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1. Introduction

After the problem “To what extent does the type of the Gauss map of a submanifold
of Em

r determine the submanifold?” was introduced by Chen and Piccinni in [10],
submanifolds with pointwise 1-type Gauss map have been worked in many articles,
[8–10]. We present a survey of recent results on this topic in Section 3.
Consider an oriented (semi-)Riemannian submanifold M of a (semi-)Euclidean
space and its Gauss map G. By the definition, M is said to have pointwise 1-type
Gauss map if the Laplacian of its Gauss map take the form

∆G = f(G+ C) (1)

for a smooth function f and constant vector C. More precisely, a pointwise 1-type
Gauss map is called of the first kind if (1) is satisfied for C = 0, and of the second
kind if C ̸= 0. Moreover, if (1) is satisfied for a non-constant function f , then
M is said to have proper pointwise 1-type Gauss map. Otherwise, G is said to be
(global) 1-type, [8, 13].
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2. Preliminaries

In this section, we would like to give a brief summary of basic results on Lorentzian
surfaces.
Let Em

t denote the semi-Euclidean m-space with the canonical semi-Euclidean
metric tensor of index t given by

g = −
t∑

i=1

dx2i +

m∑
j=t+1

dx2j

where x1, x2, . . . , xm are rectangular coordinates of the points of Em
t .

Let Sn1 (r2) and Hn(−r2) denote the de Sitter space-time and the hyperbolic space
of dimension n > 2 defined by

Sn1 (r2) = {x ∈ En+1
1 ; ⟨x, x⟩ = r−2}

Hn(−r2) = {x ∈ En+1
1 ; ⟨x, x⟩ = −r−2}.

We also put S1
1(r) andH1(−r) for the curves in E2

1 given by s 7→ (r sinh s, r cosh s)
and (r cosh s, r sinh s), respectively.
We would like to note that all further notations, basic definitions and basic facts
that we will use in this paper are described by the author in [35, Section 2] and
[37, Section 2]. We also would like to refer to [10, 13, 19] for detailed information
of definition and geometrical interpretation of the Gauss map of the submanifolds.

3. Recent Results on Submanifolds with Finite Type Gauss Map

In this section, we would like to present a survey of classification results recently
obtained.

3.1. Rotational Surfaces in E4
r

Over the last few years, rotational surfaces in (semi-)Euclidean spaces of dimen-
sion four are studied in some papers in terms of type of their Gauss map. We may
note that the study of rotational surfaces in four-dimensional (semi-)Riemannian
space forms was initiated in [39] by Yoon. In fact, two different types of rotational
surfaces are considered in the Euclidean space E4, Minkowski space E4

1 and semi-
Euclidean space E4

2. One of them is called simple rotational surface while the other
is general rotational surface. Note that some authors used the term ‘Moore-type’
rotational surface for the general rotational surfaces after [31].
General (respectively simple) rotational surface is defined as follows. Let P be a
plane (respectively hyperplane) in E4

r and P⊥ the plane absolutely perpendicular
to P . Consider a curve α which is called the profile curve of rotational surface and
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a one parameter group GP of orthonormal transformation which leave P and P⊥

invariant as sets (respectively which leave P invariant pointwise). The orbit M of
α under the action of GP is called a general (respectively simple) rotation surface
generated by GP and α (see [7, 20]). Note that the curve α is called the profile
curve of the rotational surface M .
In [20], Dursun and the author studied general rotational surfaces in the Euclidean
space E4. Let M be a rotational surface in the Euclidean space E4 defined by

F (s, t) = (x(s) cos at, x(s) sin at, z(s) cos bt, z(s) sin bt) (2)

where a, b are some constants, called rates of rotation of M , and x, z are some
smooth functions. The following classification results were obtained in that paper.

Theorem 1 ([20]). Let M be a non-minimal general rotation surface given by (2).
Then, M has pointwise 1-type Gauss map of the first kind if and only if it is an
open part of the surface

F (s, t) =
(
r0 cos

s

r0
cos at, r0 cos

s

r0
sin at, r0 sin

s

r0
cos bt, r0 sin

s

r0
sin bt

)
.

