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Exterior differential algebras and flat connections on Weyl groups

By Anatol N. Kirillov
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Abstract: We study some aspects of noncommutative differential geometry on a finite
Weyl group in the sense of S. Woronowicz, K. Bresser et al., and S. Majid. For any finite Weyl
group W we consider the subalgebra generated by flat connections in the left-invariant exterior
differential algebra of W .

For root systems of type A and D we describe a set of relations between the flat connections,
which conjecturally is a complete set.
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Introduction. The study of higher order dif-
ferential structures on Hopf algebras was initiated
by S. L. Woronowicz [6], and further developed by
K. Bresser et al. [1] and S. Majid [5] for algebras of
functions on finite groups. In particular, S. Majid
has introduced and studied flat connections on the
symmetric group SN . In our paper, we study the
algebra generated by flat connections in a sense of
Majid on a finite Weyl group. This is an interesting
problem which is not treated in [5].

We consider the differential structure with re-
spect to the set of reflections. Since the complete set
of the defining relations of the left-invariant exterior
differential algebra has not yet been determined in
general, we will work on its quadratic version Λquad

for the root system of type A or D, and on its quar-
tic version Λquar for the root system of type B. Our
main result describes a set of relations among flat
connections on Weyl groups of type A and D. Con-
jecturally, these relations are complete set of rela-
tions among flat connections in Λquad . We expect
some connections of our construction with Schubert
calculus on flag varieties [4].

1. Woronowicz exterior algebra.
Woronowicz exterior algebra was introduced in [6]
for the study of higher order differential structure
on the quantum groups. In the category of modules
over a commutative algebra, the exterior products of
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a module are constructed by using the canonical ac-
tion of the symmetric groups on the tensor products.
In general, such a construction does not work in the
category of bimodules over a noncommutative alge-
bra because of lack of canonical action of the sym-
metric groups on the tensor products. However, in
the category of bimodules over a Hopf algebra, one
can obtain a natural generalization of the exterior
product. In this paper, all (Hopf) algebras are over
a field K of characteristic zero. Let H be a Hopf
algebra.

Definition 1.1. A bimodule M over H is
called a left (resp. right) covariant bimolude if M has
a left (resp. right) H-comodule structure compatible
with the bimodule structure. A bimodule M is called
a bicovariant bimodule if M has left and right covari-
ant bimodule structures and the left coaction and the
right coaction commute.

Definition 1.2. Let M be a bicovariant bi-
module over a Hopf algebra H . An element x ∈ M

is called left (resp. right) invariant if x is mapped to
1 ⊗ x (resp. x ⊗ 1) by the comodule action of H .

Lemma 1.1. There exists a unique braiding
Ψ : M ⊗H M → M ⊗H M such that Ψ(ω ⊗ η) =
η ⊗ ω for left invariant ω and right invariant η.

The homomorphism Ψ induces a homomor-
phism Ψi : M⊗Hn → M⊗Hn, 1 ≤ i ≤ n, which
acts as Ψ on i-th and (i+1)-st components and acts
identically on the other components. Take an ele-
ment w ∈ Sn and its reduced decomposition w =
si1 · · ·sil , si = (i, i + 1). Then we can associate a
homomorphism Ψ(w) : M⊗Hn → M⊗Hn to the ele-
ment w by defining Ψ(w) = Ψi1 · · ·Ψil . Since Ψi’s
satisfy the braid relations, the homomorphism Ψ(w)
is independent of the choice of reduced decomposi-
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tion of w. Now we define the antisymmetrizer An on
M⊗Hn by the formula An =

∑
w∈Sn

sgn(w)Ψ(w).
Definition 1.3. Woronowicz exterior algebra∧

M is a quotient of the tensor algebra of M over H

by the kernel of the antisymmetrizer, i.e.∧
M := THM/

⊕
n

Ker(An).

2. Differential structure on the Weyl
group.

2.1. Differential structure on a finite
group. First of all, let us remind some fundamen-
tal facts on noncommutative differential structures
on the finite group following [1] and [5].

Definition 2.1. Let A be a K-algebra. The
first order differential structure of A is a pair of A-
bimodule Ω1

A and a K-linear map d : A → Ω1
A such

that the map d satisfies the Leibniz rule d(ab) =
(da)b+ a(db), for a, b ∈ A, and the image of d gener-
ates Ω1

A as a left A-module.
Definition 2.2. Let H be a Hopf algebra.

