Conformally flat metrics and S^1 -fibration

By Mitsuhiro Itoh,* Naoko Nakada** and Takafumi Satou*** (Communicated by Heisuke Hironaka, M. J. A., March 14, 2005)

Abstract: Characterization of conformally flat bundle metric on S^1 -principal bundle is studied. It is shown further that there are infinitely many compact conformally flat S^1 -principal bundles which are new examples, besides the Hopf fibration.

Key words: Conformally flat bundle metric; S^1 -bundle; Yang-Mills connection.

1. We will consider conformal flatness of smooth manifolds which carry an S^1 -fibration. To formulate the problem we let $\pi: P \longrightarrow M$ be an S^1 -principal bundle with a connection γ over a Riemannian n-manifold $(M,h), n \geq 3$. Then γ provides a metric g on P, called bundle metric, as $g = \pi^*h + \gamma \otimes \gamma$, yielding the splitting of tangent space T_uP as the vertical and the horizontal subspaces; $T_uP = V_u \oplus H_u, u \in P$ such that $V_u \perp H_u$ and $g|_{H_u} = \pi^*h|_{T_xM}$ at $x = \pi(u)$.

Classically well known examples of conformally flat manifold carrying S^1 -fibration are the Hopf fibration $S^{2n+1} \longrightarrow \mathbf{C}P^n$ and its \mathbf{Z}_k -quotient $S^{2n+1}/\mathbf{Z}_k \longrightarrow \mathbf{C}P^n$ and their Riemannian product either with the flat line \mathbf{R} or a real hyperbolic space with curvature of opposite sign (see [3]).

The aim of this note is to report that we establish characterizing theorems which are almost complete and that we present, from these theorems, countably many conformally flat S^1 -principal bundles over $\mathbb{C}P^1 \times \cdots \times \mathbb{C}P^1$, as new examples. The complete characterization under our program and the details of our theorems presented in this note will be published elsewhere ([1]).

We assume that the curvature form Γ of γ is harmonic, that is, γ is Yang-Mills and that (M,h) is simply connected, connected and complete.

The following is a key theorem for investigating the conformal flatness of bundle metric.

Theorem A ([1, 2, 4]). Let $\pi : P \longrightarrow M$ be an S^1 -principal bundle with a non-flat Yang-Mills con-

nection γ over an oriented Riemannian n-manifold (M,h). Then $g=\pi^*h+\gamma\otimes\gamma$ on P is conformally flat if and only if the following hold over M

$$\begin{split} W &= -\frac{1}{(n-2)(n-1)} T \bigotimes h \\ &- \frac{1}{2(n-1)} H \bigotimes h \\ &+ \frac{1}{4} \Gamma \bigotimes \Gamma - \frac{3C}{8n(n-1)} h \bigotimes h, \\ H &= \frac{4}{n+1} T \quad and \\ \nabla \Gamma &= 0. \end{split}$$

Here W denotes the Weyl curvature tensor, T the trace free Ricci tensor of (M,h), respectively and H is the trace free symmetric tensor, defined $H_{ij} = B_{ij} - \frac{C}{n}h_{ij}$ and $B_{ij} = \sum_s \Gamma_{si}\Gamma_{sj}$ and $C = \sum_s B_{ss} = \frac{1}{2}|\Gamma|^2$.

Therefore, if a bundle metric is conformally flat, (M,h) must be locally symmetric, since Γ and hence T is parallel so that W is parallel. Define the distribution $\mathcal{D} = \{X \in TM \mid i_X\Gamma = 0\}$ and its orthogonal complement \mathcal{D}^{\perp} on M.

Lemma ([1, 2]). Assume that Γ is parallel. Then, \mathcal{D} and \mathcal{D}^{\perp} are of constant rank, and integrable and invariant under the holonomy action.

The following four possibilities for \mathcal{D} and \mathcal{D}^{\perp} may occur:

Case 1. $\mathcal{D} = \{0\}$, and \mathcal{D}^{\perp} is holonomy-irreducible, in other words, the homogeneous holonomy group Ψ acts on \mathcal{D}^{\perp} irreducibly.

Case 2. $\mathcal{D} \neq \{0\}$ and \mathcal{D}^{\perp} is holonomy-irreducible.

Case 3. $\mathcal{D} = \{0\}$ and \mathcal{D}^{\perp} is not holonomy-irreducible, and

Case 4. $\mathcal{D} \neq \{0\}$ and \mathcal{D}^{\perp} is not holonomy-irreducible.

 $^{2000~\}mathrm{Mathematics}$ Subject Classification. $53\mathrm{A}30$

 $^{^{*)}}$ Institute of Mathematics, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki 305-8571.

 $^{^{**)}}$ Takenodai High School, 5-14-1 Higashi-nippori, Arakawa, Tokyo 116-0014.

