
Seventeenth International Conference on
Geometry, Integrability and Quantization
June 5–10, 2015, Varna, Bulgaria
Ivaïlo M. Mladenov, Guowu Meng
and Akira Yoshioka, Editors
Avangard Prima, Sofia 2016, pp 72–94
doi: 10.7546/giq-17-2016-72-94

GENERALIZED KEPLER PROBLEMS AND EUCLIDEAN
JORDAN ALGEBRAS

GUOWU MENG

Department of Mathematics, Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Abstract. This article is a written version of author’s lecture on general-
ized Kepler problems at the XVII-th International Conference on Geometry,
Integrability and Quantization, June 5-10, 2015 Varna, Bulgaria. It begins
with a review of the Kepler problem for planetary motion and its magnetized
cousins, from which a surprising relationship with Lorentz transformation
emerges. Next, we give a review for euclidean Jordan algebra and the associ-
ated universal Kepler problem. Finally, we demonstrate that, via the universal
Kepler problem, a suitable Poisson realization of the conformal algebra for
a simple euclidean Jordan algebra gives rise to a super integrable model that
resembles the Kepler problem. In particular we demonstrate how the Kepler
problem and its magnetized cousins are obtained this way.
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1. Introduction

The Kepler problem, introduced by Isaac Newton in the 17th century, is the math-
ematical model for the simplest solar system. As a classical dynamic problem, its
configuration space is R3

∗ (i.e., R3 with the origin removed) and its equation of
motion is

r′′ = − r

r3
·

Here, r is a R3
∗-valued function of time t, r′′ is the second time derivative of r and

r is length of r. So, its hamiltonian is

H =
1

2
|p|2 − 1

r
· (1)

Here, p is the (linear) momentum. Since the hamiltonian H is invariant under
rotations of R3, thanks to Noether’s theorem, the angular momentum

L = r× p

is conserved.
In 1911 E. Rutherford established the Kepler problem as the mathematical model
for the simplest atom (i.e., hydrogen atom) via his famous alpha-particle scattering
experiment [13], albeit it makes sense only at the quantum level.
The simplicity and beauty of the Kepler problem (or rather the inverse square law)
comes from the conserved Laplace-Runge-Lenz vector

A = L× p+
r

r
·
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For example, via A, we can obtain the trajectories quickly without actually solving
the equation of motion.

The primary goal in this lecture is to convince the readers that the mathematical
secret for the Kepler problem lies in the euclidean Jordan algebra [3]. (Historically
Jordan introduced this algebra for a better formulation of the quantum mechanics,
but that effort failed.) Once this secret is known, we have a general theory, under
the name of generalized Kepler problems [8]. In this general theory, an isotropic
3D oscillator problem is just the bounded sector of a generalized Kepler problem,
and its Fradkin tensor [2] is just the generalized Laplace-Runge-Lenz vector of the
generalized Kepler problem. It is in this sense that we say that the Kepler problem
and the oscillator problem are unified in the theory of generalized Kepler problems.

2. Kepler Problem and its Magnetized Cousins

Towards the end of 1960s, two groups of researchers [7,16] independently discov-
ered a family of super-integrable models which all resemble the Kepler problem. A
model in this family, specified by a real parameter µ, describes a hypothetical hy-
drogen atom where the nucleus, besides carrying the unit electric charge e, carries
magnetic charge µ as well. Here is its equation of motion

r′′ = − r

r3
+ µ2 r

r4
− r′ × µ

r

r3
· (2)

These magnetized cousins of the Kepler problem, being usually referred to as the
MICZ-Kepler problems in honor of their discoverers H. McIntosh, A. Cisneros and
D. Zwanziger, share the characteristic beauty and simplicity of the Kepler problem.
For example, we have the conserved angular momentum

L = r× r′ + µ
r

r

as well as the conserved Laplace-Runge-Lenz vector

A = L× r′ +
r

r
·

Indeed, using equation (2) we have

L′ = r× r′′ + µ
(r
r

)′
= −r×

(
r′ × µ

r

r3

)
+ µ

(r
r

)′

= µ

(
(r× r′)×

(
− r

r3

)
+
(r
r

)′
)

= µ

(
(r · r′) r

r3
− r′

r
+

(r
r

)′
)

= 0
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and

A′ = L× r′′ +
(r
r

)′
= (r× r′)× r′′ + µ

r

r
× r′′ +

(r
r

)′

= (r× r′)×
(
− r

r3
+ µ2 r

r4

)
+ µ

r

r
×

(
−r′ × µ

r

r3

)
+

(r
r

)′

= (r× r′)×
(
− r

r3

)
+

(r
r

)′
= 0.

