—Ib lr ~ T(r, &) < T(r, g — gG'/G) + T(r,
a,,b +a,—a,G/G) +0Q1) <CT(Br, g) +
o(r).

Therefore, for large », T (r, g) = Ar for some
suitable positive constant A.

2. Proofs of Theorems. The proof of
Theorem 1. f€ B, implies that f= X7 a,
expg;, where a, (# 0), g, are entire functions
with T(r, a;) = O(r°) for some fixed positive €
< 1.
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If » =1, then we are done. For #n = 2, sup-
pose that exp(g; — g;) is non-constant for ¢ # j.
From these and using the full-plane version of
Borel theorem, we can show that the functions f;
= a,; expg; are linearly independent. Set f, = f,
then the set {f,,...f,) will satisfies the inde-
pendence criteria of Lemma 2.

Suppose that Z (f) is a subset of the real
axis, except possibly finite points. Then, N, (7,
1/f,) = O (logr). For 1 < i< n, we also have

N,(r, 1/f) = 0(r%), since
"n,(t, 1/a,) "n(t, 1/a;)
—dtéjzfdt

o).

N, (r, 1/f) = J: 2
= N(r, 1/a,) + 0Q1) =

It follows from Lemma 2 that 7, (») = O(r°)
and hence T, (7, f/f;) = O(r°) for all ¢, j. Since
T,(r, f/f;) = N, (r, f/f;) + m,(r, f/f;), we also
have m, (7, f,/f;) = O(r). Similarly, m,(», f, /f;)
= 0(7’) Now,

T(t, f;/f;,) = N, f/f,) + m(t, f/f,) = O(t°) +
mo (t, f/1) + my .. (t, f/F).
Then by Lemma 1, we have
10, frpoan’y < [T EEID 4= 067,
3

Consequently, T (7, f/f;) = O (r*™°). This
implies that the order of exp(g; — g;) is less
than 2 and hence equal to one.

Now, f= " (a, + 27_,a,e”™""), where g, —
g, is linear for 2 < 7 < n. This also completes
the proof.

The proof of Theorem 2. Let f <€ B, such
that Z (f) is a subset of the positive real axis,
possibly finite points. By Theorem 1, either (i)f
= ae’ or (i) f(2) = " (a,(2) + Z_,a,(2)e",
where g, a;(# 0) are entire functions, p(a,) <1
and the b,’s are non-zero complex numbers. We
only need to consider case (ii).

Let G(2) = a,(2) + 2,0, h = —a,,
g=—G, 9,2 =a,(2e" for 2 <i<n Then
Z(G) =2Z(H, 2'_19,(2) = h(2), and T(r, h) =
o(T(r, g,)) as 7 tends to infinity for 1 < i < n,
By Lemma 3, 27,6 (0, g;) < n — 1. Since 6 (0,
g;) = 1 for i = 2, it follows that (0, G) = (0,
g) = 0.

Hence there exists an unbounded sequence

{r,} such that N(»,, 0, G) = %T(n, G). By Lem-

ma 4,
= N(¢,0,G) * N(7,,0,G)
J, e ]
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©1 T(r,G&)
zj; gtz g

Therefore, f ————N(t’?’G)

0 t
age and hence the genus of G is at least one.
Now, G is an entire function of finite order with
a genus at least one, which has at most finitely
many non-positive zeros. By a result of A. Edrei
and W. Fuchs [1], 6 (0, G) > 0, which is a con-
tradiction. Hence f must equal to the required
form, ae’.

Remark 3. It is obvious that Theorem A
can also be derived from the present arguments
by assuming that the coefficients a; (z ) are
polynomials in Theorem 2.

*1A7 1
‘——tz-dt—zA>0.

dt does not conver
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