Theorem 2 ([20]). LetM be a non-planar general rotational surface in E4 defined
by (2) for the rates of rotation a and b. Then,

1. If a2 = b2 and M is minimal, then it has proper pointwise 1-type Gauss
map of the second kind.

2. if a2 ̸= b2, then M is minimal and its Gauss map is of pointwise 1-type of
the second kind if and only if the meridian curve of M is given by

z = cx∓b/a, x > 0 (3)

for some real number c ̸= 0.

Most recently, Dursun has moved this study to the Minkowski four-space by con-
sidering rotational surfaces to general rotational surfaces who position vector is
given by

F (s, t) =
(
x(s) sinh bt, x(s) cosh bt, z(s) cos at, z(s) sin at

)
(4)

where a, b are some constants in [16]. Note that the profile curve α of the rota-
tional surface given by (4) is s 7→ (x(s), y(s)). In [16] following theorems were
obtained.

Theorem 3 ([16]). There exists no non-planar maximal space-like rotational sur-
face in E4

1 defined by (4) with pointwise 1-type Gauss map of the first kind.

Theorem 4 ([16]). A non-maximal space-like rotational surface in E4
1 defined by

(4) has pointwise 1-type Gauss map of the first kind if and only if its profile curve
α is a circle.
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Theorem 5 ([16]). A space-like rotational surfaceM inE4
1 defined by (4) with flat

normal bundle has pointwise 1-type Gauss map of the second kind if and only if M
is an open part of a space-like plane in E4

1 .

Further, in [2], Aksoyak and Yayli studied general rotational surfaces in E4
2 given

by
φ(s, t) =

(
y(s) sinh t, x(s) cosh t, x(s) sinh t, y(s) cosh t

)
(5)

and
φ(s, t) =

(
x(s) cos t, x(s) sin t, y(s) cos t, y(s) sin t

)
. (6)

In both cases, they proved that a flat general rotational surfaces has pointwise
1-type Gauss map if and only if either M is totally geodesic or its generator curve
is given by x(s) = c1e

−b0s+d + c2e
b0s−d and y(s) = c1e

−b0s+d − c2e
b0s−d for

some constants b0, c1, c2, d.
On the other hand, in [1] flat simple rotational surfaces in the Minkowski four-
space E4

1 were considered by Aksoyak and Yayli in terms of being pointwise 1-
type. A family of simple rotational surfaces in E4

1 is defined by

φ(s, t) =
(
(x(s) cosh t, x(s) sinh t, y(s), z(s)

)
(7)

where x, y, z are some smooth functions. Authors obtained that such a flat simple
rotational surface has pointwise 1-type Gauss map if and only if its profile curve
s 7→ (x(s), y(s), z(s)) is either a circle lying on a space-like plane or a specially
chosen helix (see [1, Theorem 1]).
Most recently, Dursun and Bektaş considered Riemannian simple rotational sur-
faces in the Minkowski space E4

1 in [18]. Note that such a rotational surface is
called elliptic, hyperbolic or parabolic type subject to being invariant under a group
of space-like, hyperbolic or screw rotations, respectively. More precisely, an ellip-
tic Riemannian rotational surface is given by

F1(s, t) =
(
w(s), z(s), x(s) cos t, x(s) sin t

)
(8)

while hyperbolic and parabolic rotational surfaces are

F2(s, t) = (w(s) sinh t, w(s) cosh t, x(s), y(s)) (9)

and
F3(s, t) = x(s)η1 +

√
2tw(s)η2 + (z(s) + t2w(s))ξ3 + w(s)ξ4 (10)

respectively, where x, y, w, z are smooth functions and {η1, η2, ξ3, ξ4} is a pseudo-
orthonormal basis of E4

1 such that ξ3 = 1√
2
(1, 1, 0, 0) and ξ3 = 1√

2
(1,−1, 0, 0).

Amongs complete classification of flat elliptic and hyperbolic type rotational sur-
faces with pointwise 1-type Gauss map similar to obtained in [1], they have ob-
tained
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Theorem 6 ([18]). There exists no flat space-like rotational surface of the para-
bolic type defined by (10) in the Minkowski space E4

1 with pointwise 1-type Gauss
map of the second kind.