It is easy to see that L ·A = µ, and

L · r = µr, r −A · r = |L|2 − µ2. (3)

Equation (3) gives an algebraic description for the orbits, from which, we deduce
that a non-colliding orbit is elliptic, parabolic, and hyperbolic according as |A|
is less than, equal to, and bigger than one, though |A| may not be equal to the
eccentricity of the conic.
Note that, for a motion with non-colliding orbit, |L|2−µ2 = |r× r′|2 > 0 and the

total energy E =
1

2
|r′|2 + µ2

2r2
− 1

r
is completely determined by L and A

E = − 1− |A|2

2(|L|2 − µ2)
· (4)

Indeed, since

|A|2 = |L× r′|2 + 2
r · (L× r′)

r
+ 1

= |L|2|r′|2 − (L · r′)2 − 2
L

r
·
(
L− µ

r

r

)
+ 1

= |L|2|r′|2 − µ2r′2 − 2
|L|2

r
+ 2

µ2

r
+ 1 (using the identity L ·A = µr)

= 2|L|2
(
1

2
|r′|2 − 1

r

)
− µ2 (r · r′)2

r2
+ 2

µ2

r
+ 1

= 2|L|2E − µ2 |L|2

r2
− µ2 |r× r′|2 − |r|2|r′|2

r2
+ 2µ2 1

r
+ 1

= 2(|L|2 − µ2)E + 1 (using the identity |L|2 = µ2 + |r× r′|2)

we have E = − 1−|A|2
2(|L|2−µ2)

·

2.1. A New Description for the Non-Colliding Orbits

Equation (3) can be rewritten as

µr − L · r = 0, r −A · r = |L|2 − µ2. (5)
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Assume that the orbit is non-colliding, i.e., |L|2 − µ2 = |r × r′|2 > 0. Then, we
can introduce Lorentz four-vectors

l =
1√

|L|2 − µ2
(µ,L), a =

1

|L|2 − µ2
(1,A), x = (r, r) (6)

so that equation (5) can be put in this form

l · x = 0, a · x = 1. (7)

Here, · between Lorentz four-vectors is the Lorentz dot product

(x0,x) · (y0,y) = x0y0 − x · y.
It is easy to see that l2 := l · l = −1, l ·a = 0, a0 > 0, and formula (4) for the total
energy becomes

E = − a2

2a0
· (8)

Note that equation (7) is for r ∈ R3
∗, but it is also for x ∈ R1,3 – the 4D Lorentz

space, provided that x is on the future light cone

Λ+ := {x ∈ R1,3 ; x2 = 0, x0 > 0}.
Therefore, by lifting to the future light cone Λ+, a non-colliding orbit becomes the
intersection curve of the future light cone with an affine plane of the form given
by equation (7), hence it must be a conic by the original ancient Greek’s definition
of conics. One can verify that this conic is an ellipse, a parabola, and a branch of
hyperbola according as the total energy E is negative, zero, and positive.

2.2. MICZ-Kepler Problems and Lorentz Transformations

The new description for the non-colliding orbits has an advantage: it enables us to
see a connection between the MICZ-Kepler problems and Lorentz transformations.
The intuitive reason is that a Lorentz transformation leaves the light cone invariant
and turns an affine plane into another affine plane, so it turns a non-colliding orbit
into another non-colliding orbit.
To state this connection precisely, let us first introduce a few terminologies. A non-
colliding orbit in a MICZ-Kepler problem shall be referred to as a MICZ-Kepler
orbit. There are three types of such orbit: elliptic, parabolic, and hyperbolic. A
Lorentz transformation is called small if it can be continuously deformed to the
identity map on R1,3. The scalar multiplication of vectors in R1,3 by a positive real
number shall be referred to as a scaling transformation. Note that each MICZ-
Kepler orbit can be oriented by the velocity of the motion.

Theorem 1 (Meng, 2011). For the MICZ-Kepler orbits, the following statements
are true.
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a) Any two oriented parabolic MICZ-Kepler orbits can be transformed from
one to the other via a little Lorentz transformation.

b) Any two oriented elliptic MICZ-Kepler orbits can be transformed from one
to the other via a little Lorentz transformation together with a scaling trans-
formation.

The proof of this theorem can be found in [10].

3. Euclidean Jordan Algebra

We have learned that the MICZ-Kepler orbits have a very attractive description on
the future light cone Λ+. Is this a coincidence? More precisely, one may ask this
Question: Can the Kepler problem and its magnetized cousins be naturally formu-
lated on the future light cone Λ+?
Answer: Yes, provided that we can employ the more refined Jordan algebra struc-
ture behind the Lorentz structure on the Lorentz space R1,3. Since

R3
∗ → Λ+, r 7→ (r, r)

is a diffeomorphism, in hindsight, this may not be a surprise at all.
To know the details, we have to take a detour.

3.1. The Formally Real Jordan Algebra Structure on R1,3

Write x = (x1, x2, x3), then x = (x0, x1, x2, x3). Write X for x0I + x · σ, i.e.,

X =

[
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

]
.

Let H2(C) is the set of all complex hermitian matrices of order two. Note that
detX = x2 and the map x 7→ X is an isometry between the Lorentz space R1,3

and (H2(C), det). Introducing the symmetrized matrix multiplication

X ◦ Y :=
1

2
(XY + Y X)

we observe that the symmetrized matrix multiplication turns H2(C) into a real
commutative algebra with unit. Moreover this algebra is

a) weakly associative. This means that, for X , Y in H2(C), we have (X ◦Y )◦
X2 = X ◦ (Y ◦X2). Here, X2 = X ◦X = XX

b) formally real. This means that, for X , Y in H2(C), X2 + Y 2 = 0 =⇒
X = Y = 0.
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Using the correspondence x ↔ X , one can see that the corresponding Jordan
algebra structure behind R1,3 is the one given by the following multiplication rule

(x0,x) ◦ (y0,y) = (x0y0 + x · y, x0y + y0x).

This Jordan algebra is customarily denoted by Γ(3).

