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Abstract. The surfaces in three dimensional Euclidean space R3 obtained
through the use of the soliton techniques are called integrable surfaces. Inte-
grable equations and their Lax equations possess certain symmetries. Infini-
tesimal versions of these symmetries are deformations which are responsible
in constructing the integrable surfaces. There are four different types of de-
formations. The spectral parameter, the gauge, the generalized symmetries
and integration parameters deformations. We shall present here how these de-
formations generate surfaces in R3 and also in three-dimensional Minkowski
M3 space. The key point here is to start with an integrable equation and
its Lax representation. In this work we assume that the Lax equations of
integrable equations are given in terms of a group G and its algebra g val-
ued functions. The surfaces in R3 are also represented via respect g valued
functions. In constructing integrable surfaces we need the solutions of both
the integrable equations and their corresponding Lax equations. In this work
we use the one soliton solutions of the integrable equations. We solve the
Lax equations for one soliton solutions of the integrable equations. Then
choosing a deformation one can construct several types of surfaces. After
obtaining these surfaces the next is to search for their properties. Most of
these surfaces are Weingarten surfaces, Willmore-like surfaces and surfaces
which are derivable from a variational principle. We give sketches of the in-
teresting surfaces of Korteweg-de Vries (KdV), modified Korteweg-de Vries
(mKdV) and Nonlinear Schrödinger (NLS), sine Gordon (SG) equations.
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1. Introduction

Differential geometry of curves and surfaces in the three dimensional Euclidean
space R3 is a natural source of nonlinear partial differential equations [10], [11].
Motions of curves and surfaces in R3 or in M3 (three dimensional Minkowski
space) are responsible for some integrable nonlinear partial differential equations
such as NLS equation [20], KdV and mKdV equations [18], [27], [39].
Surface theory in R3 is widely used in different branches of science, particu-
larly mathematics (differential geometry, topology, Partial Differential Equations
(PDEs)), theoretical physics (string theory, general theory of relativity), and bi-
ology [4], [8], [33], [38], [51], [52]. There are some special subclasses of sur-
faces which arise in the branches of science aforementioned. For the classification
of surfaces in R3, particular conditions are imposed on the Gaussian and mean
curvatures. These conditions are sometimes given as algebraic relations between
curvatures and sometimes given as differential equations for these two curvatures.
Here are some examples of some subclasses of surfaces:

i) Minimal surfaces: H = 0.

ii) Surfaces with constant mean curvature: H = const.

iii) Surfaces with constant positive Gaussian curvature: K = const > 0.

iv) Surfaces with constant negative Gaussian curvature: K = const < 0.
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v) Surfaces with harmonic inverse mean curvature: ∇2(1/H) = 0.

vi) Bianchi surfaces: ∇2(1/
√
K) = 0 and ∇2(1/

√
−K) = 0, for positive

Gaussian curvature and negative Gaussian curvature, respectively.
vii) Weingarten surfaces: f(H,K) = 0. For example: linear Weingarten sur-

faces, c1H + c2K = c3, and quadratic Weingarten surfaces: c4H
2 +

c5HK+c6K
2+c7H+c8K = c9, where cj are constants, j = 1, 2, ..., 9.

viii) Willmore surfaces: ∇2H + 2H(H2 −K) = 0.

ix) Surfaces that solve the shape equation of lipid membranes

kc∇2(2H) + kc(2H + c0)(2H
2 − c0H − 2K) + p− 2ωH = 0

where p, ω, kc, and c0 are constants.

Here, H and K are the mean and Gaussian curvatures of the surface, respectively.
On the other hand soliton equations play a crucial role for the construction of sur-
faces. The theory of nonlinear soliton equations was developed in 1960s. Lax
representation of integrable equations should exist in order to apply inverse scat-
tering method for finding solutions of these integrable equations. For details of
integrable equations one may look at [1] and [9], and references therein. Lax rep-
resentation of nonlinear PDEs consists of two linear equations which are called
Lax equations

Φx = U Φ, Φt = V Φ (1)
and their compatibility condition

Ut − Vx + [U, V ] = 0 (2)

where x and t are independent variables. Here U and V are the so called Lax
pairs. They depend on independent variables x and t, and a spectral parameter λ.
Hereafter the subscripts x and t denote the partial derivatives of the object with
respect to x and t, respectively. For our cases, U and V will be 2 × 2 matrices
and they are in a given Lie algebra g. Equation (2) is called also the zero curvature
condition. Integrable equations arise as the compatibility conditions, equation (2),
of the Lax equations (1). Since Gauss-Mainardi-Coddazi (GMC) equations are
compatibility conditions of Gauss-Weingarten (GW) equations, there is a close
relationship between surfaces and Lax equations. GW equations and Lax equations
play similar roles but they are not exactly the same. While Lax equations depend on
spectral parameters, GW equations do not. Moreover GW equations are written in
terms of 3× 3 matrices whereas Lax pairs are 2× 2 matrices. The former problem
can be solved easily by inserting spectral parameters in GW equations using the
one dimensional symmetry group of GW equations. The latter problem was solved
by Sym [42]. By making use of the isomorphism so(3) ≃ su(2), he rewrote the
GW equations in terms of 2×2 matrices. So for integrable surfaces, GW equations
can be written in terms of 2× 2 matrices using the conformal parametrization.



16 Metin Gürses and Süleyman Tek

Surfaces and integrable equations can be related by the analogy between GW equa-
tions and Lax equations. Such a relation is established by the use of Lie groups
and Lie algebras. Using this relation, soliton surface theory was first developed by
Sym [40–42]. He studied the surface theory in both directions: from geometry to
solitons and from solitons to geometry. In the first direction, he obtained some well
known soliton equations as a consequence of GMC equations. In the second direc-
tion, he obtained the following formula using the deformation of Lax equations for
integrable equations

F = Φ−1∂Φ

∂λ
which gives a relation between a family of immersions (F ) into the Lie algebra and
the Lax equations for given Lax pairs. Fokas and Gelfand [12] generalized Sym’s
formula as

F = α1Φ
−1U Φ+ α2Φ

−1V Φ+ α3Φ
−1∂Φ

∂λ
+ α4 xΦ

−1U Φ

+ α5 tΦ
−1V Φ+ Φ−1M Φ

where αi, i = 1, 2, 3, 4, 5 and M ∈ g are constants. So by this technique, which is
called the soliton surface technique, using the symmetries of the integrable equa-
tions and their Lax equations we can find a large class of soliton surfaces for given
Lax pairs. One may find surfaces developed by soliton surface technique, which
belong to subclasses of the surfaces, mentioned in i)- ix) on page 3, in the refer-
ences [3–7], [12–19], [22–25], [28], [40–46].
On the other hand, there are some surfaces that arise from a variational principle
for a given Lagrange function, which is a polynomial of degree less than or equal
to two in the mean curvature of the surfaces. Examples of this type are minimal
surfaces, constant mean curvature surfaces, linear Weingarten surfaces, Willmore
surfaces, and surfaces solving the shape equation for the Lagrange functions. By
taking more general Lagrange function of the mean and Gaussian curvatures of
the surface, we may find more general surfaces that solve the generalized shape
equation (see [21], [29], [33–35], [47–50]). Examples for this type of surfaces can
be found in [14–16], [43–46].
Examples of some of these surfaces like Bianchi surfaces, surfaces for which the
inverse of the mean curvature is harmonic [4], and the Willmore surfaces [51], [52]
are very rare. The main reason is the difficulty of solving the corresponding differ-
ential equations. For this purpose, some indirect methods [3–7], [12–19], [22–25],
[28], [40–46] have been developed for the construction of surfaces in R3 and in M3.
Among these methods, soliton surface technique is very effective. In this method,
one mainly uses the deformations of the Lax equations of the integrable equations.
This way, it is possible to construct families of surfaces corresponding to some inte-
grable equations such as SG, KdV, mKdV and NLS equations [5], [12–18], [40–46]
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belonging to the afore mentioned subclasses of two-surfaces in a three dimensional
flat geometry. In particular, using the symmetries of the integrable equations and
their Lax equation, we arrive at different classes of surfaces. There are many at-
tempts in this direction and examples of new two surfaces. Konopelchenko uses
generalized Weierstrass formulae for inducing surfaces [22–25]. Konopelchenko
gives connection between linear Schrödinger equation and the KdV equation with
the surfaces of revolution immersed into the three dimensional space S3 of con-
stant curvature [25]. He also has used Davey-Stewartson hierarchy [24], mKdV
equation [23] to induce surfaces Throogh generalized Weierstrass formulae.
This work is a collection mainly of the authors’ publications on surfaces and
curves, in particular on soliton surfaces [5], [14], [15], [17–19], [43–46].

2. A Brief Introduction to Curves and Surfaces in R3

Curves in R3: Let us define a curve in R3 as a map α : I → R3, where I is an
interval in R. Every smooth curve has a defined and differentiable tangent line.
Here α(t) denotes the position vector at every point of curve for t ∈ I . At every
point of the curve, the tangent vector is defined as

t =
dα

dt
·

We assume also that t is the arc length parameter. In this case, the length of the
tangent vector is one, i.e., |t| = 1. Let {t,n,b} defines a triad at every point of
curve and forms a base at that point. Here t,n, and b denote tangent, normal, and
binormal vectors, respectively. If ⟨ , ⟩ defines the standard inner product in R3, then
the triad forms an orthonormal basis with respect to this inner product i.e.,

⟨t, t⟩ = ⟨n,n⟩ = ⟨b,b⟩ = 1.

Other combinations of the inner product are zero. This triad is called Serret-Frenet
(SF) triad and its change with respect to t is defined by the following SF equations

ṫ = kn, ṅ = −kt− τb, ḃ = τn. (3)

Here k and τ are curvature and torsion functions, respectively, which characterize
the curve. The dot on top of the letters denotes the derivative with respect to vari-
able t. The functions k and τ define the curve explicitly (we assume rotational and
translational symmetric surfaces as same, isometric surfaces). Now we give more
closed form of SF equations that we are going to use later. Let E and Ω be defined,
respectively, as

E = (t,n,b)T , Ω =

 0 k 0
−k 0 −τ
0 τ 0

 . (4)
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Here Ω is an antisymmetric and traceless matrix. We can write the SF equations in
terms of E and Ω as follows

dE

dt
= ΩE.

Since we are working with smooth curves, we assume that k and τ are infinitely
differentiable functions. This condition might be weaken, but we assume that they
are sufficiently differentiable functions. Since the torsion is zero (τ = 0) for the
plane curves, the SF equations (3) become more simple, namely

ṫ = kn, ṅ = −kt.

As we will see in the following sections for many of the integrable equations, plane
curves will be enough.
If instead of R3, we take three dimensional Minkowski space (M3), the SF equa-
tions will be different. Let ⟨ , ⟩ be inner product in M3. The orthonormal base
{t,n,b} satisfy the following orthogonal conditions

⟨t, t⟩ = 1, ⟨n,n⟩ = −1, ⟨b,b⟩ = −1.