^{***)} Akita National College of Technology, 1-1, Iijima-bunkyocho, Akita 011-0923.

Remark that \mathcal{D}^{\perp} is non-trivial, if γ is not flat, and that $\mathcal{D} = \{0\}$ if and only if Γ is non-degenerate as a 2-form on M.

2. Cases 1 and 2 can be completely investigated as the following two theorems.

Theorem B ([1]). $\pi: P \longrightarrow M$ be an S^1 -principal bundle over M with a non-flat Yang-Mills connection γ . Assume Case 1, namely, that (M,h) is irreducible in the sense of de Rham and Γ is a non-degenerate 2-form on M.

If $g = \pi^*h + \gamma \otimes \gamma$ is conformally flat, then (M,h) and (P,g) are isometric to $(\mathbb{C}P^m,h_{FS})$ and $(S^{2m+1}/\mathbf{Z}_k,g_S)$, respectively.

Furthermore, $P \longrightarrow M$ is isomorphic to $S^{2m+1}/\mathbf{Z}_k \longrightarrow \mathbf{C}P^m$.

Here $k \in \mathbf{Z}$ is the first Chern number of the associated complex line bundle \mathcal{L}_P evaluated by the positive generator of $H_2(\mathbf{C}P^m, \mathbf{Z})$ and $h_{FS} = h_{FS}\left(\frac{4}{k^2}\right)$ is the Fubini-Study metric on $\mathbf{C}P^m$ of constant holomorphic curvature $\frac{4}{k^2}$ and $g_S = g_S\left(\frac{1}{k^2}\right)$ is the standard metric of constant sectional curvature $\frac{1}{k^2}$.

Moreover $\mathbf{Z}_k \cong \left\{e^{\frac{2\pi a}{k}i} \mid a = 1, \dots, |k|\right\}$ acts canonically on $S^{2m+1} \subset \mathbf{C}^{m+1}$ and S^{2m+1}/\mathbf{Z}_k is the \mathbf{Z}_k -quotient of S^{2m+1} .

Theorem C ([1]). In Case 2, the bundle (P, g) is isometric either to

$$(\mathbf{R}, dt^2) \times \left(S^{2m+1}/\mathbf{Z}_k, g_S\left(\frac{1}{k^2}\right)\right),$$

or

$$(H^{\ell}, h_{HYP}) \times \left(S^{2m+1}/\mathbf{Z}_k, g_S\left(\frac{1}{k^2}\right)\right),$$

and the base manifold (M,h) is isometric either to

$$(\mathbf{R}, dt^2) \times \left(\mathbf{C}P^m, h_{FS}\left(\frac{4}{k^2}\right)\right),$$

or

$$\left(H^{\ell}, h_{HYP}\left(-\frac{1}{k^2}\right)\right) \times \left(\mathbf{C}P^m, h_{FS}\left(\frac{4}{k^2}\right)\right),$$

respectively.

Moreover, $P \longrightarrow M$ is isomorphic either to

$$\mathbf{R} \times S^{2m+1}/\mathbf{Z}_k \longrightarrow \mathbf{R} \times \mathbf{C}P^m,$$

 $(t,(z)_k) \longmapsto (t,[z]),$

or

$$H^{\ell} \times S^{2m+1}/\mathbf{Z}_k \longrightarrow H^{\ell} \times \mathbf{C}P^m,$$

 $(q,(z)_k) \longmapsto (q,[z]),$

respectively, where the projections are canonical ones.

These theorems indicate that conformally flat S^1 -principal bundle metrics of **cases 1 and 2** are only the classically known examples.

The possibility of **case 4** is excluded by a straightforward calculation. See [1] for the detail.

3. To investigate **case 3** we discuss the following six types that cover all possibilities of M which occur in case 3:

Type 1.
$$M = \mathbf{C}P^{m_1} \times \cdots \times \mathbf{C}P^{m_k}$$
, $n = 2(m_1 + \cdots + m_k)$,

Type 2.
$$M = \mathbf{C}H^1 \times \cdots \times \mathbf{C}H^1$$
 (ℓ -times), $n = 2\ell$.

Type 3.
$$M = \mathbf{C}^1 \times \underbrace{\mathbf{C}H^1 \times \cdots \times \mathbf{C}H^1}_{\ell \text{ times}},$$

 $n = 2(\ell + 1), \quad \ell \geq 1,$

Type 4.
$$M = \mathbf{C}^1 \times \underbrace{\mathbf{C}H^1 \times \cdots \times \mathbf{C}H^1}_{\ell \text{ times}} \times \mathbf{C}P^{m_1} \times \cdots \times \mathbf{C}P^{m_k}$$

$$\times \mathbf{C}P^{m_1} \times \cdots \times \mathbf{C}P^{m_k},$$

$$n = 2(\ell+1) + 2(m_1 + \cdots + m_k), \ \ell \ge 1,$$

Type 5.
$$M = \mathbf{C}^1 \times \mathbf{C}P^{m_1} \times \cdots \times \mathbf{C}P^{m_k},$$