3.2. The Euclidean Structure on Γ(3)

Up to scaling, there is a unique inner product on H2(C) with respect to which the
multiplication by any u ∈ H2(C) is a self-adjoint operator on H2(C). One should
view H2(C) as the analogue of a real compact simple Lie algebra and the inner
product mentioned here as the analogue of the negative-definite Killing form in a
real compact simple Lie algebra.
To be precise, for any u ∈ H2(C), we let Lu be the endomorphism on H2(C)
defined by v 7→ u ◦ v. Let ⟨ | ⟩: H2(C)×H2(C)→ R be defined as follows

⟨u | v⟩ := 1

2
tr(u ◦ v) = 1

2
tr(uv) =

1

4
trLu◦v.

One can verify that

i) ⟨ | ⟩ is an inner product on H2(C) such that

σ0 :=

(
1 0
0 1

)
, σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
form an orthonormal basis. Note that trσ0 = 2 and trσi = 0.

ii) Lu is self-adjoint with respect to ⟨ | ⟩, i.e., ⟨v | u ◦ w⟩ = ⟨u ◦ v | w⟩ for any
v, w ∈ H2(C).

iii) The multiplication law for H2(C) is given by

σi ◦ σj = δijσ0, σ0 is the unit e.

Under the correspondence x↔ X , we have the correspondence eµ ↔ σµ where

e0 = (1, 0, 0, 0), e1 = (0, 1, 0, 0), e2 = (0, 0, 1, 0), e3 = (0, 0, 0, 1).

Therefore, the corresponding inner product on Γ(3) is the standard dot product on
R4.
In summary, on the real vector space R4 = R ⊕ R3, there is an algebra structure
given by the multiplication law

eiej = δije0, e0 is the multiplicative unit e

and a compatible euclidean structure given by the dot product. (Here, compatible
means that the multiplication by any element u is self-adjoint with respect to this
dot product) Moreover, this algebra (denoted by Γ(3)) is commutative, weakly
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associated, formally real, isomorphic to H2(C), and yields the Lorentz structure
on R4.

3.3. Relevance to the Kepler Problem

We are now ready to give a preliminary explanation for the relevance of the eu-
clidean Jordan algebra Γ(3) to the Kepler problem. There are three main points

i) The future light cone Λ+ = the set of rank one, semi-positive elements in
H2(C). Indeed, if the rank of X is less than two, then detX = 0, also, if
X ̸= 0 is semi-positive, then trX > 0. So x2 = 0 and x0 > 0.

ii) For the Kepler problem, the potential term is

− 1

⟨e | x⟩
·

iii) The kinetic term for the Kepler problem (or rather the Riemannian metric on
Λ+), angular momentum, and Laplace-Runge-Lenz vector can all be naturally
expressed in terms of Jordan algebra structure as well. (The detailed elabora-
tion of this point will be reviewed in the later sections.)

To proceed, we need to review euclidean Jordan algebra now.

3.4. Definition of Euclidean Jordan algebra

Jordan algebras are the unfavored cousins of Lie algebras, and euclidean Jordan
algebras are the unfavored cousins of compact real Lie algebras. Having H2(C) or
Γ(3) in mind, we have from [3]

Definition 2. A finite dimensional euclidean Jordan algebra is a finite dimen-
sional real commutative algebra V with unit e such that, for any elements a, b in
V , we have

1) a(ba2) = (ab)a2 (weakly associative)
2) a2 + b2 = 0 =⇒ a = b = 0 (formally real).

The simplest example is R, the other example is H2(C). We use La: V → V to
denote the multiplication by a. Then condition 1) amounts to saying that

1´ ) [La, La2 ] = 0 (Jordan Identity)
and condition 2) can be replaced by

2´ ) The “Killing form" ⟨a |b⟩ = 1
dimV trLab is positive definite.

One can check that ⟨b | ac⟩ = ⟨ab | c⟩. Note that, euclidean Jordan algebras
are called formally real Jordan algebras in the old literature. Note also that, by
dropping condition 2) in the above definition, we end up with the definition for



80 Guowu Meng

finite dimensional real Jordan algebra. Finally, we note that any euclidean Jordan
algebra is semi-simple in the sense that its “Killing form” is non-degenerate.

3.5. The Classification Theorem of Jordan, von Neumann and Wigner

A typical way of obtaining a real Lie algebra is to start with a real associative al-
gebra and then anti-symmetrize its associative product. Similarly, a typical way of
obtaining a real Jordan algebra is to start with a real associative algebra and then
symmetrize its associative product. For example, starting with the real Clifford
algebra Cl(Rn, dot product), we get a finite dimensional real Jordan algebra. This
Jordan algebra contains a Jordan subalgebra Γ(n) whose underlying real vector
space is the linear subspace R ⊕ Rn. It turns out that Γ(n) is formally real, and
it is simple unless n = 1. Similarly, if we start with the real algebra of n × n
matrices over R (C and H respectively), we get a finite dimensional real Jordan al-
gebra which contains a Jordan subalgebra Hn(R) (Hn(C) and Hn(H) respectively)
consisting of real symmetric (complex-hermitian and quaternionic-hermitian re-
spectively) matrices of order n. This Jordan subalgebra is also formally real and
simple. Note that, since the multiplication of octonions is not associative, Hn(O)
is not a Jordan algebra unless n ≤ 3.
The following theorem is due to Jordan, von Neumann and Wigner [4].