With this orthogonal conditions SF equations take the following form

ṫ = kn, ṅ = kt− τb, ḃ = τn.

As we will see that the curves corresponding to some differential equations will
not be in R3. For that reason signature change will be very important. For the
relation between soliton equations and SF equations in different three dimensional
geometries (R3 or M3) with different signature see [18].
Surfaces in R3: Let us define a surface in R3 as a map Y : O → R3, where
O is an open set in R2. Position vector of the surface at every point is defined as
Y(x, t) = (y1(x, t), y2(x, t), y3(x, t)), where (x, t) ∈ O. Since we will work with
smooth surfaces, similar to SF triad for curves, we can define a triad {Yx,Yt,N}
which is defined at every point of surface and forms a basis for R3 at these points.
Here Y,x and Y,t are the tangent vectors of the surface defined at at all points of
the surface. The subscripts x and t denote the partial derivatives with respect to the
variables x and t, respectively. N is a unit normal vector which is differentiable at
every point of the surface. For the smooth surfaces N is given as

N =
Y,x ×Y,t

|Y,x ×Y,t|
·

The equations which gives the change of this triad is called Gauss-Wengarten (GW)
equations and they are given as

Y,ij = Γk
ij Y,k + hij N, N,i = −gklhliY,k (5)

where Y,i are tangent vectors of the surface, i = 1, 2, x1 = x and x2 = t. In this
work, we use Einstein’s summation convention on repeated indices i, j, k, l = 1, 2.
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Here gij and hij denote the coefficients of the first and second fundamental forms,
respectively. We can find the fundamental forms as

gij = ⟨Y,i,Y,j⟩, hij = ⟨N,Y,ij⟩ = −⟨N,i,Y,j⟩. (6)

As we see in equations (6), both of the coefficient matrices are symmetric in indices
i and j. Here ⟨ , ⟩ is a standard inner product in R3. gij is the elements of the
inverse matrix (g−1) of the matrix g. The matrix g is also called as metric tensor.
We can obtain all the interior local properties of the surface using the matrix g. The
Christoffel symbol Γi

jk is defined as

Γi
jk =

1

2
gil(glj,k + glk,j − gjk,l). (7)

GW equations for surfaces are equivalent to SF equations for curves. Since SF
equations are ordinary differential equations, they do not have compatibility prob-
lem. On the other hand GW equations are partial differential equations. For that
reason we need to check the compatibility of the equations. When we take the
derivative of the GW equations (5) and take the antisymmetric parts give us two
new equations class. These equations are called Gauss-Codazzi (GC) equations
and they have the form

Ri
jkl = gim(hmkhjl − hmlhjl), hij,k − Γm

ikhmj = hik,j − Γm
ijhmk (8)

where Ri
jkl are components of the Riemann curvature tensor. In the (8), first equa-

tion is known as Gauss equation and the second equation is known as Codazzi
equations. We do not have additional compatibility equations to equations (8).
The Gaussian and mean curvatures of a surface in R3 are given as

K = det(g−1h), H =
1

2
trace(g−1h). (9)

Now we give the following local proposition.

Proposition 1. Let Y,x(x, t) and Y,t(x, t) be two independent differentiable vec-
tors in R3. If Y,xt = Y,tx, then there exist a unique surface that accept these
vectors as its tangent vectors at every point of it. (It is unique except isometric
ones.)

The importance of this proposition is that without knowing the position vector
Y(x, t) we can find local properties of a surface. We can find fundamental forms
using equations (6), and the Gaussian and mean curvatures using equation (9).
These are enough to obtain local properties of the surface. First and second funda-
mental forms are given respectively by

ds2I = gijdx
idxj , ds2II = hijdx

idxj .
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As an example, if we consider the first fundamental form as

ds2I = sin2 θdx2 + cos2 θdt2

the Gaussian curvature satisfy the following equation

θxx − θtt =
1

2
K sin(2θ).

If we take the first fundamental form as

ds2I = du2 + dv2 − 2 cos θdudv

the Gaussian curvature satisfy respectively the equation

θuv = K sin θ. (10)

Even though the surfaces characterized by these two first fundamental forms looks
different, actually they are isometric to each other (through the transformation
x = u+ v, t = u− v). When the Gaussian curvature is constant, we have different
forms of the sine-Gordon equations. The condition for these surfaces to be in R3 is
finding the second fundamental form such that they satisfy GC compatibility equa-
tions. Classical example for these type surfaces is sphere. In this case h and g are
equal to each other and for the unit sphere Gaussian and mean curvatures are one.
The relation between Sine-Gordon and surface of sphere is a classical example.
This relation goes back to the mathematicians such as Bianchi and Bäcklund. For
the history see [10].
Because we are going to use it later, we express vectors in R3 in terms of 2 × 2
matrix representation of su(2) Lie algebra. In order to do that we use Pauli-sigma
matrices given as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (11)

We can write su(2) valued representation of a vector Y in R3 as

F (x, t) = i

3∑
k=1

Y kσk (12)

where Y k, k = 1, 2, 3 are components of the vector F. We can write the vector F
given in equation (12) more explicitly as

F = i

(
Y 3 Y 1 − iY 2

Y 1 + iY 2 −Y 3

)
.

In this representation, the inner product of two vectors is defined as

⟨F,G⟩ = −1

2
trace(FG)
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where F , G ∈ su(2). The length of the vector is defined as

∥F∥ =
√

|⟨F, F ⟩|.

If F is the su(2) representation of the position vector Y(x, t), then Fx and Ft

are the su(2) representation of the tangent vectors Y,x and Y,t. If we let su(2)
representation of unit normal vector N as Z, we find it as

Z =
[Fx, Ft]

∥[Fx, Ft]∥
·

Here [. , .] denotes the usual commutator. Hence we can give the su(2) representa-
tion of a triad defined at every point of a surface as

{Fx, Ft, Z}.

Because of Proposition 1 finding this triad means that obtaining the surface. In
soliton theory, surfaces are developed in this way. Fundamental forms are given in
the following way

g =

(
⟨Fx, Fx⟩ ⟨Fx, Ft⟩
⟨Fx, Ft⟩ ⟨Ft, Ft⟩

)
, h = −

(
⟨Fx, Zx⟩ ⟨Fx, Zt⟩
⟨Ft, Zx⟩ ⟨Ft, Zt⟩

)
and the Gaussian and mean curvatures take the following forms

K = det (g−1h), H =
1

2
trace(g−1h).

3. Integrable Equations

There is no unique definition of integrability in the literature. Everyone uses his
own definition. We will give some of these. If a given PDE satisfy one of the
following condition it is called integrable

i) It has a Lax representation
ii) It has Painleve property

iii) It has zero curvature representation
iv) It has Bäcklund transformation
v) There exist infinitely many conserved quantities

vi) It has a recursion operator.

In this section, we will give examples for Lax representation. Lax equations have
different formulations depending on the algebra of the Lax operator. For example,
Lax operator can be in pseudo-differential operator algebra, polynomial algebra, or
matrix algebra. In this work, we will consider the Lax representation in the matrix
algebra. We need to use higher order matrices for the system of PDEs. Since we
will work with a single PDE, 2× 2 matrices will be enough.
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Definition 2 (Lax Equations). Let Φ(x, t, λ) be SU(2) valued function such that
(x, t) ∈ O ⊂ R2, and λ ∈ C is spectral parameter. Lax equations are defined as

Φx = UΦ, Φt = V Φ (13)

where U(x, t, λ) and V (x, t, λ) are su(2) valued functions and they satisfy the
following equation

Ut − Vx + [U, V ] = 0. (14)

equation (14) is the compatibility condition of the equation (13). The matrices U
and V are known as Lax pairs.

Equation (13) defines a su(2) valued connection and equation (14) shows that the
curvature of this connection is flat. In differential geometry, equation (14) is also
called as zero curvature condition.

Example 1 (Sine-Gordon Equation). If we consider the following Lax pairs

U =
i

2
(−uxσ1 + λσ3), V =

i

2λ
(sin(u)σ2 − cos(u)σ3) (15)

then the function u(x, t) satisfy the sine-Gordon equation

uxt = sin(u) (16)

where λ is the spectral parameter. The Sine-Gordon equation (16), is a result of
the compatibility condition or the zero curvature condition equation (14). In other
words, in order to be compatible the Lax pairs given in equation (15), and Sine-
Gordon equation, equation (16) should be satisfied. Using the Lax equations of
the sine-Gordon equation, we can find some of its properties such as Bäcklund
transformation, N-soliton solution, infinitely many conservation laws. For more
details see [1], [9], [19].

Example 2 (mKdV Equation). The Lax pairs of mKdV equation are given as

U =
i

2
(λσ3 − uσ1), V = − i

2
((λ3 − 1

2
λu2)σ3 + v1σ1 + v2σ2) (17)

where v1 = uxx+u3/2−λ2u, v2 = −λux. Here the function u(x, t) satisfies the
mKdV equation

ut = uxxx +
3

2
u2ux. (18)

Same as the sine-Gordon equation using the above Lax pairs, we can obtain most
of the fundamental properties of the mKdV equation.
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4. Differential Equations, Curves and Surfaces

We shall be interested in curves where their curvature k and torsion τ satisfy certain
coupled nonlinear partial differential equations. These equations are in general
nonlinear. From the fundamental theorem of the local theory of curves, there exists,
up to isometries, a unique curve for the given functions k and τ . Hence every
distinct solution of the partial differential equations satisfied by k and τ define a
unique, up to isometries, a unique curve in R3 or in M3. For illustration we shall
consider here only the plane curves. In this case, given the curvature function k , up
to isometries, we can determine the corresponding curve uniquely. As an example
let k = 1/cosh2 s, then the corresponding curve is a catenary parameterized by
α = (s, cosh s). In this work, we would like to study the relation between the
soliton equations and the plane curves. Hence we shall not give further examples
to obtain curves from the given curvature functions. In the next section we shall see
how the solutions of the soliton equations, such as the Korteweg-de Vries equation
satisfied by k are related to plane curves.
From Curves to Differential Equations: SF equations defines how the SF triad,
E = (t,n,b)T , defined at every point of the curve moves along the curve. If the
curve moves on the surface S, at the same time, we should be able to write how it
changes in the direction of the movement. In order to do that, first we parameterize
the surface. Let the surface be parameterized as (s, t) ∈ O → S, such that s is arc
length parameter and t is the second parameter of the surface S. The movement
of the curve is defined in terms of the derivative of the SF triad with respect to
variable t as

dE

dt
= ΓE. (19)