Remark 7. We would like to announce that most recently, Bektaş, Canfes and
Dursun have obtained complete classification of Moore-like rotational surfaces in
the Minkowski space E4

1 with pointwise 1-type Gauss map of the first and second
kind. They have also obtained the classifications of rotational surfaces in E4

2 with
zero mean curvature and pointwise 1-type Gauss map of second kind.

3.2. Surfaces in Euclidean Four-Space

A general theory of surfaces with poinwtise 1-type Gauss map is obtained in [17]
where Dursun and Arsan give the following results

Theorem 8 ([17]). An oriented minimal surface M in the Euclidean space E4

has pointwise 1-type Gauss map of the first kind if and only if M has flat normal
bundle.

Theorem 9 ([17]). An oriented non-minimal surfaceM in the Euclidean space E4

has pointwise 1-type Gauss map of the first kind if and only ifM has parallel mean
curvature vector in E4.

Theorem 10 ([17]). A non-planar minimal oriented surface M in the Euclidean
space E4 has pointwise 1-type Gauss map of the second kind if and only if, with
respect to some suitable local orthonormal frame {e1, e2, e3, e4} on M , the shape
operators of M are given by

A3 =

(
ρ 0
0 −ρ

)
and A4 =

(
0 ερ
ερ 0

)
(11)

where ε = ±1 and ρ is a smooth non-zero function on M .

On the other hand, in [4], meridian surfaces, one of further generalizations of ro-
tational surfaces, are studied in terms of type of their Gauss map by Arslan, Bulca
and Milousheva in [4].
Let {e1, e2, e3, e4} be the standard orthonormal base for R, S2 denote a unit sphere
lying on span{e1, e2, e3} Consider a unit speed curve c lying on S2 with the
parametrization r = r(v). Then, the position vector of a meridian surface in the
Euclidean four-space E4 takes the form

z(u, v) = f(u)r(v) + g(u)e4 (12)

where f, g are some smooth functions and where the curve α : u 7→ (f(u), g(u))
is called the meridian curve of M . The following classification theorem appeared
in [4].
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Theorem 11 ([4]). Let M be a meridian surface given with parametrization (12)
and g = 0. Then M has pointwise 1-type Gauss map of the second kind if and only
if one of the following holds

i) the curve c is a circle on S2(1) and the meridian curve α is determined by
f(u) = au + a1, g(u) = bu + b1, where a, a1, b, b1 are constants. In this
case, M is a developable ruled surface lying in a three-dimensional space.

ii) the curve c is a great circle on S2(1) and the meridian curve α is determined
by the solutions of a third order differential equation (see [4, p.921]).

Most recently, Arslan and Milousheva have moved this study to Minkowski four-
space in [5] by obtaining meridian surfaces of elliptic or hyperbolic type in E4

1 (see
also [24]).

3.3. Submanifolds with Constant Mean Curvature

The Laplacian of Gauss map G of an oriented hypersurface M in En+1
1 takes the

form
∆G = ε∥S∥2G+ n∇α (13)

where S is the shape operator (or the Weingarten map) and α is the mean curvature
ofM . In [15], Dursun studied hypersurfaces in Minkowski space En+1

1 of arbitrary
dimension and obtained the following results

Theorem 12 ([15]). Let M be an oriented hypersurface in the Minkowski space
En+1. Then M has proper pointwise 1-type Gauss map of the first kind if and only
if M has constant mean curvature and ∥S∥2 is non-constant.

Theorem 13 ([15]). If an oriented hypersurface M in the Minkowski space En+1

has proper pointwise 1-type Gauss map of the second kind, then the mean curva-
ture α of M is non-constant.

When the co-dimension is more than one, the study of Gauss map of constant mean
curvature surfaces in the Minkowski spaces was initiated in [19], where the author
and Dursun obtained

Theorem 14 ([19]). LetM be an oriented minimal surface in the Minkowski space
E4
1. Then M has pointwise 1-type Gauss map of the second kind if and only if it is

an open portion of a space-like plane.