Theorem 3. Euclidean Jordan algebras are semi-simple, and the simple ones con-
sist of four infinite series and one exceptional
R, Γ(n), n ≥ 2, Hn(R), n ≥ 3, Hn(C), n ≥ 3, Hn(H), n ≥ 3,
H3(O).

Note that Γ(1) is not simple, Γ(0) = H1(F) = R where F = R, C, H or O, and
there are isomorphisms

H2(R) ∼= Γ(2), H2(C) ∼= Γ(3), H2(H) ∼= Γ(5), H2(O) ∼= Γ(9).

In particular the isomorphism Γ(3) ∼= H2(C) is the bijection x ↔ X appeared in
Subsection 3.1.
Note also that, in the classification list of the above theorem, R is the only asso-
ciative Jordan algebra, and H3(O) is the only one [1] that is not associated with an
associative algebra, a reason for H3(O) to be called exceptional.
Elements of a Jordan algebra should be viewed as “generalized hermitian matri-
ces” so that the notions of trace, rank, eigenvalue, and diagonalization all make
sense for elements in a Jordan algebra. The rank of a Jordan algebra is defined to
be the maximum of the rank of its elements. For the simple Jordan algebras in the
classification list of the above theorem, we have following table for trace and rank
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Jordan algebra trace rank
R tr x = x 1

Γ(n), n ≥ 2 tr x = 2x0 for x = (x0,x) 2
Hn(F) tr x = the sum of diagonal entries of x n

Here, F = R,C,H if n > 3 and F = R,C,H,O if n = 3. In terms of trace
and rank of the Jordan algebra, one can also have the notion of determinant. For
example, since Γ(n) has rank 2, for x ∈ Γ(n), we have

det x =
1

2!
(tr x)2 − 1

2
tr (x2)

which is precisely the Lorentz dot product of x with x. Note that, the identity
det(xy) = det x det y does not hold in general. Finally we would like to say that
the notions of positive-definite and semi-positive definite are valid for elements in
an euclidean Jordan algebra.

3.6. The Structure Algebra

The Jordan algebra Γ(3) is more refined than the 4D Lorentz space R1,3, because
the Lorentz dot product can be derived from the Jordan algebra structure. For R1,3,
the following nested sequence of real Lie algebras

so(3) ⊂ so(1, 3) ⊂ so(2, 4) (9)

is well known to theoretical physicists and their group versions are called rota-
tional, Lorentz and conformal group respectively.
It turns out that the nested sequence (9) has an analogue for a general Jordan alge-
bra V

der(V ) ⊂ str′(V ) ⊂ co(V ) (10)

where der(V ) is the Lie algebra of derivations on V , and str′(V ) is called the
restricted structure algebra of V and co(V ) is called the conformal algebra of V .
To introduce the structure algebra, we need to do some preparations. For a, b in V ,
we let

Sab := [La, Lb] + Lab, {abc} := Sab(c)

and str(V ) (or simply str) be the span of {Sab ; a, b ∈ V } over R. One can verify
that

[Sab, Scd] = S{abc}d − Sc{bad}

so str(V ) becomes a real Lie algebra – the structure algebra of V . For example

1) str(V ) ∼= R for V = R
2) str(V ) ∼= so(1, 3)⊕ R for V = Γ(3).
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This Lie algebra is not simple, actually not even semi-simple, because it has a
non-trivial central element: Le = See. (In general Lu = Sue) Note that the set
{Lu | u ∈ V } is a generating set for str(V ), and its subset

{Lu ; u ∈ V, tr u = 0}

generates a Lie subalgebra of str(V ), called the restricted structure algebra of V ,
and is denoted by str′(V ).
Finally, we would like to remark that str(V ) is the Lie algebra of the Lie subgroup
of GL(V ) which leaves the (symmetric) cone

V+ := {x ∈ V ; x > 0}

invariant. In the case V = Γ(3), this Lie subgroup is O+(1, 3) × R+ where
O+(1, 3) is the group of Lorentz transformations that preserve the direction of
time, and R+ is the group of dilations of R1,3.

3.7. The Conformal Algebra of Tits, Köcher and Kantor

The structure algebra is not simple, but it can be extended to a simple real Lie
algebra provided that V is a simple euclidean Jordan algebra.
The following theorem was obtained by J. Tits [15], M. Köcher [6] and I. Kantor
[5] independently in the 1960s.

Theorem 4. Let V be a simple euclidean Jordan algebra, and write z ∈ V as Xz

and ⟨w | ⟩ ∈ V ∗ as Yw. Then, the structure algebra of V can be extended to a
simple real Lie algebra whose underlying real vector space is V ⊕ str(V ) ⊕ V ∗,
and commutation relations are

[Xu, Xv] = 0, [Yu, Yv] = 0, [Xu, Yv] = −2Suv

[Suv, Xz] = X{uvz}, [Suv, Yz] = −Y{vuz}

[Suv, Szw] = S{uvz}w − Sz{vuw}

(11)

where u, v, z and w are arbitrary elements of V .

This real simple Lie algebra is called the TKK algebra in the literature, but shall
be called the conformal algebra here and is denoted by co(V ) or simply co. For
example

1) str = so(3, 1)⊕ R, str′ = so(3, 1), co = so(4, 2) for V = Γ(3)

2) str = R, str′ = {0}, co = sl(2,R) for V = R .