In addition to the SF equation, the equation (19) determines the change in the t
direction. Here Γ is a traceless 3× 3 matrix. The entries of this matrix is not free.
As we mentioned earlier, SF equations can be written in the following form

dE

ds
= ΩE

where Ω is given by equation (4). The compatibility condition of SF equations and
the equation (19) defines the t change and gives the equation

Ωt − Γs +ΩΓ− ΓΩ = 0. (20)

Using the equation (20), we can find the entries of Γ in terms of the curvature k
and the torsion τ . At the same time, for special choices, the differential relation
arise between k and τ . To explain it better, we consider plane curves. We will find
it by using the change of the position vector α with respect to s and t. They are
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given by
dα

ds
= t,

dα

dt
= pn+ wt (21)

where p and w are some functions of s and t. The compatibility conditions of the
equations (21) have as a result the equations

ws = k p, tt = (ps + kw)n. (22)

The second equation in (22) gives the t change of the tangent vector. If we consider
the compatibility conditions of this equation with SF equation dt/ds = k n, we
obtain the equations

kt = (ps + w k)s, nt = −(ps + kw)t. (23)

We do not obtain any further new conditions from the second equation as the
compatibility condition and s derivative of the normal vector from SF equation
dn/ds = −kt. Hence the entries of the Γ matrix are found. On the other hand
the first equation in (23) implies that the curvature k should satisfy a differential
equation. If we substitute w given by equation (22) into this equation, we obtain

kt = D2p+ k2p+ ks

∫
kp ds (24)

where D = ∂/∂s. This equation reminds us the recursion operator R of the mKdV
equation. The above equation takes the appropriate form with a simple calculation

kt = R p, R = D2 + k2 + ksD
−1k (25)

where R is the recursion operator of mKdV equation and D−1 is the integral op-
erator. For example, if we take p = ks, k satisfies the mKdV equation

kt = ksss +
3

2
k2ks. (26)

But in general, p(s, t) is a free function and if we take p = Rnks, the equation
(25) provides the mKdV hierarchy, where n is positive integer. Every solution of
the mKdV equation, especially soliton solution, gives different curves in the plane.
As far as we know, this side of the problem has not been worked that much. In
other words, the local and general properties of the plane curves that correspond to
mKdV equation and its hierarchy has not been studied. It is also possible to plot
these surfaces with the computer’s aid.
Another point that we should mention is arbitrary choice of the function p results
different curves whereas the equation satisfied by k does not have to be integrable.
For example, if we choose p = ek, the equation we obtain from equation (25) is
not integrable.
Here we used plane curves as an application. Similarly it can be done for R3. In R3,
there will be a separate equation for the torsion function τ. Following the similar
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approach, a coupled nonlinear PDEs are obtained for k and τ . For more details
see [18] . Furthermore, Minkowski plane curves are also studied in that article. In
this way, some new equations are obtained those could not be obtained from plane
curves in R3. As an example, Let us consider a three dimensional general space
with the signature 1 + 2ϵ (ϵ is 1 and −1 for R3 and M3, respectively). We can find
mKdV equation with both signature on plane curves as kt = ksss + (3/2)ϵk2 ks
using the method described above.
Additionally for obtaining the NLS equation one can look [20] and [26]. Hasimoto
is trying to find relationship between tornado in nature and solutions of the NLS
equation.

5. Theory of Soliton Surfaces

Soliton surface technique is a method to construct surfaces in R3 and in M3. In this
technique, the main tool is the deformations of Lax equations of integrable equa-
tions. In the literature, there are certain surfaces corresponding to certain integrable
equations like SG, sinh-Gordon, KdV, mKdV, and NLS equations [3–5], [12–18],
[28], [40–46]. Symmetries of the integrable equations for given Lax pairs play the
crucial role in this method which was first developed by Sym [40–42] and then it
was generalized by Fokas and Gel’fand [12], Fokas et al [13], [5] and Cieśliński
[7]. Now by considering surfaces in a Lie group and in the corresponding Lie
algebra, we give the general theory.
Let G be a Lie group and g be the corresponding Lie algebra. We give the theory
for dim g = 3 but it is possible to generalize it for any finite dimension n. Assume
that there exists an inner product ⟨ , ⟩ on a Lie algebra g such that for g1, g2 ∈
g as ⟨g1, g2⟩. Let {e1, e2, e3} be the orthonormal basis in g such that ⟨ei, ej⟩ =
δij (i, j = 1, 2, 3), where δij is the Kronecker delta.
Let Φ be a G valued differentiable function of x, t, and λ for every (x, t) ∈ O ⊂ R2

and λ ∈ R. So a map can be defined from tangent space of G to the Lie algebra g
as

ΦxΦ
−1 = U, ΦtΦ

−1 = V (27)
where Φx and Φt are the tangent vectors of Φ, U and V are functions of x, t and
λ, and take values in g.

The function Φ defined by equation (27) exists if and only if U and V satisfy the
following equation

Ut − Vx + [U, V ] = 0 (28)
where [ , ] is the Lie algebra commutator such that [ei, ej ] = ckij ek, i, j = 1, 2, 3,
and ckij are structural constants of g. Repeated indices are summed up from 1 to 3.
Indeed, Φ exists if and only if the equations given in equation (27) are compatible.
To prove that, we differentiate the first and second equations in equation (27) with
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respect to t and x, respectively and we obtain the following equations

ΦxtΦ
−1 = Ut +ΦxΦ

−1ΦtΦ
−1, ΦtxΦ

−1 = Vx +ΦtΦ
−1ΦxΦ

−1. (29)

Since left hand sides of these equations are equal, equating the right hand sides of
these equations and using equation (27) we obtain the equation (28).
So Φ is a surface in G defined by equation (27) with the compatibility condition
given by equation (28). Now let us introduce a surface S in the Lie algebra g. Let
F be a g valued differentiable function of x, t, and λ for every (x, t) ∈ O ⊂ R2

and λ ∈ R. The first and second fundamental forms of S are defined as

ds2I ≡ gijdx
idxj = ⟨Fx, Fx⟩dx2 + 2⟨Fx, Ft⟩dxdt+ ⟨Ft, Ft⟩dt2

(30)
ds2II ≡ hijdx

idxj = ⟨Fxx, N⟩dx2 + 2⟨Fxt, N⟩dxdt+ ⟨Ftt, N⟩dt2

where gij and hij are the components of the first and second fundamental forms,
respectively. Here i, j = 1, 2, x1 = x and x2 = t, and N ∈ g is defined as

⟨N,N⟩ = 1, ⟨Fx, N⟩ = ⟨Ft, N⟩ = 0.

Here {Fx, Ft, N} forms a frame at each point of the surface S.
We are working in a finite dimensional Lie algebra g. Therefore the latter has a
matrix representation by Ado’s theorem. We use matrices, so the adjoint map is of
the form Φ−1AΦ, for Φ ∈ G and A ∈ g.
By using the adjoint representation, we can relate the surfaces in G to the surfaces
in g as

Fx = Φ−1AΦ, Ft = Φ−1B Φ (31)

where A and B are g valued differentiable functions of x, t, and λ for every (x, t) ∈
O ⊂ R2 and λ ∈ R.
The equations given in (31) define a surface S if and only if A and B satisfy the
following equation

At −Bx + [A, V ] + [U,B] = 0. (32)

Indeed, the equations (31) have no meaning unless they are compatible. In other
words equation (32) is the compatibility condition of the equations in (31), i.e.,
F,xt = F,tx.
The normal vector N of S can appear also in the following form by using the
adjoint representation

N = Φ−1C Φ (33)

where C ∈ g.

Since inner product is invariant under adjoint representation, using equations (31)
and (33) we can find the first and second fundamental forms of the surface S. Using
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equations (30) we obtain the components of the first and the second fundamental
forms as
g11=⟨A,A⟩, g12=g21=⟨A,B⟩, g22=⟨B,B⟩

h11=⟨Ax + [A,U ], C⟩, h12=h21=⟨At + [A, V ], C⟩, h22=⟨Bt + [B, V ], C⟩
(34)

where

C =
[A,B]

∥[A,B]∥
, ∥A∥ =

√
|⟨A,A⟩|. (35)

The following theorem summarizes the results given above.

Theorem 3. Let U , V , A, and B be g valued differentiable functions of x, t, and
λ for every (x, t) ∈ O ⊂ R2 and λ ∈ R. Assume that U , V , A, and B satisfy the
following equations

Ut − Vx + [U, V ] = 0 (36)
and

At −Bx + [A, V ] + [U,B] = 0. (37)
Then the following equations

Φx = U Φ, Φt = V Φ (38)

and
Fx = Φ−1AΦ, Ft = Φ−1B Φ (39)

define the surfaces Φ ∈ G and F ∈ g, respectively. The first and the second
fundamental forms of the surface F are respectively

ds2I ≡ gijdx
idxj , ds2II ≡ hijdx

idxj (40)

where i, j = 1, 2, x1 = x, x2 = t, gij and hij are of the form that appear in
equations (34) and (35). The Gaussian and the mean curvatures of the surface are
given by

K = det(g−1)h, H =
1

2
trace(g−1h) (41)

where g and h denote the matrices (gij) and (hij), respectively, and g−1 stands for
the inverse of the matrix g.

For a differential equation which has Lax representation, we find A and B matrices
and then we find the first and second fundamental forms. Using the fundamental
forms we easily find the Gaussian and mean curvatures of the surface. If it is
possible, we will try to find also the position vector F . As a result of these we
study the properties of the surfaces. The matrices A and B relates the differential
equations and surfaces by equations given in equation (39). In general, solving the
equation given by equation (37) to find A and B and expressing the position vector
are difficult. In order to overcome this difficulty we define an operator δ.
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Definition 4. Let δ be a operator acts on differentiable functions. If δ satisfy the
following conditions

δ∂x = ∂xδ, δ∂t = ∂tδ

δ(f g) = gδ(f) + fδ(g), δ(af + bg) = aδ(f) + bδ(g).

Here f and g are differentiable functions, and a and b are constants. We call such
operators as deformation operators.

The following proposition gives a solution for finding A and B matrices.

Proposition 5. Let Φ, U , and V are the matrices satisfying the equations given in
(36) and (38), A and B defines as A = δU and B = δV , respectively. Equation
for A and B in equation (37) is automatically satisfied and we have the following
equations

(Φ−1δΦ)x = Φ−1AΦ, (Φ−1δΦ)t = Φ−1BΦ.

The Proposition 5 gives a family of surfaces for every deformation operator δ. In
the following proposition, we give the relation that directly connects deformation
operators and surfaces. We also obtain the expression for the position vectors of
the surface.