Theorem 15 ([19]). Let M be an oriented space-like surface in the Minkowski
space E4

1 with flat normal bundle and non-zero constant mean curvature. Then, M
has pointwise 1-type Gauss map of the second kind if and only if it is congruent to
one of the helicial cylinders given by

x1(s, t) = (a1s, b1 cos s, b1 sin s, t) (14)
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x2(s, t) = (b2 cosh s, b2 sinh s, a2s, t) (15)

and

x3(s, t) = (b3 sinh s, b3 cosh s, a3s, t) (16)

for some constants a1, b1, . . . , b3 with b21 − a21 > 0 and a23 − b23 > 0.

Most recently, the author considered the time-like surfaces and obtain the following
classification theorem in [37].

Theorem 16 ([37]). LetM be a non-minimal Lorentzian surface in E4
1 with normal

flat bundle and constant mean curvature. Then, M has pointwise 1-type Gauss
map of the second kind if and only if it is congruent to one of the following surfaces

i) A surface given by x(s, t) =
(
s,
a

λ
cosλt,

a

λ
sinλt,

√
1− a2t

)
, 0 < a < 1

ii) A surface given by x(s, t) =
(
a2

3
t3 + t,

√
2at,

a2

3
t3, s

)
iii) A surface given by x(s, t) =

(√
a2 − 1

λ
coshλt,

√
a2 − 1

λ
sinhλt, at, s

)
,

a > 1

iv) A surface given by x(s, t) =

(√
a2 + 1

λ
sinhλt,

√
a2 + 1

λ
coshλt, at, s

)
v) A surface given by x(s, t) =

(√
1 + a2t,

a

λ
cosλt,

a

λ
sinλt, s

)
for a non-zero constant λ.

In the same paper, Lorentzian minimal surfaces in the Minkowski space E4
1 are

classified in term of their Gauss map. Note that the Gauss map of a Lorentzian
surface M in the semi-Euclidean space E4

r , r = 1, 2 satisfies

∆G = 2KG+ 2h(f1, f1) ∧ h(f2, f2) (17)

where f1, f2 forms a pseudo-orthonormal frame field for the tangent space of M .
By using this equation the author obtained following theorems.

Theorem 17 ([37]). Let M be a Lorentzian minimal surface in E4
1. Also suppose

that no open part of M is contained in a hyperplane of E4
1. Then, the following

conditions are equivalent:

i) M has pointwise 1-type Gauss map.
ii) M has pointwise 1-type Gauss map of the first kind.

iii) M is congruent to the surface given by

x(s, t) = sη0 + β(t), ⟨η0, β(t)⟩ ̸= 0 (18)
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for a constant light-like vector η0 ∈ E4
1 and a null curve β in E4

1 satisfying
⟨η0, β(t)⟩ ̸= 0.

On the other hand, classification of Lorentzian minimal surfaces the semi-Euclidean
space E4

2 is somehow different. In this direction, the following theorems have been
obtained by the author and Canfes [21].

Proposition 18 ([21]). There exist four families of minimal Lorentzian surfaces in
the semi-Euclidean space E4

2 with pointwise 1-type Gauss map of the first kind.

i) A minimal Lorentzian surface lying in a hyperplane of E4
2.

ii) A surface with degenerated relative null space given by (18).
iii) A surface lying on a degenerated hyperplane given by

x(s, t) =
(
ϕ1(s) + ϕ2(t),

√
2

2
(s+ t),

√
2

2
(s− t), ϕ1(s) + ϕ2(t)

)
(19)

where ϕi : Ii → R are some smooth, non-vanishing functions and Ii are
some open intervals for i = 1, 2.

Conversely, every minimal Lorentzian surface with pointwise 1-type Gauss map of
the first kind in the semi-Euclidean space E4

2 is congruent to an open portion of a
surface obtained from these type of surfaces.

Theorem 19 ([21]). Let M be a minimal Lorentzian surface properly contained
by the semi-Euclidean space E4

2 with non-harmonic Gauss map. Then M has
pointwise 1-type Gauss map of the second kind if and only if it is locally congruent
to the surface given by

x(s, t) =
(
ϕ1(s) + ϕ2(t), s+ t, s+ cos c t+ sin c ϕ2(t),

ϕ1(s)− sin c t+ cos c ϕ2(t)
)

(20)

for some smooth non-linear functions ϕ1, ϕ2 and a constant c ∈ (0, 2π), where
ε = ±1. In this case, (1) is satisfied for f = 4K.