The first order differential structure (d : H → Ω1
H)

is said to be bicovariant if Ω1
H has a structure of a

bicovariant bimodule and the map d is a bicomodule
homomorphism.

As a consequence of the construction in Sec-
tion 1, we have the Woronowicz exterior algebra of a
bicovariant differential structure Ω1

H of a Hopf alge-
bra H .

Definition 2.3. The Woronowicz exterior dif-
ferential algebra Ωw for the bicovariant differential
structure of a Hopf algebra H is a Woronowicz ex-
terior algebra of Ω1

H , i.e. Ωw :=
∧

Ω1
H . The left

invariant subalgebra of Ωw is denoted by Λw.
Let G be a finite group and H an algebra of

functions on G taking values on K. Now we consider
the differential structure on the Hopf algebra H =
K(G). The set of the delta functions {δg | g ∈ G}
can be taken as a linear basis of H .

Now we construct a canonical differential struc-
ture of the algebra H . Take a subset C of G which
does not contain the identity element. Let DC =
{(x, y) ∈ G × G | x−1y ∈ C}. Define Ω1(G) as a K-
linear space generated by the set {δx ⊗ δy | (x, y) ∈
DC}, and

df =
∑

(x,y)∈DC

(f(y) − f(x))δx ⊗ δy , for f ∈ H.

Then (d : H → Ω1(G)) is a first order differential
structure on H . All left covariant differential struc-

tures on H are of this form, and Ω1(G) is bicovariant
if and only if the set C is stable under the adjoint
action of G. Hence, simple bicovariant differential
structures on H are classified by nontrivial conju-
gacy classes of G.

For an element a ∈ G, let ea =
∑

g∈G δgdδga.
Then the left invariant subalgebra Λw is a K-linear
subspace spanned by ea, a ∈ C.

2.2. Differential structure on the Weyl
group. Now we assume the group W to be a Weyl
group. Denote by ∆ the set roots, and ∆+ the set of
positive roots. As we have seen in the previous sub-
section, bicovariant differential structures on H =
K(W ) are corresponding to adjoint invariant sub-
sets of W . We take C = Crefl the set of reflections as
the simplest adjoint invariant subset of W .

Remark 2.1. For a simply-laced root system,
the set C forms a conjugacy class. However, for a
nonsimply-laced system the set C splits into a dis-
joint union of two conjugacy classes: C = Cl ∪ Cs,

where Cl (resp. Cs) is the set of reflections with re-
spect to the long (resp. short) roots. We can see that
Λw(Bn ; Cl) ∼= Λw(Cn; Cs) ∼= Λw(Dn ; C),

Λw(Bn ; Cs) ∼= Λw(Cn; Cl) ∼= Λw((A1)n; C),

Λw(G2; Cl) ∼= Λw(G2; Cs) ∼= Λw(A2; C).

This fact shows that the simple differential structure
corresponding to Cl or Cs is not appropriate to inves-
tigate the differential structure for nonsimply-laced
root systems. For that reason, we consider the dif-
ferential structure obtained from the set C, which is
not simple differential structure for nonsimply-laced
root system. The algebra Λw(X, C) will be denoted
simply by Λw(X).

We define a quadratic version of the left-
invariant differential algebra follwing [5]:
Λquad := TKΛ1/ ker(1 − Ψ).

Conjecture 2.1. For simply-laced root sys-
tems, Λ ∼= Λquad . For the root system of type A

this conjecture was stated by S. Majid [5].
Remark 2.2. For nonsimply-laced root sys-

tems, Λquad is not isomorphic to Λw.
Example 2.1. The algebra Λquad(Bn) is gen-

erated by e(ij), e
(ij)

and e(i), where (ij), (ij) and (i)
are reflections. The defining quadratic relations are:

e2
(ij) = e2

(ij)
= e2

(i) = 0,

e(ij)e(kl) + e(kl)e(ij) = e(ij)e(kl) + e(kl)e(ij)

= e(ij)e(kl) + e(kl)e(ij) = 0, for {i, j} ∩ {k, l} = ∅,
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e(i)e(j) + e(j)e(i) = e(ij)e(ij)
+ e

(ij)
e(ij)

= e(ij)e(k) + e(k)e(ij) = e
(ij)

e(k) + e(k)e(ij)
,

if k �= i, j,

e(ij)e(jk) + e(jk)e(ki) + e(ki)e(ij) = 0,

e
(ik)

e(ij) + e(ji)e(jk)
+ e

(kj)
e
(ik)

= 0,

e(ij)e(i) + e(j)e(ij) + e(i)e(ij)
+ e

(ij)
e(j) = 0.