In general, co is the Lie algebra of the bi-holomorphic automorphism group of the
complex domain V ⊕ iV+ ⊂ V ⊗R C.
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After spending so much effort on the basic facts on euclidean Jordan algebras, an
impatient reader may ask this
Question: How could the euclidean Jordan algebra H2(C) (or Γ(3)) be relevant to
the Kepler problem?
Well, the answer will become clear after we review the Lenz algebra for the Kepler
problem.

4. Lenz Algebra for the Kepler Problem

The phase space for the Kepler problem, i.e., T ∗R3
∗, is a Poisson manifold. In terms

of the standard canonical coordinates x1, x2, x3, p1, p2, p3, its Poisson structure
can be described by the following basic Poisson bracket relations:

{xi, xj} = 0, {xi, pj} = δij , {pi, pj} = 0.

Recall that the hamiltonian, angular momentum, and Laplace-Runge-Lenz vector
are

H =
1

2
p2 − 1

r
, L = r× p, A = L× p+

r

r

respectively. In terms of Poisson bracket, the fact that L and A are constants of
motion can be restated as

{L,H} = 0, {A,H} = 0.

To show that, we first note that Li (the i-th component of L) is the infinitesimal
generator of the rotation about the i-th axis. Indeed, since L3 = x1p2 − x2p1, we
have

{L3, x
1} = −x2{p1, x1} = x2, {L3, x

2} = −x1, {L3, x
3} = 0.

Similarly, we have

{L3, p1} = p2, {L3, p2} = −p1, {L3, p3} = 0.

Then, it is clear that {L,H} = 0, moreover

{A,H} = L× {p,H}+ {r
r
,H} = L× {p,−1

r
}+ {r

r
,
1

2
p2}

= L×∇1

r
+

∑
i

{r
r
, pi}pi = −L×

r

r3
+

∑
i

pi∂xi

r

r

= −(r× p)× r

r3
+

p

r
− r · p

r3
r = 0.

In fact, it is fairly routine to verify the following theorem.
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Theorem 5. Let Li (respectively Ai) be the i-th component of L (respectively A).
Then

{Li,H} = 0, {Ai,H} = 0, {Li, Lj} = ϵijkLk

{Li, Aj} = ϵijkAk, {Ai, Aj} = −2HϵijkLk.
(12)

Here ϵijk = 1 (respectively−1) if ijk is an even (respectively odd) permutation of
123, and equals to 0 otherwise. A summation over the repeated index k is assumed.
The real associated algebra with generators H , L1, L2, L3, A1, A2, A3 and rela-
tions in equation (12) is called the Lenz algebra.
With this in mind, we are now ready to introduce the notion of universal Kepler
problem.

5. Universal Kepler Problem

Let us fix a simple euclidean Jordan algebra V . Let T KK be the complexified
universal enveloping algebra for the conformal algebra co(V ), but with Ye being
formally inverted. The following definition was first introduced in [12].

Definition 6. The universal angular momentum is

L : V × V → T KK, (u, v) 7→ Lu,v := [Lu, Lv] (13)

The universal hamiltonian is

H :=
1

2
Y −1
e Xe − (iYe)

−1 (14)

The universal Laplace-Runge-Lenz vector is

A : V → T KK, u 7→ Au := (iYe)
−1[Lu, (iYe)

2H] (15)

5.1. Universal Lenz Algebra

Via the commutation relations (11) for the conformal algebra co(V ), one can verify

Theorem 7. For u, v, z and w in V

[Lu,v,H] = 0, [Au,H] = 0

[Lu,v, Lz,w] = LLu,vz,w + Lz,Lu,vw

[Lu,v, Az] = ALu,vz, [Au, Av] = −2HLu,v.

(16)

Proof: Since Suv = Lu,v + Luv, part of the commutation relations (11) for the
conformal algebra can be rewritten as

[Lu,v, Xz] = XLu,vz, [Lu,v, Yz] = YLu,vz

[Lu,v, Lz] = LLu,vz, [Lu,v, Lz,w] = LLu,vz,w + Lz,Lu,vw.



Generalized Kepler Problems and Euclidean Jordan Algebras 85

Then we have [Lu,v, Xe] = [Lu,v, Ye] = 0, so [Lu,v,H] = 0, so

[Lu,v, Az] = iY −1
e [Lu,v, [Lz, Y

2
e H]]

= iY −1
e

(
[[Lu,v, Lz], Y

2
e H] + [Lz, [Lu,v, Y

2
e H]]

)
= iY −1

e [LLu,vz, Y
2
e H] = ALu,vz.

The rest of the proof is left to the reader and anyway it can be found in [12]. �

We are now ready to outline a scheme to obtain a super integrable model that shares
Kepler problem’s characteristic features such as existence of Laplace-Rungs-Lenz
vector and hidden symmetry: Let V be a simple euclidean Jordan algebra, then

a concrete realization of the conformal algebra co(V )
⇓

a concrete model of the Kepler type.

To be more precise, we have

a suitable operator realization of co(V )
⇓

a quantum generalized Kepler problem

and
a suitable Poisson realization of co(V )

⇓
a classical generalized Kepler problem.

(17)

For simplicity, hereafter we shall stick to Poisson realizations of the conformal
algebra co(V ) and the associated classical generalized Kepler problems.