3.4. Marginally Trapped Surfaces

Among the constant mean curvature surfaces in Minkowski spaces, marginally
trapped surfaces have cought special interest of geometers in terms of type their
Gauss map. Note that a space-like surfaceM in E4

1 is said to be marginally trapped
(or quasi-minimal) if its mean curvature vector H is light-like on M . In this case,
if M is free of flat points, then the Laplacian of Gauss map of M becomes

∆G = −2Kx ∧ y − 2β2x ∧ n1 + 2β2y ∧ n1 − 4νµn1 ∧ n2
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where {x, y, n1, n2} is the geometric frame field and β1, β2, ν, µ are the corre-
sponding invariants ofM (see [23]). In [30], Milousheva studied marginally trapped
surfaces free of flat points with pointwise 1-type Gauss map and obtained

Theorem 20 ([30]). Let M be a marginally trapped surface free of flat points.
Then M is of pointwise 1-type Gauss map if and only if M has parallel mean
curvature vector field.

However, if the hypothesis of being free of flat points is removed, then one can
obtain marginally trapped surfaces with pointwise 1-type Gauss map and non-
parallel mean curvature vector field. Let Ω be an open, bounded subset of R2,
ψ, ϕ : Ω → R some smooth functions satisfying

∆ψ = F (ψ), ϕ(u, v) = ψ(u, v) + c1u+ c2v (21)

for some constants c1, c2 and a differentiable non-constant function F : ψ(Ω) →
R such that the function f : Ω → R defined by

f(u, v) = F ′(ψ(u, v)) (22)

is smooth. Consider the partly marginally trapped surface M in the Minkowski
space-time E4

1 given by

x(u, v) =
(
ϕ(u, v), u, v, ϕ(u, v)

)
.

Then, the Gauss map of M is pointwise 1-type of the second kind.
In [35], the author obtained

Theorem 21 ([35]). Let M be a marginally trapped surface in the Minkowski
space-time E4

1. Then, M has pointwise 1-type Gauss map of the second kind if and
only if it is congruent to the surface described above.

Further in [36], the author moved this study to the de Sitter space S41(1) and obtain
following theorems

Theorem 22 ([36]). Let M be a quasi-minimal surface lying in S41(1). Then M
has 1-type Gauss map if and only if it is congruent to a surface congruent to one
of the following six type of surfaces

i) A surface given by

x(u, v) = (1, sinu, cosu cos v, cosu sin v, 1). (23)

ii) A surface given by

x(u, v) =
1

2
(2u2 − 1, 2u2 − 2, 2u, sin 2v, cos 2v). (24)
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iii) A surface given by

x(u, v) =

(
b

cd
,
cos cu

c
,
sin cu

c
,
cos dv

d
,
sin dv

d

)
(25)

where c =
√
2− b and d =

√
2 + b with |b| < 2.

iv) A surface given by

x(u, v) =

(
cosh cu

c
,
sinh cu

c
,
cos dv

d
,
sin dv

d
,
b

cd

)
(26)

where c =
√
b− 2 and d =

√
b+ 2 with |b| > 2.

v) A surface of curvature one with constant light-like mean curvature vector,
lying in Ka = {(t, x2, x3, x4, t+ a)|t, x2, x3, x4 ∈ R}.

vi) A surface of curvature one lying in LC1 = {(y, 1)|⟨y, y⟩ = 0, y ∈ E4
1}.

Remark 23. The classification of quasi-minimal surfaces in S41(1) with parallel
mean curvature which is obtained by Chen and van der Veken is used in the proof
of Theorem 22 (see [11]).

Theorem 24 ([36]). Let M be a quasi-minimal surface lying in S41(1). Then M
has proper pointwise 1-type Gauss map if and only if it is congruent to a surface
congruent to one of the following two type of surfaces

i) A surface lying in S41(1) ∩ S4(c0, r2), where c0 ̸= 0 and r > 0.
ii) A surface lying in S41(1) ∩H4(c0,−r2), where c0 ̸= 0 and r > 0.

Remark 25. We also would like to announce that the complete classification of
marginally trapped surfaces in the pseudo-Euclidean space E4

2 with neutral metric
has been obtained by the author and Milousheva.