The algebra Λquad(Dn) is a quotient of Λquad(Bn).
Remark 2.3. The algebra Λquad(Bn) is not

isomorphic to Λw(Bn). For example, the relations

e
(ij)

e(i)e(ij)e(i) + e(i)e(ij)e(i)e(ij)

+ e(ij)e(i)e(ij)
e(i) + e(i)e(ij)

e(i)e(ij) = 0,

e(ij)e(i)e(ij)e(i) + e(i)e(ij)e(i)e(ij) = 0

hold in Λw(Bn), but they do not in Λquad(Bn).
We denote by Λquar(Bn) the quotient algebra of
Λquad(Bn) by the ideal generated by the quartic re-
lations above.

Example 2.2. The algebra Λquad(B2) is infi-
nite dimensional. It has the Hilbert polynomial (1 +
t)2(1 − t)−2. In the algebra Λw(B2), the quartic re-
lations

e
(12)

e(1)e(12)e(1) + e(1)e(12)e(1)e(12)

+ e(12)e(1)e(12)
e(1) + e(1)e(12)

e(1)e(12) = 0

and e(12)e(1)e(12)e(1) + e(1)e(12)e(1)e(12) = 0 hold.
The algebra Λquar (B2) obtained by adding the quar-
tic relations above to Λquad(B2) is finite dimensional
and has the Hilbert polynomial (1 + t)4(1 + t2)2. In
particular, Λw(B2) is finite dimensional. The anti-
commutative quotient of the algebra Λquad(B2) has
the Hilbert polynomial 1+4t+5t2+2t3 = (1+t)2(1+
2t).

Conjecture 2.2. The relations in Example
2.1 and Remark 2.3 are the complete set of relations
for Λw(Bn), i.e. Λw(Bn) ∼= Λquar(Bn).

3. U(1)-gauge theory. The algebra Λw has
a structure of a differential graded algebra over K.
Denote by H∗(W ) the cohomology group of the dif-
ferential graded algebra Λw. Let θ =

∑
a∈C ea. If

W is nonsimply-laced, we define θ1 =
∑

a∈Cl
ea and

θ2 =
∑

a∈Cs
ea.

Proposition 3.1. For simply-laced root sys-
tem, H1(W ) = K · θ. For nonsimply-laced root sys-
tem, H1(W ) = K · θ1 ⊕ K · θ2.

Proof. Since dδg =
∑

c∈C(δgc − δg)ec and ec ·
δg = δgc · ec, we have dea =

∑
g∈W dδgdδga = θea +

eaθ. We can show that if η =
∑

a∈C ηaea is a closed
1-form, then ηa = ηb must be satisfied when a and b

are conjugate each other.
Let Ω1

H be a bicovariant differential structure of
a Hopf algebra H .

Definition 3.1. For a 1-form η ∈ Ω1
H , the co-

variant curvature is defined by F (η) = dη + η ∧ η. If
F (η) = 0, η is called a flat U(1)-connection.

As we have seen in Remark 2.1, the simple dif-
ferential structures of nonsimply-laced Weyl groups
are reduced to the ones of simply-laced Weyl groups.
Hence, we restrict our considerations to the case of
simply-laced root system X = (∆, W ). Fix the set of
simple roots Σ ⊂ ∆. Let ωα be a fundamental domi-
nant dominant weight corresponding to a simple root
α ∈ Σ. Denote by (να)α Schmidt’s orthogonalization
of (ωα)α. We define the 1-forms θX

α for α ∈ Σ by
θX
α :=

∑
γ∈∆+(α)〈να, γ∨〉esγ , where ∆+(α) is the set

of the roots γ satisfying the condition 〈να, γ〉 > 0.
Proposition 3.2. For the classical root sys-

tems the 1-forms θα = θX
α satisfy the relations of

anticommutativity θαθβ + θβθα = 0 and flatness re-
lations F (−θα) = 0.