 $n = 2 + 2(m_1 + \cdots + m_k),$

Type 6.
$$M = \underbrace{\mathbf{C}H^1 \times \cdots \times \mathbf{C}H^1}_{\ell \text{ times}} \times \mathbf{C}P^{m_1} \times \cdots \times \mathbf{C}P^{m_k},$$

$$n = 2\ell + 2(m_1 + \cdots + m_k).$$

We have then for the first type

Theorem D ([1]). Let $P \longrightarrow M$ be an S^1 -principal bundle over M and $M = \mathbb{C}P^{m_1} \times \cdots \times \mathbb{C}P^{m_k}$ be the de Rham decomposition of M. If a bundle metric on P associated to a non-flat Yang-Mills connection is conformally flat, then M is written as

$$M = \underbrace{\mathbf{C}P^m \times \cdots \times \mathbf{C}P^m}_{\ell \ times} \times \underbrace{\mathbf{C}P^1 \times \cdots \times \mathbf{C}P^1}_{\ell' \ times}$$

where m is a positive integer. Furthermore

- (1) For $\ell \geq 2$, $m \geq 2$ and $\ell' = 0$, a product manifold $M = \mathbb{C}P^m \times \cdots \times \mathbb{C}P^m$ (ℓ -times) is eliminated from possibility of M of Type 1.
- (2) A Riemannian product manifold $M = M_1 \times M_2$, where $M_1 = \mathbb{C}P^m \times \cdots \times \mathbb{C}P^m$ (ℓ -times), $\ell \geq 1$, $m \geq 2$ and $M_2 = \mathbb{C}P^1 \times \cdots \times \mathbb{C}P^1$ (ℓ -times), $\ell' \geq 1$ is eliminated from possibility of M of Type 1.
- (3) A product manifold $M = \mathbf{C}P^1 \times \cdots \times \mathbf{C}P^1$ (ℓ' times), $\ell' \geq 2$, $n = 2\ell'$ is not eliminated from pos-

sibility of a base manifold of Type 1, that is, there is an S^1 -principal bundle over M whose bundle metric is conformally flat.

Theorem E ([1]). Types 2, 3, 4 and 5 can be eliminated from the base manifold possibility.

Type 6 remains to be solved. On the other hand, from (3) of Theorem D, there are countably many new examples of conformally flat S^1 -principal bundle P over $M = \mathbb{C}P^1 \times \cdots \times \mathbb{C}P^1$. These examples are then also equipped with Sasakian structure from theorem of Boothby-Wang-Hatakeyama, since Γ is non-degenerate. The bundle P here is a unitary frame bundle associated with the tensor product $\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_{\ell'}$, where each \mathcal{L}_i , $i = 1, \ldots, \ell'$, is the pull back of certain Hermitian line bundle \mathcal{L} over $\mathbb{C}P^1$ by the projection to the i-factor. See [1] for their precise construction. Also (3) of Theorem D improves Theorem 1.1 in [5] as follows:

Theorem F ([1]). Let $\pi: P \longrightarrow M$ be an S^1 -principal bundle over a connected oriented Riemannian 4-manifold (M,h) and γ a non-flat self-dual connection on P. If the bundle metric is conformally flat, then either

(1) $(M, \frac{1}{24}\sigma \ h)$ is locally isometric and biholomorphic to a domain D of $\mathbb{C}P^2$ with the Fubini-

Study metric and (P,g) is of positive constant curvature $\frac{1}{24}\sigma$, and $P \longrightarrow M$ is a portion of the Hopf fibration, or

(2) (M,h) is locally isometric and biholomorphic to a domain of $\mathbb{C}P^1 \times \mathbb{C}P^1$ with the standard product metric on $\mathbb{C}P^1$ and P is the unitary frame bundle associated with the complex Hermitian line bundle $\mathcal{L}_1 \otimes \mathcal{L}_2$ over M.

References

- [1] M. Itoh, N. Nakada and T. Satou, S^1 -Fibration and the conformal flatness, (2004). (In preparation).
- [2] M. Itoh, T. Satou, Circle bundle metric and the conformal flatness, (1998). (Preprint).
- [3] J. Lafontaine, Conformal geometry from the Riemannian viewpoint, in *Conformal geometry* (Bonn, 1985/1986), 65–92, Aspects Math. E12, Vieweg, Braunschweig, 1998.
- [4] T. Satou, Conformal flatness and self-duality of circle bundle metrics, Doctor thesis, Univ. of Tsukuba, (1998).
- [5] T. Satou, Conformal flatness of circle bundle metric, Tsukuba J. Math. 22 (1998), no. 2, 349–355.