Proposition 6. Let F be g valued position vector. The position vector F and its
partial derivatives are given as

F = Φ−1δΦ, Fx = Φ−1AΦ, Ft = Φ−1BΦ. (42)

To prove it, it is enough to check the compatibility condition i.e., (Fx)t = (Ft)x.
That is satisfied by Proposition 5. By Proposition 6, we can find one or more sur-
faces (depending on the deformation operator δ) that corresponds to a differential
equation.
Now finding deformation operators in soliton theory and hence determining the
matrices A and B becomes an important step. The following proposition answers
the question how to find A and B without solving the equation in constructing the
surfaces. When we talk about symmetries of soliton equations, we do not mean
just symmetries of integrable equations but also symmetries of Lax equations.

Proposition 7. The followings are the deformation operators of soliton equations.

a) Nonlinear integrable equations are invariant under spectral parameter de-
formation. In this case, the deformation operator is δ = ∂/∂λ. Hence A
and B matrices are given as

A =
∂U

∂λ
, B =

∂V

∂λ
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and position vector of the surface and its derivatives take the following
forms

F = Φ−1∂Φ

∂λ
, Fx = Φ−1∂U

∂λ
Φ, Ft = Φ−1∂V

∂λ
Φ.

This type of relation first studied by Sym [40–42].
b) Another deformations is Gauge symmetries of the Lax equations. Under

Gauge transformation Φ, U , and V change as

Φ′ = SΦ, U ′ = SUS−1 + SxS
−1, V ′ = SV S−1 + StS

−1

but Lax equations keep their form. These Gauge transformations define a
new δ operator. If we let S = I + ϵM such that ϵ2 = 0, then we get
δΦ = MΦ. Here M is any traceless 2 × 2 matrix. The matrices A and B
are obtained by

A = δU =
∂M

∂x
+ [M,U ], B = δV =

∂M

∂t
+ [M,U ]

and the position vector of the surface is given as

F = Φ−1MΦ. (43)

More information about this deformation can be found in [5], [7], [12], [13].
c) Symmetries of the nonlinear integrable equations are another type of defor-

mation. These symmetries are two types. First one is classical Lie symme-
tries which preserve the differential equation. The second is the generalized
symmetries of nonlinear integrable equations. The latter transformation
maps solutions to solutions. Deformation operator for these symmetries is
taken as Freche’t derivative (see [12] and [5]). In other words, for a differ-
entiable function F , δF (x) is defined as

δF (x) = lim
ϵ→0

df(x+ ϵt)

dϵ
·

For this deformation, the matrices A and B, and the position vector of the
surface take the following form

A = δU, B = δV, F = Φ−1δΦ. (44)

d) The deformation of parameters for solution of integrable equation is the
fourth deformation. This is introduced in [44]. In this case, A, B, and F
are obtained as

Ai =
∂U

∂ξi
, Bi =

∂V

∂ξi
, Fi = Φ−1 ∂Φ

∂ξi
, i = 1, 2, . . . , N.

Here ξi are parameters of solution u(x, t, ξi) of integrable nonlinear equa-
tions, where i = 1, 2, . . . , N . Here N is the number of parameters of the
solution of integrable equation.
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The Proposition 7 establishes the relationship between differential equations which
has Lax representation and related surfaces. Now we give two proposition about
the surface of sphere.

Proposition 8. For any differential equation, if the determinant of the matrix M ,
given in Proposition 7 b), is constant, i.e., detM = R2 = const, the correspond-
ing surface is a sphere with radius R.

To prove it is enough take the determinant of both side of the equation given in
equation (43). Some of the differential equations have transitional symmetry in
either x direction or t direction (or in both direction). In this case the deformation
operator can be considered as δ = ∂x or δ = ∂t. Here we consider the transition in
both directions such as δ = a∂x + b∂t, where a and b are arbitrary constants.

Proposition 9. If δ = a∂x + b∂t is the symmetry operator such that a and b are
free parameters and det(aU + bV ) = const = R2, the corresponding surface is a
surface of sphere with radius R.

If δ = a∂x+ b∂t, using the third equation in (44), Proposition 7 and equation (38),
we obtain F in the following form

F = Φ−1(aU + bV )Φ

which yields
detF = det(aU + bV ) = R2.

Both of the above results are independent of the integrable equations. First one
says the surface is a sphere if the gauge transformation is a special one and the
second proposition says that the surface is again a sphere if the Lax representation
is special.

6. Surfaces From a Variational Principle

In 1833, Poisson considered the free energy of a solid shell as

F = ⃝
∫∫

S
H2dA. (45)

Here S is a smooth closed surface, A and H denote the surface area and the mean
curvature of the surface S. In 1982, Willmore obtained the equation of the surface
as a result of variational derivative of F . We give this in the following proposition.

Proposition 10. Let S be a smooth closed surface, K and H be the Gaussian
and the mean curvatures of the surface, respectively. Variation of the functional F
gives the following Euler-Lagrange equation [51]

∇2H + 2(H2 −K)H = 0. (46)
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Here ∇2 is the Laplace-Beltrami operator defined as

∇2 =
1√
g̃

∂

∂xi

(√
g̃gij

∂

∂xj

)
(47)

where g̃ = det (gij), gij is the inverse components of the first fundamental form,
and i, j = 1, 2, where x1 = x, x2 = t. Solutions of the equation (46) are called
Willmore surfaces.

Helfrich [21] obtained the curvature energy per unit area of the bilayer as

Elb = (kc/2) (2H + c0)
2 + k̄K (48)

where kc and k̄ are elastic constants, and c0 is spontaneous curvature of the lipid
bilayer. Using the Helfrich curvature energy given by equation (48), the free energy
functional of the lipid vesicle is written as

F = ⃝
∫∫

S
(Elb + ω)dA+ p

∫∫∫
V
dV. (49)

Ou-Yang and Helfrich [34] obtained the shape equation of the bilayer by taking the
first variation of free energy F given in equation (49). We give this result in the
following proposition.

Proposition 11. Let S be a smooth surface of lipid vesicle, V be the volume en-
closed by the surface and p and ω be the osmotic pressure and surface tension of
the vesicle, respectively. First order variation of the functional in equation (49)
yields the following Euler-Lagrange equation [34]

kc∇2(2H) + kc(2H + c0)(2H
2 − c0H − 2K) + p− 2ωH = 0. (50)

Later Ou-Yang et al considered the more general energy functional

F = ⃝
∫∫

S
E(H,K)dA+ p

∫∫∫
V
dV (51)

which arises both in red blood cells and liquid crystals [33], [47–50]. Here E is
function of mean and Gaussian curvatures H and K, respectively, p is a constant,
and V is the volume enclosed within the surface S.

Proposition 12. Let S be a closed smooth surface. The first variation of F given
in equation (51) results a highly nonlinear Euler-Lagrange equation (see [33],
[47–49])

(∇2 + 4H2 − 2K)
∂F
∂H

+ 2(∇ · ∇̄+ 2KH)
∂E
∂K

− 4HE + 2p = 0 (52)

where ∇2 is the Laplace-Beltrami operator given in equation (47) and ∇ · ∇̄ is
defined by the formula

∇·∇̄ =
1√
g̃

∂

∂xi

(√
g̃Khij

∂

∂xj

)
. (53)
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For open surfaces, we let p = 0.

Some of the surfaces can be obtained from a variational principle for a suitable
choice of E are given as

a) Minimal surfaces: E = 1, p = 0

b) Surfaces with constant mean curvature: E = 1

c) Linear Weingarten surfaces: E = aH+b, where a and b are some constants,
aK + 2bH − p = 0

d) Willmore surfaces: E = H2, [51], [52]
e) Surfaces that solve the shape equation of lipid membrane: E = (H − c)2,

where c is a constant [29], [33–35], [47–50]
f) Shape equation of closed lipid bilayer: E = (kc/2) (2H + c0)

2+k̄K, where
kc and k̄ are elastic constants, and c0 is the spontaneous curvature of the
lipid bilayer [34].

Definition 13. Surfaces that solve the following equation

∇2H + aH3 + bH K = 0 (54)

are called Willmore-like surfaces, where a and b are arbitrary constants.

Remark 14. When a = 2 and b = −2, the surface becomes Willmore surface
which arise from a variational problem.

7. Soliton Surfaces in R3

In this section, we obtain surfaces in R3 using soliton surface technique and varia-
tional principle. Consider the immersion F of U ∈ R2 into R3. Let N(x, t) denotes
the vector field at every point of the surface. Let us denote the tangent space by
T(x,t)S of the surface S. A basis for the T(x,t)S can be defined as {Fx, Ft, N}.
Here S is a surface parameterized by F (x, t). Let us denote the first and second
fundamental forms, respectively, as

ds2I ≡ gijdx
idxj , ds2II ≡ hijdx

idxj , i, j = 1, 2, x1 = x, x2 = t.

As we discussed in previous sections, in order to develop surfaces using integrable
equations we use Lie group and its Lie algebra. To study the immersions in R3,
we use SU(2) as a Lie group and su(2) as its corresponding Lie algebra. Consider
ek = −iσk, k = 1, 2, 3 as a basis for the Lie algebra su(2). Here σk denotes the
standard Pauli sigma matrices (cf. equation (11)).
Consider the following inner product defined on su(2) Lie algebra

⟨X,Y ⟩ = −1

2
trace(XY )
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where X , Y ∈su(2) and [. , .] denotes the usual commutator.

We follow Fokas and Gelfand’s approach introduced in Section 5 to construct sur-
faces using integrable equations such as mKdV, SG, and NLS equations. We start
with su(2) valued Lax pairs U and V of these integrable equations. We use the de-
formations that we introduced in Section 5 to find the matrices A and B that satisfy
equation (37). Using the matrices U , V , A and B we find the first and second fun-
damental forms of the surfaces corresponding to mKdV, SG, and NLS equations.
We also find the Gaussian and the mean curvatures of these surfaces using first and
second fundamental forms. Finding K and H allows us to classify some of these
surfaces. Furthermore, in order to find the position vector F explicitly, we solve
the Lax equations of the integrable equation using the Lax pairs U and V , and
a solution of the integrable equation that we consider. Using the solution of Lax
equations, and the matrices A and B we find the su(2) valued position vector F of
the surface. Considering some special values of the parameters in position vector,
we plot some of these surfaces that we obtained using integrable equations. We
also obtain some new Willmore-like surfaces and surfaces that satisfy generalized
shape equation.

7.1. mKdV Surfaces From Spectral Parameter Deformations

In soliton surface technique, finding the matrices A and B that satisfy the equation
(37) is crucial. There are four methods to determine them as we mentioned in
Section 5. In this section we use the spectral parameter deformation of the Lax
pairs of mKdV equation. In this section we closely follow the references [5] and
[43].