Proof. This can be shown by direct computa-
tions. (See Section 5).

Remark 3.1. The 1-forms θα can be consid-
ered as an analogue of the Dunkl elements introduced
in [2] and [4].

Example 3.1. Here we give an example in the
exceptional root system of type G2. Let α be the
short simple root and β the long one. Then the set
of positive roots is ∆+ = {a1 = α, a2 = 3α + β, a3 =
3α + 2β, a4 = 2α + β, a5 = α + β, a6 = β}. Let si be
the reflection with respect to ai and ei := esi . Then
the relations e2

i = 0,

e1e4 + e4e1 = e2e5 + e5e2 = e3e6 + e6e3 = 0,

e1e3 + e3e5 + e5e1 = e3e1 + e5e3 + e1e5 = 0,

e2e4 + e4e6 + e6e2 = e4e2 + e6e4 + e2e6 = 0,

e1e2 + e2e3 + e3e4 + e4e5 + e5e6 + e6e1 = 0,

e2e1 + e3e2 + e4e3 + e5e4 + e6e5 + e1e6 = 0

hold in Λw(G2). The first cohomology group is

H1(W (G2)) = K · (e1 + e3 + e5) + K · (e2 + e4 + e6).

Moreover, the 1-forms η1 = −(2e1 +e2 +e3 +e5 +e6)
and η2 = −(e2 + e3 + 2e4 + e5 + e6) define flat con-
nections which satisfy the anticommutativity η1η2 +
η2η1 = 0.
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4. Hopf algebra structure. We introduce
a Hopf algebra structure on K〈W 〉 ⊗K Λquad(W ).
We consider K〈W 〉⊗K Λquad(W ) as a twisted group
algebra defined by the commutation relations esγ ·
w = (−1)l(w)w · eswγ , where sγ is a reflection with
respect to a root γ and w ∈ W . The coproduct ∆,

the antipode S and the counit ε are given by the
formulas:

∆(esγ ) = esγ ⊗ 1 − sγ ⊗ esγ , ∆(w) = w ⊗ w,

S(esγ ) = sγ · esγ , S(w) = w−1,

ε(esγ ) = 0, ε(w) = 1.

The adjoint representation of the Hopf algebra gives
an action of Λquad(W ) on itself. The element esγ

acts as a twisted derivation

Dγ(x) = esγ x − (−1)deg xsγ(x)esγ ,

for a homogeneous element x ∈ Λquad(W ). The
twisted derivation Dγ satisfies the twisted Leibniz
rule Dγ(xy) = Dγ(x)y + (−1)deg xsγ(x)Dγ(y).

Remark 4.1. The Hopf algebra considered
above coincides with the one obtained as a twisted
group algebra over the quadratic lift of the bracket
algebra BE(W, S) defined in [4]. (If the root sys-
tem is simply-laced, the bracket algebra itself is a
quadratic algebra.) In particular, it coincides with
the fibered Hopf algebra introduced in [3] for the
root system of type A.

5. Subalgebra generated by flat connec-
tions. In this section, we discuss on the structure
of the subalgebra generated by the flat connections
θα, which are introduced in Section 3. We will
treat only classical root systems. Since we use only
quadratic relations, we work on the quadratic alge-
bra Λquad . For simplicity, the symbols (ij), (ij) and
(i) are used instead of e(ij), e(ij) and e(i) respectively.
The U(1)-connections θX

1 , . . . , θX
n ∈ Λquad(X) (X =

An−1, Bn, Dn) are defined as follows:

θ
An−1
i =

n∑
j=1

(ij),

θDn

i =
n∑

j=1

((ij) + (ij)),

θBn

i =
n∑

j=1

((ij) + (ij)) + 2(i).

One can easily check that the elements −θi define
flat connections and satisfy the anticommutativity
θiθj + θjθi = 0 by direct computations, cf. [4].

Lemma 5.1 (Cyclic relations in Λquad(An−1)).
For any distinct 1 ≤ a1, . . . , ak ≤ n,

k∑
i=2

(−1)k(i−1)(a1ai)(a1ai+1) · · · (a1ak)(a1a2)

· · · (a1ai) = 0.

Proof. These relations are obtained by ap-
plying the composition of twisted derivations
Dak−1akDak−2ak−1 · · ·Da2a3 to the relation (a1a2)2 =
0.