5.2. Poisson Realizations and Classical Generalized Kepler Problems

In a Poisson realization of the conformal algebra, Suv, Xz , Yw are respectively
represented as real functions Suv, Xz , Yw on a Poisson manifold so that the com-
mutation relations are represented by the Poisson bracket relations: for u, v, z, w
in V , we have

{Xu,Xv} = 0, {Yu,Yv} = 0, {Xu,Yv} = −2Suv
{Suv,Xz} = X{uvz}, {Suv,Yz} = −Y{vuz}

{Suv,Szw} = S{uvz}w − Sz{vuw}.

(18)

Then, H , Au and Lu,v can be realized as real functions

H =
1
2Xe − 1

Ye
, Au :=

{Lu,Y2
eH}

Ye
, Lu,v := {Lu,Lv} (19)
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respectively. Note that

Au =
1

2

(
Xu − Yu

Xe

Ye

)
+
Yu
Ye
· (20)

Note also that, in a suitable Poisson realization, Ye is a positive real function, so
the expressions in the preceding two equations all make sense.

5.3. A Poisson Realization on TV

Via the (unique up to scaling) canonical inner product on V , TV ∼= T ∗V . So TV
becomes a symplectic manifold. Denote an element of TV = V ×V by (x, π) and
fix an orthonormal basis {eα} for V so that we can write x = xαeα and π = παeα.
Then we have the basic Poisson bracket relations

{xα, πβ} = δαβ , {xα, xβ} = 0, {πα, πβ} = 0

on TV .
In coordinate free form, we have

{⟨x | u⟩, ⟨π | v⟩} = ⟨u | v⟩, {⟨x | u⟩, ⟨x | v⟩} = {⟨π | u⟩, ⟨π | v⟩} = 0.

Claim: The real functions

Suv := ⟨Suv(x) | π⟩, Xu := ⟨x | {πuπ}⟩, Yv := ⟨x | v⟩ (21)

yield a Poisson realization on TV for Suv, Xz , Yw respectively.

Proof: It is clear that {Yu,Yv} = 0.

{Xu,Yv} = {⟨x | {πuπ}⟩, ⟨x | v⟩}

= −2⟨x | {vuπ}⟩ = −2⟨Suv(x) | π⟩ = −2Suv.

{Suv,Yz} = {⟨Suv(x) | π⟩, ⟨x | z⟩}

= −⟨Suv(x) | z⟩ = −⟨x | {vuz}⟩ = −Y{vuz}.

{Suv,Szw} = {⟨Suv(x) | π⟩, ⟨Szw(x) | π⟩}

= ⟨SuvSzw(x) | π⟩ − ⟨SzwSuv(x) | π⟩

= ⟨[Suv, Szw](x) | π⟩ = ⟨(S{uvz}w − Sz{vuw})(x) | π⟩

= S{uvz}w − Sz{vuw}.

The rest of the proof is left to the readers and anyway it can be found in [12]. �
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Let us try to implement the scheme outlined in equation (17) for this Poisson real-
ization. Since

Xu = ⟨x | {πuπ}⟩ and Yv = ⟨x | v⟩
andH = 1

2
Xe
Ye
− 1

Ye
, we have

H =
1

2

⟨x | π2⟩
r

− 1

r

where r = ⟨x | e⟩ = 1
rankV tr x. However, since tr x = 0 for some x ∈ V , H

is NOT even a real-valued function on the entire TV . In other words, this Poisson
realization is not suitable for the implementation of scheme in equation (17).
To salvage this Poisson realization, we restrict it to certain symplectic sub-manifolds
of TV , for example TCk, where Ck is the set of rank k semi-positive elements of
V , with k being a positive integer less than or equal to the rank of V . Indeed,
restricting H to TCk yields an integrable model of Kepler type. Moreover, this
model is the Kepler problem when V = Γ(3) and k = 1, as we shall demonstrate
in Section 7.

6. Kepler Cones and Generalized Kepler Problems

In reference [8] the notion of Kepler cone was first introduced. Let us begin with a
theorem there.

Theorem 8. Let V be a simple euclidean Jordan algebra, k be a positive integer
which is at most rankV , and Ck be the set of rank-k semi-positive elements of V .
Then Ck is a manifold. Moreover, for any x ∈ Ck

1) TxCk = {x} × ImLx

2) The map

⟨π| ⟩ 7→ ⟨π | xπ⟩
r

(22)

is a positive-definite quadratic form on T ∗
xCk.

These quadratic forms in the theorem define a Riemannian metric on Ck (called
the Kepler metric), denoted by ( , )K . The Riemannian manifold (Ck, ( , )K) is
refereed to as the rank-k Kepler cone of V .
A Kepler cone shall serve as the configuration space for a generalized Kepler prob-
lem. Indeed, if V = Γ(3), then (C1, ( , )K) is isometric to the Riemannian sub-
manifold R3

∗ of the euclidean space R3, i.e., the configuration space for the Kepler
problem.
For more details, please consult [8].
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6.1. The Poisson Realization on TCk

Before presenting this Poisson realization of co(V ) on TCk, we need to do some
preparations. First of all, TCk shall be identified with T ∗Ck via the Riemannian
metric (22). With this identification understood, TCk becomes a Poisson manifold.
Next, we write the inclusion map

TCk ↪→ TV = V × V

as (x, π), and view both x and π as vector-valued smooth functions on TCk. Note
that, at any point Q of TCk, x(Q) ∈ Ck and π(Q) ∈ ImLx(Q).

We use qi to denote a system of local coordinates on Ck, ∂qi to denote the resulting
local tangent frame, and let

gij := ⟨∂qi |∂qi⟩, g := [gij ], gij := (g−1)ij , Ei = gij∂qi .