Let u satisfy the mKdV equation

ut = uxxx +
3

2
u2ux. (55)

When we use the travelling wave ansatz ut−αux = 0 in mKdV equation (55) and
integrating that equation, we obtain the simpler form of the mKdV equation as

uxx = αu− u3

2
· (56)

Here α is an arbitrary real constant and the integration constant is set to zero. The
Lax pairs for the mKdV equation in equation (56) are given as
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U =
i

2

(
λ −u
−u −λ

)
(57)

V = − i

2

 1

2
u2 − (α+ αλ+ λ2) (α+ λ)u− iux

(α+ λ)u+ iux −1

2
u2 + (α+ αλ+ λ2)


and λ is the spectral parameter.
In the following proposition, using the Lax pairs of mKdV equation and their spec-
tral parameter deformation we obtain the surfaces for mKdV equation.

Proposition 15. Let u be a travelling wave solution of the mKdV equation given
in equation (56) and su(2) valued Lax pairs U and V are defined by equations
(57). The matrices A and B, defined as spectral parameter deformations of the
Lax pairs U and V , respectively, are given by the following equations

A = µ
∂U

∂λ
=

i

2

(
µ 0
0 −µ

)
(58)

B = µ
∂V

∂λ
= − i

2

(
−(αµ+ 2µλ) µu

µu αµ+ 2µλ

)
where µ is a constant and λ is the spectral parameter. First and second fundamen-
tal forms of the surface S are given as

ds2I ≡ gjkdx
jdxk =

µ2

4

(
(dx+ (α+ 2λ)dt)2 + u2dt2

)
ds2II ≡ hjkdx

jdxk =
µu

2

(
dx+ (α+ λ)dt

)2
+

µu

4
(u2 − 2α)dt2

and the other two important geometric invariants of the surface, namely Gaussian
and mean curvatures are obtained as

K =
2

µ2

(
u2 − 2α

)
, H =

1

2µu

(
3u2 + 2 (λ2 − α)

)
where x1 = x, x2 = t. Repeated indices are summed up.

Proposition 15 gives us the invariants of the surfaces developed using mKdV equa-
tions. In the following three propositions, we will classify some of these surfaces.
The following proposition gives surfaces belongs to Weingarten surfaces [5], [43].

Proposition 16. Let u be a travelling wave solution of the mKdV equation given
in equation (56) and S be the surface obtained using spectral parameter deforma-
tion in Proposition 15. Then the surface S is a Weingarten surface that has the
following algebraic relation between Gaussian and mean curvatures of the surface

8µ2H2(4α+ µ2K) = (8α+ 4λ2 + 3µ2K)2.
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When α = λ2 in Proposition 15, the surface reduces to a quadratic Weingarten
surface which has the following relation

16µ2H2 = 18(µ2K + 4λ2).

Integrating the equation given in equation (56) and taking the integration constant
zero, we obtain the following equation

u2x = αu2 − u4

4
· (59)

The following proposition gives another class of mKdV surfaces, namely Willmore-
like surfaces [43]. In this case, Gaussian and mean curvatures satisfy some partial
differential equation.

Proposition 17. Let u satisfy equation (59) and S be the surface obtained using
spectral parameter deformation in Proposition 15. Then the surface S is called a
Willmore-like surface. This means that the Gaussian and mean curvatures of the
surface S satisfy the partial differential equation given in equation (54), where

a =
4

9
, b = 1, α = λ2

and λ is an arbitrary constant.

In the following proposition we investigate mKdV surfaces which arise from a
variational principle. It gives solutions to the Euler-Lagrange equation (52).

Proposition 18. Let u satisfy equation (59) and S be the surface obtained using
spectral parameter deformation in Proposition 15. Then there are mKdV surfaces
satisfying the generalized shape equation (52) with Lagrange functions which are
polynomials of Gaussian and mean curvatures of the surface S.

Let us now give some examples of polynomial Lagrange functions of H and K that
solve the equation given in equation (52) and provide the constraints [43]. Now
we give following examples where the mKdV surfaces mentioned in the previous
Proposition 18 are the critical points of the functionals with deg(E) = N .

Example 3.

i) For N = 3, the Lagrange function is in the following form

E = a1H
3 + a2H

2 + a3H + a4 + a5K + a6KH

where

α = λ2, a1 = − p µ4

72λ4
, a2 = a3 = a4 = 0, a6 =

p µ4

32λ4
·

Here λ ̸= 0, and µ, p, and a5 are arbitrary constants.
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ii) For N = 4, the Lagrange function is in the following form

E = a1H
4 + a2H

3 + a3H
2 + a4H + a5 + a6K

+a7KH + a8K
2 + a9KH2

where

α = λ2, a2 = − p µ4

72λ4
, a3 = − 8λ2

15µ2
(27 a1 − 8 a8), a4 = 0

a5 =
λ4

5µ4
(81 a1 + 16 a8), a7 =

p µ4

32λ4
, a9 = − 1

120
(189 a1 + 64 a8).

Here λ ̸= 0, µ ̸= 0, and p, a1, a6, and a8 are arbitrary constants.
iii) For N = 5, the Lagrange function is in the following form

E = a1H
5 + a2H

4 + a3H
3 + a4H

2 + a5H + a6 + a7K

+a8KH + a9K
2 + a10KH2 + a11K

2H + a12KH3

where
α = λ2, a3 = − 1

504µ2 λ4

(
λ6(4212 a1 + 256 a11) + 7 p µ6

)
a4 = − 8λ2

15µ2
(27 a2 − 8 a9) , a5 =

6λ4

7µ4
(135 a1 − 88 a11)

a6 =
λ4

5µ4
(81 a2 + 16 a9)

a8 =
1

32µ2 λ4

(
λ6(−324 a1 + 512 a11) + p µ6

)
a10 = − 1

120
(189 a2 + 64 a9) , a12 = − 1

756
(1053 a1 + 512 a11).

Here λ ̸= 0, µ ̸= 0, and p, a1, a2, a7, a9, and a11 are arbitrary constants.
iv) For N = 6, the Lagrange function is in the following form

E = a1H
6 + a2H

5 + a3H
4 + a4H

3 + a5H
2 + a6H

+a7 + a8K + a9KH + a10K
2 + a11KH2 + a12K

2H

+a13KH3 + a14K
3 + a15K

2H2 + a16KH4

where
α = λ2, a4 = − 1

504µ2 λ4

(
λ6(4212 a2 + 256 a12) + 7 p µ6

)
a5 = − λ4

900µ4
(−359397 a1 + 191488 a14 − 203472 a16)

− 8λ2

15µ2
(27a3 − 8a10)

a6 =
6λ4

7µ4
(135 a2 − 88 a12)
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a7 =
λ6

25µ6
(29889 a1 − 9856 a14 + 11664 a16)+

λ4

5µ4
(81a3 + 16a10)

a9 =
1

32µ2 λ4

(
λ6[−324 a2 + 512 a12] + p µ6

)
a11 = − λ2

1800µ2
(59778 a1 − 13312 a14 + 23328 a16)

− 1

120
(189a3 + 64a10)

a13 = − 1

756
(1053 a2 + 512 a12)

a15 = − 1

2880
(5103 a1 + 2048 a14 + 3888 a16) .

Here λ ̸= 0, µ ̸= 0, and p, a1, a2, a3, a8, a10, a12, a14, and a16 are arbitrary
constants.

For general N ≥ 3, from the above examples, the polynomial function E takes the
following form

E =

N∑
n=0

Hn

⌊ (N−n)
2

⌋∑
l=0

anlK
l

where ⌊x⌋ denotes the greatest integer less than or equal to x, and anl are constants.

7.1.1. Position Vector of mKdV Surfaces

In the previous section, we obtained local invariants of the mKdV surfaces. We
also classified some of these surfaces such as Weingarten surfaces, Willmore-like
surfaces and surfaces that solves generalized shape equation. It is also important
to determine the position vector of the mKdV surfaces.

We start with one soliton solution of mKdV equation given in equation (56). Con-
sider the following one soliton solution

u = k1 sechξ (60)

where α = k21/4 in equation (56) and ξ = k1
(
k21 t+ 4x

)
/8. Using this one

soliton solution and corresponding matrix Lax pairs U and V given by equations
(57) of mKdV equation, we solve the Lax equations given in equation (38). The
solution of Lax equation is a 2× 2 matrix Φ

Φ =

(
Φ11 Φ12

Φ21 Φ22

)
.
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We find the components of Φ as

Φ11 = − i

k1
A1 e

i(k21+4λ2)t/8 (2λ+ i k1 tanh ξ)

× (tanh ξ + 1)iλ/2k1 (tanh ξ − 1)−iλ/2k1

+i k1B1 e
−i(k21+4λ2)t/8 (tanh ξ − 1)iλ/2k1 (tanh ξ + 1)−iλ/2k1 sech ξ

Φ12 = − i

k1
A2 e

i(k21+4λ2)t/8 (2λ+ i k1 tanh ξ)

× (tanh ξ + 1)iλ/2k1 (tanh ξ − 1)−iλ/2k1

+i k1B2 e
−i(k21+4λ2)t/8 (tanh ξ − 1)iλ/2k1 (tanh ξ + 1)−iλ/2k1 sech ξ

(61)
Φ21 = iA1 e

i(k21+4λ2)t/8 (tanh ξ + 1)iλ/2k1 (tanh ξ − 1)−iλ/2k1 sech ξ

+B1 e
−i(k21+4λ2)t/8 (k1 tanh ξ + 2iλ)

× (tanh ξ − 1)iλ/2k1 (tanh ξ + 1)−iλ/2k1

Φ22 = iA2 e
i(k21+4λ2)t/8 (tanh ξ + 1)iλ/2k1 (tanh ξ − 1)−iλ/2k1 sech ξ

+B2 e
−i(k21+4λ2)t/8 (k1 tanh ξ + 2iλ)

× (tanh ξ − 1)iλ/2k1 (tanh ξ + 1)−iλ/2k1 .

Here A1, A2, B1, and B2 are arbitrary constants. The determinant of the matrix Φ
is constant which is obtained in terms of k1, λ, A1, A2, B1, and B2 as

det(Φ) = ((k21 + 4λ2)/k1) (A1B2 −A2B1) ̸= 0.

In order to find the immersion function F explicitly, we first find Fx and Ft from
equation (39). For this purpose we substitute the su(2) valued matrices A and B
given by equations (58), and the the matrix Φ given by equations (61) into the
equations for Fx and Ft given by equation (39). We solve the resultant equation by
letting A1 = A2, B1 = (A1/k1)e

πλ/k1 , B2 = −B1 and obtain the function F as

F = e1y1 + e2y2 + e3y3

where y1, y2, and y3 are given as

y1 =
1

4 k1 (e2ξ + 1)
W1

(
Ω1 (e

2ξ + 1) + 32k1

)
y2 = −4W1 cosΩ2 sech ξ (62)

y3 = 4W1 sinΩ2 sech ξ.
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Here e1, e2, e3 form a basis for su(2), Ω1, Ω2, and W1 are given as

W1 = − µk1
2 (k21 + 4λ2)

, Ω1 =
(
t (8λ+ k21) + 4x

) (
k21 + 4λ2

)
Ω2 = t

(
λ2 +

1

4
k21(1 + λ)

)
+ xλ, ξ =

k31
8
(t+

4x

k21
).