3.5. Some Generalizations of the Notion of Pointwise 1-type Gauss Map

In [27] and [28], Kim and the author presented a generalization of the notion of
pointwise 1-type Gauss map in the following sense. Let L0, L1, L2, . . . ,Lk denote
the linearized operators of the first variation of the (k+1)th mean curvature arising
from normal variations of an hypersurface M of the Euclidean space En+1 (see
reference [3]). Note that we have L0 = −∆ and Then M has said to have Lk

pointwise 1-type Gauss map if its Gauss map G satisfies

LkG = f(G+ C).

In particular, the operator L1 = � is called the Cheng-Yau operator, [12]. If M is
a surface in E3, then its Gauss map G satisfies

�G = −∇K − 2HKG. (27)

We would like to present some of results obtained in [27].
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Theorem 26 ([27]). An oriented surface M in E3 has �-pointwise 1-type Gauss
map of the first kind if and only if it has constant Gaussian curvature.

Theorem 27 ([27]). An oriented minimal surfaceM in E3 has �-pointwise 1-type
Gauss map if and only if it is an open part of a plane.

Theorem 28 ([27]). Let M be a surface in E3 with a constant principal curvature.
Then, M has �-pointwise 1-type Gauss map of the first kind if and only if it is
either a flat surface or an open part of a sphere.

On the other hand, if the ambient space is Minkowski 3-space, then the similar
results have been very recently obtained by Kim and Turgay when the shape op-
erator of the surface is diagonalizable. On the other hand, if the shape operator is
non-diagonalizable then the following results obtained.

Theorem 29 ([29]). Let M be a surface in E3
1 with non-diagonalizable shape

operator whose characteristic polynomial is of the form of Q(λ) = (λ− k)2 for a
function k. Then, the followings are equivalent

i) M has �-pointwise 1-type Gauss map.
ii) M has constant Gaussian curvature, i.e., k is constant.

iii) M is a B-scroll.

Theorem 30 ([29]). Let M be a surface in E3
1 with constant mean curvature and

non-diagonalizable shape operator whose characteristic polynomial has complex
roots. Then, M has �-pointwise 1-type Gauss map if and only if it has proper
�-pointwise 1-type Gauss map of the second kind.

Recently, in [33], Qian and Kim obtain complete classifications of canal surfaces
with L1-pointwise 1-type Gauss map. Up to isometries, the position vector of a
canal surface in E3 is given by

x(s, θ) = c(s) + r(s)sinψ(s) cos θN + sinψ(s) sin θB + cosψ(s)T (28)

whereα(s) is a arc-length parametrized curve in E3 with the Frenet frame {T, S,B}
and r is a smooth function with −r′(s) = cosψ(s). In [33] the authors proved the
following theorem.

Theorem 31 ([33]). An oriented canal surface given by (28) has L1-pointwise
1-type Gauss map of the second kind if it is a surface of revolution.

Note that in [28] the classification of all surface of revolutions with L1-pointwise
1-type Gauss map was obtained. Further, in [38] Yoon et al move this study to
pseudo-Galilean space G3

1.
On the other hand, another generalization of notion of pointwise 1-type Gauss
map has been appeared in [6] on which Baba-Hamed and Bekkar studied surface
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of revolutions whose Gauss map satisfying

∆IIG = f(G+ C) (29)

where ∆II denotes the Laplace operator with respect to the second fundamental
form. They obtained

Theorem 32 ([6]). A surface of revolution without parabolic points in a Euclidean
3-space has non-zero constant Gaussian curvature if and only if (29) is satisfied
for C = 0 and some non-zero smooth function f.

4. Lorentzian Hypersurfaces and Their Gauss Maps

In general, a hypersurface in a (semi-)Riemannian space form of dimension n+ 1
is said to have vanishing Gauss-Kronecker curvature if its second fundamental
form h is degenerated at every point or, equivalently, its shape operator satisfies
detS = 0. In this section, we deal with a family of Lorentzian hypersurfaces with
vanishing Gauss-Kronecker curvature in the Minkowski four-space.
Let

α : (a, b) → S31(1), t 7→ α(t)

be a smooth unit speed curve and A,B are vector fields defined on α such that

⟨A,α⟩ = ⟨A,α′⟩ = ⟨B,α⟩ = ⟨B,α′⟩ = 0

⟨A,B⟩ = 0, ⟨A,A⟩ = −⟨B,B⟩ = 1.
(30)

We consider the hypersurface M given by

x(s, t, u) = sα(t) + c
(
cosh

u

c
A(t) + sinh

u

c
B(t)

)
(31)

Next, we define smooth functions ξ1, ξ2, ξ3 by

⟨A′, B′⟩ = −ξ1(t), ⟨A′, α′⟩ = ξ2(t), ⟨B′, α′⟩ = ξ3(t).