Under the identification of T ∗Ck with TCk mentioned early, one can see that the lo-
cal cotangent frame (dq1, dq2, . . .) becomes the local tangent frame (E1, E2, . . .),
in terms of which we can write

π = piE
i. (23)

Here, each pi is a local function on TCk. For notational sanity, we use the same
notation for both a local function on Ck and its pull-back under the tangent bundle
map τ : TCk → Ck. For example, qi denotes both a local function on Ck and its
pullback to TCk. In terms of qi and pj , we have the following local canonical
Poisson bracket relations

{qi, qj} = 0, {qi, pj} = δij , {pi, pj} = 0. (24)

We are now ready to state the Poisson realization of the conformal algebra co on
TCk.

Theorem 9 (Meng 2011). Let V be a simple euclidean Jordan algebra. For any
vectors u, v in V , define functions

Xu := ⟨x|{πuπ}⟩, Suv := ⟨Suv(x)|π⟩, Yv := ⟨v|x⟩ (25)

on TCk. Then, for any vectors u, v, z, w in V , the following Poisson bracket
relations hold

{Xu,Xv} = 0, {Yu,Yv} = 0, {Xu,Yv} = −2Suv

{Suv,Xz} = X{uvz}, {Suv,Yz} = −Y{vuz}

{Suv,Szw} = S{uvz}w − Sz{vuw}.

This theorem is the classical limit of a quantum analogue, i.e., part i) of Proposition
4.6 in [8]. A direct proof has been given in [17].
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Remark 10. The generalized Kepler problem corresponding to the Poisson real-
ization in Theorem 9 is the hamiltonian system with phase space TCk, hamiltonian

H =
1

2

Xe

Ye
− 1

Ye
and Laplace-Runge-Lenz vector

Au =
1

2

(
Xu − Yu

Xe

Ye

)
+
Yu
Ye
·

The following section is a detailed demonstration of this remark for the Kepler
problem.

7. Example: Kepler Problem and Future Light-Cone

The purpose here is to demonstrate explicitly that if V = Γ(3) and k = 1, the gen-
eralized Kepler problem mentioned in Remark 10 is exactly the Kepler problem.
Recall that, in terms of the standard basis vectors e0, e1, e2, e3, the Jordan mul-
tiplication can be determined by the following rules: e0 is the identity element,
and

eiej = δije0

for i, j > 0. The trace tr: V → R is given by the following rules

tr e0 = 2, tr ei = 0.

So the inner product on V is the one such that the standard basis is an orthonormal
basis. Since V has rank two, the determinant of x = xµeµ is

detx =
1

2
((trx)2 − trx2) = (x0)2 − (x1)2 − (x2)2 − (x3)2.

Therefore
C1 = {x ∈ V ; det x = 0, tr x > 0}

is precisely the future light-cone in the Lorentz space R1,3. It turns out that C1 has
a global coordinate q = (q1, q2, q3) with qi(x) = xi. Since x(q) = re0 + r where
r = qiei and r is the length of r, we have

∂qi = ei+
qi

r
e0, gij = δij+

qiqj

r2
, gij = δij−

qiqj

2r2
, Ej = ej−

qj

2r2
r+

qj

2r
e0.

Here the first and last identities are understood with the natural identification of
TxC1 with ImLx in mind.
Recall that π = piE

i. Let p =
∑

i piei and |p|2 = p · p. Then we have

π = p− p · r
2r2

r+
p · r
2r

e0, xπ = (p · r)e0 + rp
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therefore

Xe = ⟨x|π2⟩ = ⟨xπ|π⟩

=
⟨
(p · r)e0 + rp

∣∣∣ p− p · r
2r2

r+
p · r
2r

e0

⟩
= r|p|2.

Since Ye = r, we have the hamiltonian

H =
1

2

Xe

Ye
− 1

Ye
=

1

2
|p|2 − 1

r

which is precisely the hamiltonian given by equation (1).
Since

Le1,e2 = ⟨Le1,e2x|π⟩ = ⟨e1(e2x)− e2(e1x)|π⟩

= ⟨q2e1 − q1e2|p−
p · r
2r2

r+
p · r
2r

e0⟩ = q2p1 − q1p2

and similarly

Le2,e3 = q3p2 − q2p3, Le3,e1 = q1p3 − q3p1

we have

L := −(Le1,e2e3 + Le2,e3e1 + Le3,e1e2) = r× p

which is precisely the angular momentum vector for the Kepler problem.
One can compute Xei = ⟨x|{πeiπ}⟩ and Yei = ⟨x|ei⟩ and arrive at∑

i

Xeiei = 2(r · p)p− |p|2r,
∑
i

Yeiei = r.

Then

A :=
∑
i

Aeiei =
∑
i

(
1

2

(
Xei − Yei

Xe

Ye

)
+
Yei
Ye

)
ei

= (r× p)× p+
r

r

which is precisely the Laplace-Runge-Lenz vector for the Kepler problem.