7.1.2. Plotting mKdV Surfaces From Spectral Parameter Deformation

Position vector Y = (y1, y2, y3) of the mKdV surfaces corresponds to the spectral
parameter deformation is given by equations (62) that we obtained using one soli-
ton solution. We plot some of these mKdV surfaces for some special values of the
constants µ, λ, and k1.

Example 4. Taking µ = 5, k1 = 1.5, and changing λ as a)λ = 1, b)λ = 2, in
the equations provided by equations (62), we get the surfaces given in Fig. 1.

(a) (b)

Figure 1. (x, t) ∈ [−3, 3]× [−3, 3]

Example 5. Taking µ = 2, λ = 0, and k1 = 1.25 in the equations (62), we get the
surface given in Fig. 2.

Example 6. Taking µ = 3, k1 = −2, and changing λ as a)λ = 0.08, b)λ = 0.2,
c)λ = 0.5, d)λ = 0.8 in the equations (62), we get the surfaces given in Fig. 3.

Even though for small values of x and t these surfaces given in Examples 4 - 6
have different behaviors, asymptotically they are similar to each other. As ξ tends
to ±∞, y1 approaches ±∞, and y2 and y3 become zero.
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Figure 2. (x, t) ∈ [−8, 8]× [−8, 8]

7.2. mKdV Surfaces From the Spectral-Gauge Deformations

When we consider a combination of the spectral parameter and gauge deformations
of Lax pairs U and V given by equations (57), for mKdV equation, local invariants
of the surface are more complicated than the just spectral deformations case. In
this case the matrices A and B are obtained as

A = µ
∂U

∂λ
+ ν[σ2, U ], B = µ

∂V

∂λ
+ ν[σ2, U ].

Here we just give the Gaussian and mean curvatures of the surfaces of the surface
as

K =
2u (u2 − 2α)

ν
(
2 νu[u2 − 2α]− 3µu2 − 2µ(λ2 − α)

)
+ µ2u

H =
µ(3u2 + 2(λ2 − α))− 4u ν(u2 − 2α)

2 ν
(
2 ν u[u2 − 2α]− 3µu2 − 2µ(λ2 − α)

)
+ 2µ2 u

·

The mKdV surfaces obtained from spectral-gauge deformation do not belong to
Willmore-like surfaces and surfaces that solve the generalized shape equation.
In order to find the position vector of the surfaces we use the same method that we
used for the spectral deformation. We use one soliton solution, given in equation
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(a) (b)

(c) (d)

Figure 3. (x, t) ∈ [−8, 8]× [−8, 8]

(60), of the mKdV equation. Lax pairs U and V, and solution, Φ, of the Lax equa-
tion are same as the spectral deformation given by equations (57), and equations
(61). The components of the position vector Y = (y1, y2, y3) for mKdV surfaces
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correspond to spectral-gauge deformation are given as

y1 = −W2
e2ξ − 1

(e2ξ + 1)
sech ξ −W3Ω3 −W4

1

e2ξ + 1

y2 =
(1
2
W4 sech ξ +W5

(
e4ξ + 1

)
(e2ξ + 1)2

−W6 sech
2 ξ
)
cosΩ2

+W7

(
e2ξ − 1

)(
e2ξ + 1

) sinΩ2 (63)

y3 =
(1
2
W4 sech ξ +W5

(
e4ξ + 1

)
(e2ξ + 1)2

−W6 sech
2 ξ
)
sinΩ2

−W7

(
e2ξ − 1

)(
e2ξ + 1

) cosΩ2

where

W2 =
2 k21 ν

k21 + 4λ2
, W3 =

µ

8
, W4 =

4µk21
k21 + 4λ2

W5 =
ν (k21 − 4λ2)

k21 + 4λ2
, W6 =

ν (4λ2 + 3 k21)

2(k21 + 4λ2)

W7 =
4λ k21 ν

k21 + 4λ2
, ξ =

k31
8
(t+

4x

k21
)

Ω2 = t
(
λ2 + k21 (1 + λ)/4

)
+ xλ, Ω3 =

(
t (8λ+ k21) + 4x

)
.

7.2.1. Plotting mKdV Surfaces From Spectral-Gauge Deformation

In this section, we plot some of mKdV surfaces that we obtained using spectral-
gauge deformation where the position vector is given by equations (63) for some
special values of the constants µ, ν, λ, and k1.

Example 7. Taking µ = −6, ν = 1.5, and k1 = 1.5, and changing λ as a)λ = 0,
b)λ = 0.2 in the equations provided by equations (63), we get the surface given in
Fig. 4.

Example 8. Taking µ = 3, ν = −1, and k1 = 1, and changing λ as a)λ = 1,
b)λ = −4 in the equations (63), we get the surface given in Fig. 5.

Example 9. Taking µ = 1.5, ν = 0.1, k1 = 1.7, and λ = 0.1 in the equations
(63), we get the surface given in Fig. 6.

Example 10. Taking µ = −3, ν = −1, k1 = 1, and λ = −0.2 in the equations
(63), we get the surface given in Fig. 7.
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(a) (b)

Figure 4. (x, t) ∈ [−8, 8]× [−8, 8]

(a) (b)

Figure 5. (x, t) ∈ [−8, 8]× [−8, 8]

Asymptotic behavior of these surfaces in Examples 7 - 10 are as follows, ξ tends
to ±∞, y2 approaches W5 cosΩ2 ± W7 sinΩ2, y3 approaches −W5 sinΩ2 ±
W7 cosΩ2, and y1 goes to ±∞.

7.3. SG Surfaces

In this section, we obtain surfaces corresponding the SG equation [5], [44].
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Let u(x, t) satisfy the following SG equation

uxt = sinu. (64)

The Lax pairs U and V of the SG equation (64) are given as

U =
i

2

(
λ −ux

−ux −λ

)
, V =

1

2λ

(
−i cosu sinu
− sinu i cosu

)
(65)

were λ is a spectral constant.
In the following proposition, we obtain SG surfaces using spectral parameter de-
formation of U and V .

Proposition 19. Let u satisfy the SG equation (64) and su(2) valued Lax pairs U
and V are defined by equations (65). The matrices A and B, defined as spectral
parameter deformations of the Lax pairs U and V , respectively, are given by the
following equations

A = µ
∂U

∂λ
=

iµ

2

(
1 0
0 −1

)
, B = µ

∂V

∂λ
=

µ

2λ

(
i cosu − sinu
sinu −i cosu

)
where µ is a constant and λ is a spectral parameter. Then the first and the second
fundamental forms of the surface S are given as

ds2I ≡ gjkdx
jdxk =

µ2

4

(
dx2 +

2

λ2
cosudxdt+

1

λ4
dt2
)

ds2II ≡ hjkdx
jdxk = −µ

λ
sinudxdt

Figure 6. (x, t) ∈
[−15, 15]× [−15, 15]

Figure 7. (x, t) ∈
[−30, 30]× [−30, 30]
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while the Gaussian and mean curvatures are

K = −4λ2

µ2
, H =

2λ

µ
cotu

where x1 = x, x2 = t.

In the following proposition, we use spectral and Gauge deformation to obtain SG
surfaces.

Proposition 20. Let u satisfy the SG equation (64) and su(2) valued Lax pairs U
and V are defined by equations (65). The matrices A and B defined as

A = µ
∂U

∂λ
+

iν

2
[σ1, U ] =

1

2

(
iµ νλ

−νλ −iµ

)
B = µ

∂V

∂λ
+

iν

2
[σ1, V ]

=
1

2λ2

(
i(µ cosu− λν sinu) −µ sinu− λν cosu
µ sinu+ λν cosu −i(µ cosu− λν sinu)

)
where µ is a constant and λ is a spectral parameter. Then the first and second
fundamental forms of the surface S are given as

ds2I ≡ gjk dx
j dxk, ds2II ≡ hjk dx

j dxk

where

g11 =
1

4
(µ2 + λ2 ν2)

g12 = g21 =
1

4λ2

(
(µ2 − λ2 ν2) cosu− 2µ νλ sinu

)
g22 =

1

4λ2
(µ2 + λ2 ν2), h11 =

1

2
λ2ν

h12 = h21 = − 1

2λ
(µ sinu+ λ ν cosu), h22 =

ν

2λ2
·

The Gaussian and mean curvatures are obtained as

K =
L1 cos

2 u+ L2 sinu cosu− L1

L3 cos2 u+ L4 sinu cosu+ L5

H =
L6 cos

2 u+ L7 sinu cosu+ L8

L3 cos2 u+ L4 sinu cosu+ L5
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where

L1 =4λ2(λ2 ν2 − µ2), L2 =8µ νλ3

L3 =µ4 + λ2 ν2(λ2 ν2 − 6µ2), L4 =4µλ ν(λ2 ν2 − µ2)

L5 = − µ4 − λ2 ν2(λ2 ν2 − 2µ2), L6 =2ν λ2(λ2 ν2 − 3µ2)

L7 =2µλ(3λ2ν2 − µ2), L8 =2ν λ2(µ2 − λ2 ν2).

The following proposition gives SG surfaces belongs to Weingarten surfaces [5].

Proposition 21. Let u satisfy the SG equation given in equation (64) and S be the
surface obtained using spectral parameter deformation in Proposition 20. Then
the surface S is a Weingarten surface that has the following algebraic relation
between Gaussian and mean curvatures of the surface

(µ2 + λ2ν2)K − 4νλ2H + 4λ2 = 0. (66)

Proposition 22. Let u satisfy the SG equation given in equation (64). The su(2)
valued Lax pairs U and V of the SG equation are given by equations (65). Respec-
tively, the su(2) valued matrices A and B are defined as

A = U ′φ = − i

2
φxσ1, B = V ′φ =

i

2λ
φ(cosuσ2 + sinuσ3)

where λ is constant and σ1, σ2, σ3 are the Pauli sigma matrices. Here primes
denote Frèchet differentiation and φ is a symmetry of (64), i.e., φ is a solution of

φxt = φ cosu (67)

Then the surface S has the following first and second fundamental forms

ds2I ≡ gjk dx
j dxk =

1

4

(
φ2
x dx

2 +
1

λ2
φ2dt2

)
(68)

ds2II ≡ gjk dx
j dxk =

1

2

(
λφx sinu dx2 +

1

λ
φut dt

2
)

and the Gaussian and mean curvatures are given as

K =
4λ2ut sinu

φφx
, H =

λ(φxut + φ sinu)

φφx
·

Indeed, the equation given in equation (67) has infinitely many explicit solutions
in terms of u and its derivatives. The following corollary gives the surfaces corre-
sponding to φ = ux which is special case of Proposition 22.