Lemma 5.2. For any distinct 1 ≤
a1, . . . , ak+1 ≤ n,( k∏

j=2

(a1aj)
)

(a1a2)(a1ak+1)

+ (−1)k+1(a1ak+1)
( k∏

j=2

(a1aj)
)

(a1a2)

+
( k+1∏

j=2

(a1aj)
)

(a2ak+1)

+ (−1)k+1(a2ak+1)(a1ak+1)
( k∏

j=3

(a1aj)
)

(a1a2)

= 0.

Proof. By using the equalities

(a1ak+1)(a2ak+1) + (a2ak+1)(a1a2)

+ (a1a2)(a1ak+1) = 0,

(a2ak+1)(a1ak+1) + (a1ak+1)(a1a2)

+ (a1a2)(a2ak+1) = 0

and anticommutativity relations, we obtain( k∏
j=2

(a1aj)
)

(a1a2)(a1ak+1)

+
( k+1∏

j=2

(a1aj)
)

(a2ak+1)

= −
( k∏

j=2

(a1aj)
)

(a2ak+1)(a1a2)

= −(−1)k−2(a1a2)(a2ak+1)
( k∏

j=3

(a1aj)
)

(a1a2)

= (−1)k(a1ak+1)
( k∏

j=2

(a1aj)
)

(a1a2)

+ (−1)k(a2ak+1)(a1ak+1)
( k∏

j=3

(a1aj)
)

(a1a2).
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This completes the proof.

Corollary 5.1. For any m ∈ Z≥1,

(θAn−1
1 )2m + · · ·+ (θAn−1

n )2m = 0.

Proof. The sum
∑

i θ2m
i is a sum of products

of cycles, and the number of odd cycles is even. All
even cycles give zero contribution, see Lemma 5.1.
According to Lemma 5.2 we can kill all even products
of odd cycles.

Lemma 5.3.

θ
An−1
1 · · · θAn−1

n = 0.

Lemma 5.4. For any integer k between 1 and
n, we have

n∏
j=1,j 
=k

θ
An−1
j =

∑
σ∈Per(1,...,�k,...,n)

(−1)l(σ)
n∏

j=1,j 
=k

(σ(j), k),

where the sum runs over all permutations σ of the
set (1, . . . , k̂, . . . , n) and l(σ) denotes the length of
permutation σ.

Proof of Lemmas 5.3 and 5.4. The proof is by
induction on n. We will prove the equations in
Lemmas 5.3 and 5.4 for An−1 under the assump-
tion that Lemma 5.3 holds for An−2. The equa-
tion θ

An−2
1 · · · θAn−2

n−1 = 0 means that we have in
Λquad(An−1)∑

i1,...,in−1

(1, i1) · · · (n − 1, in−1) = 0,

where i1, . . . , in−1 run over the letters satisfying il �=
l and 1 ≤ i1, . . . , in−1 ≤ n − 1. Let M1 be the
sum of the products

∏n
j=1,j 
=k(j, ij) such that none

of the letters ij equal k, and M2 be the sum of
the products such that at least one letter ij equals
k. Then,

∏n
j=1,j 
=k θ

An−1
j = M1 + M2. The as-

sumption of the induction shows M1 = 0. We
can express

∏n
j=1,j 
=k(σ(j), k) as a sum of terms

of form ±(1, b1) · · · (n, bn) by applying substitution
(aib)(ai+1b) → −(ai+1b)(aiai+1) − (ai+1ai)(aib) re-
peatedly when a term · · · (aib)(ai+1b) · · · with ai >

ai+1 appears. This procedure yields the equality

∑
σ∈Per(1,...,�k,...,n)

(−1)l(σ)
n∏

j=1,j 
=k

(σ(j), k) = M2.

Now we have the equality in Lemma 5.4. Multiply
both hand side by θ

An−1
k . Then we have

(−1)k−1θ
An−1
1 · · · θAn−1

n

=
∑

σ∈Per(1,...,�k,...,n)

∑
l
=k

(−1)l(σ)(k, l)
n∏

j=1,j 
=k

(σ(j), k).

Here, we can show that the right hand side is equal
to zero from the cyclic relations in Lemma 5.1.