Remark 11. In the literature the Poisson realization of so(2, 4) on the total cotan-
gent space of R3

∗, i.e., the Poisson realization in Theorem 9 for k = 1 and V =
Γ(3), is called the classical dynamic symmetry for the Kepler problem. A far as
we know, the fact that the Laplace-Runge-Lenz vector owes its existence to the
dynamic symmetry was initially pointed out by this author in [11, Subsection 7.1].
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8. Generalized Kepler Problems with Magnetic Charges

We have learned that there are Kepler-type integrable models associated with a
simple euclidean Jordan algebra V , one for each Kepler cone of V . We have also
learned that the Kepler problem is one of these integrable models. Since the Kepler
problem has magnetized cousins, one naturally wonders whether these Kepler-type
integrable models also have magnetized cousins. The simple answer is “Yes”. To
know more, we need to introduce the notion of Sternberg phase space.
We begin with a basic technical setup.

i) G – a compact connected Lie group.
ii) g, g∗ – the Lie algebra of G and its dual.

iii) P → X – a smooth principal G-bundle over manifold X .
iv) Θ – a fixed principal connection form, i.e., Θ is a g-valued differential one-

form on P which satisfies the following two conditions
1) Ra−1

∗Θ = AdaΘ for any a ∈ G, 2) Θ(Xξ) = ξ for any ξ ∈ g.
Here, Ra−1 denotes the right action of a−1 on P , Ada denotes the adjoint
action of a on g, and vector field Xξ denotes the infinitesimal right action of ξ
on P .

v) ωX – the canonical symplectic form on T ∗X .
vi) F – a hamiltonian G-space.

vii) Ω – the symplectic form on F .
viii) Φ: F → g∗ – the G-equivariant moment map.

ix) F → X – the associated fiber bundle with fiber F .
x) F ♯ – the pullback of diagram T ∗X → X ← F , i.e., square

F ♯ → F
↓ ↓

T ∗X → X

is a pullback diagram in the category of smooth manifolds and smooth maps.

8.1. Sternberg Phase Space

For notational sanity here, we shall use the same notation for both a differential
form (or a map) and its pullback under a fiber bundle projection map. The follow-
ing theorem is obtained by Sternberg in [14].

Theorem 12. With the technical setup given above, we have

a) There is a closed real differential two-form ΩΘ on F which is of the form Ω −
d⟨A,Φ⟩ under a local trivialization of P → X in which the connection form Θ
is represented by the g-valued differential one-form A on X .
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b) The differential two-form ωΘ := ωX + ΩΘ is a symplectic form on F ♯, where
ωX is the canonical symplectic form on T ∗X , pulled back under F ♯ → T ∗X ,
and ΩΘ is the pullback of ΩΘ under F ♯ → F .

We call the symplectic manifold (F ♯, ωΘ) a Sternberg phase space.
Note that ΩΘ is the right substitute for Ω when we go from a product bundle with
the product connection to a generic bundle.
Note also that If G = U(1), then (F ♯, ωΘ) = (T ∗X,ωX − qe dA) where qe is the
electric charge of the particle. So, locally we have

ωΘ = d
(
(pi − qeAi)dq

i
)
.

Finally we note that, in the hamiltonian formalism, as shown by Sternberg, the
Sternberg phase space (F ♯, ωΘ) is the right substitute for (T ∗X,ωX) when parti-
cles move in a background gauge field.

8.2. Examples: MICZ-Kepler Problems in Dimension 2k + 1

If we specialize the technical setup to the case where

i) X = R2k+1
∗ or the Kepler cone C1 of the Jordan algebra Γ(2k + 1).

ii) G = SO(2k).
iii) P → X is the pullback bundle of the principal SO(2k)-bundle SO(2k+1)→

S2k under the map

X → S2k, r 7→ r

r
(26)

iv) Θ is the pullback of the canonical connection

Projso(2k)(g
−1 dg)

on SO(2k + 1) → S2k. Here g−1 dg is the Maurer-Cartan form for the Lie
group SO(2k + 1), and Projso(2k): so(2k + 1) → so(2k) is the orthogonal
projection.

v) F is a co-adjoint orbit of SO(2k) which is either {0} or diffeomorphic to
SO(2k)/U(k).

vi) Ω is the Kostant-Kirillov-Souriau (KKS) symplectic form on F .
vii) Φ: F → g∗ is the inclusion map.

It has been proved already in [9] that the conformal algebra of the Jordan algebra
Γ(2k + 1) has a suitable Poisson realization on Sternberg phase space determined
by the above data. Moreover, this Poisson realization yields a magnetized cousin
of the Kepler problem in dimension 2k+1. When k = 1, these magnetized models
are the MICZ Kepler problems. For more details, one may consult [9].
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9. Conclusion

We have seen that, for each Kepler cone of a simple euclidean Jordan algebra, there
associate a Kepler-type classical dynamical model and its magnetized cousins. In-
deed, the MICZ-Kepler problems are associated with the rank-one Kepler cone of
Γ(3). Here are some further facts

• The quantum versions of these models are expected to give, among other
things, a concrete geometric realization for all unitary highest weight mod-
ules of (the universal cover) of the following real non-compact Lie groups

SO(2, n), Sp(2n,R), SU(n, n), SO∗(4n), E7(−25).

Indeed, this has been confirmed for all scalar-type unitary highest weight
modules in [8].
• The three-dimensional isotropic harmonic oscillator is the bounded sector

of the Kepler-type problem associated with the rank-one Kepler cone of
H3(R), with the Fradkin tensor [2] being the (generalized) Laplace-Runge-
Lenz vector. It is in this sense that we say that the Kepler problem and the
oscillator problem are unified in the theory of generalized Kepler problems.
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