Integrable Curves and Surfaces 47

Corollary 23. Let φ = ux in Proposition 22, then the surface turns out to be a
sphere with the following first and second fundamental forms

ds2I =
1

4

(
sin2 u dx2 +

1

λ2
u2tdt

2
)

(69)
ds2II =

1

2

(
λ sin2 udx2 +

1

λ
u2t dt

2
)

and the corresponding Gaussian and mean curvatures are constants given by

K = 4λ2, H = 2λ. (70)

For the following solutions of the equation given in equation (67)

φ=ux, φ=u3x +
u3x
2
, φ=u3t +

u3t
2
, φ=u5x +

5

2
u2x u3x +

5

2
ux u

2
2x +

3

8
u5x

the Gaussian and mean curvatures of the surfaces which are constructed in Propo-
sition 22 are not constant directly as we get in Corollary 23. But they are constant
when we use one soliton solution of the SG equation. One soliton solution of SG
equation is given by

u = 4 arctan (eξ), ξ =
(
k1 (t+ x) + (k21 − 1)1/2 (t− x) + k2

)
(71)

7.3.1. SG Surfaces From Deformation of Parameters
In this section, we use the deformation of parameters (k1 and k2) of one soliton
solution of SG equation given in equation (71) to develop SG surfaces.

Proposition 24. Let u, provided by equation (71), satisfy the SG equation given in
equation (64) and su(2) valued Lax pairs U and V of the SG equation are given
by equations (65). The matrices A and B are defined as

A = µ
∂U

∂k2
=

iµ

2

(
0 −(ϕ1)x

−(ϕ1)x 0

)

B = µ
∂V

∂k2
=

µ

2λ

(
i sin (u)ϕ1 cos (u)ϕ1

− cos (u)ϕ1 −i sin (u)ϕ1

)
where ϕ1 = ∂ u/∂k2, k2 is a parameter of the one soliton solution u, and µ is a
constant. Then the surface S has the following first and second fundamental forms

ds2I ≡ gjk dx
j dxk = µ2 sech2ξ

(
tanh2ξ

(
(k21 − 1)1/2 − k1

)2
dx2 +

1

λ2
dt2
)

ds2II ≡ gjkdx
j dxk = 2µ sech2ξ

(
λ tanh2 ξ

(
k1 − (k21 − 1)1/2

)
dx2

+
1

λ

(
k1 + (k21 − 1)1/2

)
dt2
)
.



48 Metin Gürses and Süleyman Tek

Gaussian and mean curvatures of S are obtained as

K =
4λ2

(
k1 + [k21 − 1]1/2

)2
µ2

, H =
2λ
(
k1 + [k21 − 1]1/2

)
µ

where x1 = x, x2 = t.

These surfaces given Proposition 24 are also sphere in R3.

In the following proposition, we obtain SG surfaces using deformation of the other
parameter k1.

Proposition 25. Let u, provided by equation (71), satisfy the SG equation given in
equation (64) and su(2) valued Lax pairs U and V of the SG equation are given
by equations (65). The matrices A and B are defined as

A = µ
∂U

∂k1
=

iµ

2

(
0 −(ϕ2)x

−(ϕ2)x 0

)
B = µ

∂V

∂k1
=

µ

2λ

(
i sin (u)ϕ2 cos (u)ϕ2

− cos (u)ϕ2 −i sin (u)ϕ2

)

where ϕ2 = ∂ u/∂k1, k1 is a parameter of the one soliton solution u,and µ is a
constant. Then the surface S has the following first and second fundamental forms

ds2I ≡ gjk dx
j dxk = L9 sech

4ξ (ξ2 sinh ξ + cosh ξ)2 dx2

+L10 ξ
2
2 sech

2ξ dt2

ds2II ≡ gjk dx
j dxk = L11 tanh ξ sech

3ξ (ξ2 sinh ξ + cosh ξ) dx2

+L12 ξ2 sech
2ξ dt2.

Gaussian and mean curvatures of S have the following form

K = L13
sinh ξ

ξ2 (ξ2 sinh ξ + cosh ξ)
, H = L14

(2 ξ2 sinh ξ + cosh ξ)

ξ2 (ξ2 sinh ξ + cosh ξ)
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where

ξ =
(
k1 (t+ x) + (k21 − 1)1/2 (t− x) + k2

)
ξ2 = (t+ x)(k21 − 1)1/2 + k1(t− x)

L9 =
µ2
(
k1 − (k21 − 1)1/2

)2
k21 − 1

, L10 =
µ2

λ2
(
k21 − 1

)
L11 =

2µλ
(
k1 − (k21 − 1)1/2

)
(k21 − 1)1/2

, L12 =
2µ
(
(k21 − 1)1/2 + k1

)
λ (k21 − 1)1/2

L13 =
4λ2

(
(k21 − 1)1/2 + k1

)2 (
k21 − 1

)
µ2

L14 =
λ

µ

(
k1 + (k1

2 − 1)1/2
)
(k1

2 − 1)1/2.

7.4. NLS Surfaces

In this section we obtain surfaces in R3 corresponding NLS equation [5], [46].
Let complex function u(x, t) = r(x, t) + is(x, t) satisfy the NLS equation

rt = sxx + 2s(r2 + s2), st = −rxx − 2r(r2 + s2) (72)

where r, s are real functions.
By changing the variables r and s as

r = q cosϕ, s = q sinϕ (73)

and NLS given in equations (72) take the following form

qϕt = −qxx − 2q3 + qϕ2
x, qt = qϕxx + 2qxϕx. (74)

The Lax pairs U and V of these equations are given as

U =
i

2

(
−2λ 2 q (sinϕ− i cosϕ)

2 q (sinϕ+ i cosϕ) 2λ

)
(75)

V = − i

2

(
−2
(
2λ2 − q2

)
z1 + iz2

z1 − iz2 2
(
2λ2 − q2

) )
where

z1 = 2 (qx + 2λ q) cosϕ− 2 q ϕx sinϕ

z2 = 2 (qx + 2λ q) sinϕ− 2 q ϕx cosϕ

and λ is a constant.
In the following proposition we obtain the NLS surfaces using spectral deforma-
tion.
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Proposition 26. Let q and ϕ satisfy NLS equation given in equations (74). The
Lax pairs U and V of the NLS equation are given by equations (75). The su(2)
valued matrices A and B are defined as

A = µ
∂U

∂λ
=

i

2

(
−2µ 0
0 2µ

)
B = µ

∂V

∂λ
= − i

2

(
−8λµ 4µ q(cosϕ− i sinϕ)

4µ q(cosϕ+ i sinϕ) 8λµ

)
where λ is spectral parameter and µ is a constant. Then the surface S has the
following first and second fundamental forms (j, k = 1, 2)

ds2I ≡ gjk dx
j dxk = µ2

(
(dx− 4λdt)2 + 4 q2 dt2

)
ds2II ≡ hjk dx

j dxk = −2µ q
(
dx− (2λ− ϕx)dt

)2
+ 2µ q2x dt

2.

The Gaussian and mean curvatures of S are obtained as

K = − qxx
µ2 q

, H =
qxx − q (ϕx + 2λ)2 − 4 q3

4µ q2
(76)

where x1 = x, x2 = t.

Let ϕ = α t and q = q(x) satisfies the following equation

qxx = −2q3 − α q. (77)

When we multiply the equation given in equation (77) by qx and integrate the
resultant equation, q(x) satisfy the following equation

q2x = −q4 − α q2. (78)

The following proposition gives a class of NLS surfaces which are Willmore-like.

Proposition 27. Let ϕ = α t and q = q(x) satisfy the equation given in equation
(78) and S be the surface obtained in Proposition 26. Then the surface S is called
a Willmore-like surface. This means that the Gaussian and mean curvatures of the
surface S satisfy the partial differential equation given in equation (54), where a,
b, and α have the following form

a =
4

3
, b = 0, α = −2λ2

and λ is an arbitrary constant.

The following proposition contains the Weingarten surfaces.
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Proposition 28. Let S be the surface obtained in Proposition 26, θ = α t and
q = q(x) satisfy equation (78). Then the surface S is a Weingarten surface that
has the following algebraic relation between Gaussian and mean curvatures of the
surface

8µ2H2
(
Kµ2 − α

)
=
(
3Kµ2 − 2α+ 4λ2

)2
where α, µ, and λ are constants. This surface S is a Weingarten surface. When
α = −4λ2, the surface S reduces to a quadratic Weingarten surface

K − 8

9
H2 + 4

λ2

µ2
= 0.

Proposition 29. Let θ = α t and q = q(x) satisfy the equation given in equation
(78) and S be the surface in Proposition 26. Then there are NLS surfaces satisfying
the generalized shape equation given in equation (52) where the Lagrange function
E is a polynomial of Gaussian and mean curvatures of the surface S.

We now give some examples of E with deg(E) = N, for the NLS surfaces that
solve the Euler-Lagrange equation given in equation (52) and provide the con-
straints [46].

Example 11.

i) For N = 3, the Lagrange function is in the following form

E = a1H
3 + a2H

2 + a3H + a4 + a5K + a6KH

where

α = −2λ2, a1 = − p µ4

18λ4
, a2 = a4 = 0, a3 =

p µ2

16λ2
, a6 =

p µ4

8λ4
·

Here λ ̸= 0, and µ, p, and a5 are arbitrary constants.

ii) For N = 4, the Lagrange function is in the following form

E = a1H
4 + a2H

3 + a3H
2 + a4H + a5 + a6K

+a7KH + a8K
2 + a9KH2

where

α = −2λ2, a1 = − 8

189
(8 a8 + 15 a9), a2 = − p µ4

18λ4

a3 =
2λ2

7µ2
(32 a8 + 25 a9), a4 =

p µ2

16λ2

a5 = − 2λ4

21µ4
(38 a8 + 45 a9), a7 =

p µ4

8λ4
·

Here λ ̸= 0, µ ̸= 0, and p, a6, a8, and a9 are arbitrary constants.
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iii) For N = 5, the Lagrange function is in the following form

E = a1H
5 + a2H

4 + a3H
3 + a4H

2 + a5H + a6

+a7K + a8KH + a9K
2 + a10KH2 + a11K

2H + a12KH3

where
α = −2λ2, a1 = − 4

1053
(128 a11 + 189 a12)

a2 = − 8

169
(8 a9 + 15 a10)

a3 =
1

936µ2 λ4

(
λ6 (784 a11 + 2313 a12)− 52 p µ6

)
a4 =

2λ2

7µ2
(32 a9 + 25 a10)

a5 =
1

832µ4 λ2

(
52 p µ6 − λ6 (111248 a11 + 6449 a12)

)
a6 = − 2λ4

21µ4
(38 a9 + 45 a10)

a8 =
1

416µ2 λ4

(
λ6 [8048 a11 + 3591 a12] + 52 p µ6

)
.