Then, the induced metric of M becomes

g =ds2 − du2 +
(
a−2 − c2ξ1(t)

2
)
dt2 − cξ1(t)(dt⊗ du+ du⊗ dt) (32)

and principal directions of M are

e1 = ∂s, e2 = ∂u, e3 = a (∂t − cξ1(t)∂u)

with corresponding principal curvatures

k1 = 0, k2 = −1

c
, k3 = −a

(
ξ2(t) cosh

u

c
+ ξ3(t) sinh

u

c

)
where a = a(s, t, u) is the no-where vanishing function given by

a =
(
s+ cξ2(t) cosh

u

c
+ cξ3(t) sinh

u

c

)−1
. (33)
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Note that the unit normal vector field of M is

N = cosh
u

c
A(t) + sinh

u

c
B(t).

Therefore, the Gauss map of M is

G :M → E4
1, x(s, t, u) 7→ cosh

u

c
A(t) + sinh

u

c
B(t).

By a direct computation using (32), one can obtain that Levi-Civita connection of
M satisfies

∇e1e1 = ∇e1e2 = ∇e1e3 = 0, ∇e2e1 = ∇e2e2 = ∇e2e3 = 0
(34)

∇e3e1 = ae3, ∇e3e2 = be3, ∇e3e3 = −ae1 + be2

for the function b = b(s, t, u) given by b = a
(
ξ2(t) sinh

u

c
+ ξ3(t) cosh

u

c

)
. By

a further computation, one can see that Codazzi and Gauss equations imply

e1(k3) = −ak3, e2(k3) = −b
(
k3 +

1

c

)
e1(a) = −a2, e2(a) = −ab

e1(b) = −ab, e2(b) = −b2 + 1

c
k3.

(35)

On the other hand, by using (13), we obtain

∆G = −ak3e1 + b

(
k3 +

1

c

)
+ e3(k3)e3 +

(
1

c2
+ k23

)
N. (36)

Now, assume that M has pointwise 1-type Gauss map. Then, (1) is satisfied for a
smooth function f and constant vector C. Therefore, we have

fC1 = −ak3e1, fC2 = b

(
k3 +

1

c

)
(37)

where we put Ci = ⟨C, ei⟩, i = 1, 2. Since C is a constant vector, we have
∇e1C = ∇e2C = 0. Therefore, (34) implies

e1(C1) = e1(C2) = 0. (38)

By applying e1 to (37) and using (35) and (38), we get e1(f) = −2af . By using
(33) on this equation and then integrating the equation obtained, we have

f = αa2 (39)

for a smooth function α = α(t, u). By combining (37), (38) and (39), we get

a2α(t, u)C2(t, u) = b

(
k3 +

1

c

)
. (40)
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By applying e1 to this equation and using (35), we obtain

−2a3α(t, u)C2(t, u) = −ab
(
2k3 +

1

c

)
. (41)

However, by a simple computation using this equation and (40) we obtain k3 = 0
which yields that the shape operator ofM is S = diag(0, 0,−1

c ). Hence we obtain
the following theorem.

Theorem 33. Let M be a hypersurface in E4
1 given by (31) which has vanishing

Gauss-Kronecker curvature. Then M has pointwise 1-type Gauss map if and only
if it is an open part of either S11(r)× E2 or H1(−r)× E2

1.

Finally, we may note that hypersurfaces in space forms with vanishing Gauss-
Kronecker curvature have caught interest of many geometers (cf. [14, 25, 26, 34]).
Therefore, we would like to present the following problem.

Problem 34. Classify all hypersurfaces in semi-Euclidean spaces with vanishing
Gauss-Kronecker curvature and pointwise 1-type Gauss map.
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