Lemma 5.5.
m∑

k=1

(−1)(m−1)(k−1)
m∏

j=k+1

(k, j)
k−1∏
j=1

(j, k) = 0.

Proof. By induction, one can show

Damam+1

(m−1∏
j=1

(ajam)
)

= (−1)m(amam+1)
(m−1∏

j=1

(ajam)
)

+
m∏

j=1

(ajam+1)

by using the identity
m−1∏
j=1

(ajam) = (−1)n−2
m−1∏
j=2

(ajam) · (a1a2)

− (a1a2)(a1am)
m−1∏
j=3

(ajam).

Then, the desired identity is obtained by apply-
ing Dam−1am · · ·Da3a4 to the identity (a1a2)(a1a3)+
(a2a3)(a1a2) + (a1a3)(a2a3) = 0.

Theorem 5.1. The connections θ
An−1
1 , . . . ,

θ
An−1
n satisfy the following relations:

εk((θAn−1
1 )2, . . . , (θAn−1

n )2) = 0, 1 ≤ k ≤ n,

where εk is the k-th elementary symmetric polyno-
mial. Moreover,

θ
An−1
1 · · ·θAn−1

n = 0,
n∑

i=1

(−1)i+1θ
An−1
1 · · · θ̂An−1

i · · ·θAn−1
n = 0.

Proof. Indeed, the first series of equalities fol-
low from Corollary 5.1. The second equality has been
proved in Lemma 5.3. The last relation follows from
Lemmas 5.4 and 5.5.

Let us remark that

εn−1((θ
An−1
1 )2, . . . , (θAn−1

n )2)

=

(
n∑

i=1

(−1)i+1θ
An−1
1 · · · θ̂An−1

i · · ·θAn−1
n

)2

.
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Proposition 5.1. The elements E(ij) :=
e(ij) + e

(ij)
∈ Λquad(Dn) generate a subalgebra iso-

morphic to Λquad(An−1), where we have the natural
identification θ

An−1
j = θDn

j , 1 ≤ j ≤ n.
Proof. We can check the identities E2

(ij) = 0,

E(ij)E(kl) + E(kl)E(ij) = 0, for {i, j} ∩ {k, l} = ∅,
E(ij)E(jk) + E(jk)E(ki) + E(ki)E(ij) = 0.
Hence, we can define an algebra homomorphism
ι : Λquad(An−1) → Λquad(Dn) by mapping e(ij)

to E(ij). We also have an algebra homomorphism
π : Λquad(Dn) → Λquad(An−1) obtained by putting
e
(ij)

= 0. Since π◦ι = id, the elements E(ij) generate
a subalgebra isomorphic to Λquad(An−1).

Corollary 5.2.

εk((θDn
1 )2, . . . , (θDn

n )2) = 0, 1 ≤ k ≤ n.

Moreover, θDn

1 · · · θDn
n = 0,

n∑
i=1

(−1)i+1θDn

1 · · · θ̂Dn

i · · ·θDn
n = 0.

Conjecture 5.1. (1) Let X denote either
An−1 or Dn. Relations

εk((θX
1 )2, . . . , (θX

n )2) = 0, 1 ≤ k ≤ n.

θX
1 · · · θX

n = 0,
n∑

i=1

(−1)i+1θX
1 · · · θ̂X

i · · ·θX
n = 0

together with the anticommutativity relations θX
i θX

j +
θX
j θX

i = 0, form the complete list of relations among
θX
1 , . . . , θX

n in the quadratic algebra Λquad(X).
(2) For X = Bn, the relations

εk((θX
1 )2, . . . , (θX

n )2) = 0, 1 ≤ k ≤ n

and the anticommutativity relations form the com-
plete list of relations among θBn

1 , . . . , θBn
n in the al-

gebra Λquar (Bn).

We can check that the above relations are valid
in the algebra Λquar(Bn) for n ≤ 3.

Remark 5.1. Let us consider the flag variety
F ln of type An−1 and the tautological flag on it:

0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = O⊕n
Fln

.

The cohomology ring H∗(F ln, K) is isomorphic to
the algebra K[x1, . . . , xn]/(ε1(x), . . . , εn(x)), where
xi = c1(Fi/Fi−1). The algebra generated by the
flat connections θ

An−1
i can be considered as a super-

analogue of the cohomology ring of the flag variety,
and our result shows that both algebras have some
common relations in even degrees.
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