Here λ ̸= 0, µ ̸= 0, and p, a7, a9, a10, a11, and a12 are arbitrary constants.

For general N ≥ 3, from the above examples, the polynomial function E takes the
form

E =
N∑

n=0

Hn

⌊ (N−n)
2

⌋∑
l=0

anlK
l

where ⌊x⌋ denotes the greatest integer less than or equal to x and anl are constants.

7.4.1. Position Vector of NLS Surfaces

In this section, we find the position vector of the NLS surfaces that we obtained
using spectral parameter deformation in Proposition 26.
Let q = 2η sechξ and θ(t) = ρ be solution of NLS equation, where ξ = 2ηx − κ
and ρ = −4η2t.
In order to find the position vector first we solve the Lax equation given in equation
(38). The solution of Lax equation is a 2× 2 matrix Φ

Φ =

(
Φ11 Φ12

Φ21 Φ22

)
where Φ11, Φ12, Φ21, Φ22 are given as
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Φ11 =
i

η(sin ρ+ i cos ρ)

(
C1e

2 i(λ2+2 η2)t(η tanh ξ + iλ)

×(tanh ξ + 1)−iλ/4η(tanh ξ − 1)iλ/4η

−D1e
−2 iλ2tη2sech ξ(tanh ξ + 1)iλ/4η(tanh ξ − 1)−iλ/4η

)
Φ12 =

i

η(sin ρ+ i cos ρ)

(
C2e

2 i(λ2+2 η2)t(η tanh ξ + iλ)

×(tanh ξ + 1)−iλ/4η(tanh ξ − 1)iλ/4η

(79)
−D2e

−2 iλ2tη2sech ξ(tanh ξ + 1)iλ/4η(tanh ξ − 1)−iλ/4η
)

Φ21 = C1e
2 i(λ2+2 η2)tsech ξ (tanh ξ + 1)−iλ/4η(tanh ξ − 1)iλ/4η

+D1e
−2 iλ2t (η tanh ξ − iλ)(tanh ξ + 1)iλ/4η(tanh ξ − 1)−iλ/4η

Φ22 = C2e
2 i(λ2+2 η2)tsech ξ (tanh ξ + 1)−iλ/4η(tanh ξ − 1)iλ/4η

+D2e
−2 iλ2t (η tanh ξ − iλ)(tanh ξ + 1)iλ/4η(tanh ξ − 1)−iλ/4η.

Here the determinant of the solution of the Lax equation Φ is constant and it has
the following form

det(Φ) =

(
η2 + λ2

)
(C1D2 − C2D1)

η
̸= 0.

We use the equation given in equation (39) in order to find the immersion function
F . We obtain F in the following form

F = y1e1 + y2e2 + y3e3

where y1, y2, and y3 are given as

y1 = − 1

η (e2ξ + 1)
W8

(
Ω4 (e

2ξ + 1)− 2η
)

y2 = −W8 sech(ξ) sin(Ω5) (80)
y3 = W8 sech(ξ) cos(Ω5)

where

W8 =
µη

η2 + λ2
, Ω4 = (4λt− x)(η2 + λ2)

Ω5 =
1

η

(
4η(η2 + λ2)t− λ(2ηx− κ)

)
, ξ = 2ηx− κ.
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7.4.2. Plotting NLS Surfaces
In this section, we plot some of the NLS surfaces where the position vector is
provided by the equations in equations (80) for some special values of the constants
µ, η, and κ.

Example 12. If we take λ = 2, µ = 3, κ = 10 and changing η as a) η = 0.5,
b) η = 0.75, and c) η = 1 in the equations (80), we get the surface given in Fig. 8.

Figure 8. (x, t) ∈ [−1, 1]× [−1, 1]

Example 13. If we take λ = 0, µ = 0.2, η = 0.3 and κ = 4 in the equations (80),
we get the surface given in Fig. 9.

Example 14. If we take λ = 0.5, µ = 1, η = 2 and κ = 0 in the equations (80),
we get the surface given in Fig. 10.

8. Soliton Surfaces in M3

In this section, we develop surfaces in three dimensional Minkowski space using
the similar techniques that we used in Section 7. Consider the isometric immersion
F : U → M3. Here U ∈ M2 is the domain of the immersion, M2 and M3 are two
and three dimensional Minkowski spaces. To investigate the surfaces in M3, the
Lie group G that we use is SL(2,R), the corresponding Lie algebra g is sl(2,R).
The 2× 2 base matrices of sl(2,R) are provided by

e1 =

(
1 0
0 −1

)
, e2 =

(
0 1
1 0

)
, e3 =

(
0 1
−1 0

)
.
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Figure 9. (x, t) ∈
[−15, 15]× [−15, 15]

Figure 10. (x, t) ∈
[−0.8, 0.8] ×[−0.8, 0.8]

The inner product defined on sl(2,R) is given as

⟨X,Y ⟩ = 1

2
trace(XY )

for X , Y ∈sl(2,R).

8.1. KdV Surfaces from Spectral Parameter Deformations

In this section, we obtain surfaces corresponding KdV equation using spectral pa-
rameter deformation [15].
Let u(x, t) satisfy the following KdV equation

ut =
1

4
uxxx +

3

2
uux. (81)

The Lax pairs U and V of the KdV equation given in equation (81) have the fol-
lowing forms

U =

(
0 1

λ− u 0

)
, V =

 −1

4
ux

1

2
u+ λ

−1

4
uxx +

1

2
(2λ+ u) (λ− u)

1

4
ux

 (82)

where λ is the spectral parameter.
In the following proposition, we obtain KdV surfaces using spectral parameter
deformation of U and V .
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Proposition 30. Let u satisfy the KdV equation given in equation (81) and sl(2,R)
valued Lax pairs U and V are provided by equations (82). The matrices A and B
defined as spectral parameter deformations of the Lax pairs U and V , respectively

A = µ
∂U

∂λ
=

(
0 0
µ 0

)
, B = µ

∂V

∂λ
=

(
0 µ

µ

2
(4λ− u) 0

)
where λ is spectral parameter, and µ is a constant. Then the first and second
fundamental forms of the surface S are given as

ds2I ≡ gij dx
i dxj = µ2 dxdt+

µ2

2
(4λ− u)dt2

ds2II ≡ hij dx
idxj = −µdx2 − µ(2λ+ u)dxdt− µ

4

(
uxx + (u+ 2λ)2

)
dt2

and the Gaussian and mean curvatures are obtained as

K = −uxx
µ2

, H =
2(λ− u)

µ

where x1 = x, x2 = t.

When we use traveling wave ansatz ut + ut/c = 0 in KdV equation given in
equation (81) and integrate the resultant equation, we obtain the following form of
the KdV equation

uxx = −3u2 − 4

c
u+ 4β (83)

where c and β are constants.
We obtained the invariants such as K, H , first and second fundamental forms of the
KdV surfaces in Proposition 30. In the following proposition, we give quadratic
Weingarten surfaces.

Proposition 31. Let u be a traveling wave solution of the KdV equation given in
equation (83) and S be the surface obtained using spectral parameter deformation
in Proposition 30. Then the surface S is a Weingarten surface that has the following
algebraic relation between Gaussian and mean curvatures of the surface

4 c µ2K + 4µ (2 + 3 c λ)H − 3 c µ2H2 − 4 (3 c λ2 + 4λ− 4β c) = 0

where c and β are constants, µ ̸= 0 and c ̸= 0 .

When we multiply the KdV equation in equation (83) by ux and integrate the
resultant equation, we obtain the following form of the KdV equation

u2x = −2u3 + 4αu2 + 8βu+ 2γ (84)

where α = −1/c, c ̸= 0.
The following proposition contains Willmore-like surfaces.
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Proposition 32. Let u satisfy the KdV equation given in equation (84) and S be
the surface S obtained in Proposition 30. Then the surface S is called a Willmore-
like surface. This means that the Gaussian and mean curvatures of the surface S
satisfy the partial differential equation given in equation (54), where a, b, β, and γ
have the following form

a =
7

4
, b = 1, β =

1

20

(
28λα− 16α2 − 21λ2

)
γ =

1

5

(
16α3 − 56λα2 + 70αλ2 − 28λ3

)
.

Here α = −1/c (c ̸= 0), λ and c are arbitrary constants.

In the following proposition we give KdV surfaces that solve the Euler-Lagrange
equation given in equation (52).

Proposition 33. Let u satisfy equation (84) and S be the surface in Proposition 30.
Then there are KdV surfaces satisfying the generalized shape equation (52) with
Lagrange functions which are polynomials of Gaussian and mean curvatures of
the surface S.

Let us now give some examples of polynomial Lagrange functions E of H and K
with deg(E) = N that solve the Euler-Lagrange equation given in equation (52)
and provide the constraints [15].

Example 15.

i) For N = 3, the Lagrange function is in the following form

E = a1H
3 + a2H

2 + a3H + a4 + a5K + a6KH

where

a1 = −11 p µ4

64Ξ1
, a2 = − 15

32Ξ1
p µ3

(
2α− 3λ

)
a3 = − p µ2

16Ξ1

(
33λ2 − 44αλ+ 8α2 − 20β

)
a4 =

p µ

8Ξ1

(
47λ3 − 94αλ2 + 4 (10α2 − 17β)λ+ 40αβ − 2 γ

)
a6 =

7 p µ4

16Ξ1
·

Here Ξ1 = 12λ4 − 32αλ3 + (20α2 − 36β)λ2 + (40αβ − 3 γ)λ+ 2αγ
+16β2, µ ̸= 0, p ̸= 0, λ, α, β, γ and a5 are arbitrary constants, but λ, α,
β and γ cannot be zero at the same time.

ii) For N = 4, the Lagrange function is in the following form

E = a1H
4 + a2H

3 + a3H
2 + a4H + a5 + a6K + a7KH + a8K

2 + a9KH2
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where
a1 = − 1

64
(34 a9 + 15 a8)

a2 =
1

56µ

(
(210λ− 140α) a9 + (195λ− 130α) a8 − 22µa7

)
a3 =

1

56µ2

((
1512αλ−308α2−1134λ2+588β

)
a9+

(
546β−718α2

−2025λ2 + 2700αλ
)
a8 + 60µ

(
3λ− 2α

)
a7

)
a4 =

1

14µ3

((
1414λ3 − 2828λ2α+

(
1652α2 − 700β

)
λ+ 392β α

−28 γ−280α3
)
a9+

(
2265λ3−4530λ2α+

(
2702α2 − 954β

)
λ

−42 γ+524β α−484α3
)
a8−2

(
33λ2−20β+8α2−44αλ

)
µa7

)
a5 =

1

28µ3

((
19960λ3α− 7485λ4 +

(
2844β − 19012α2

)
λ2

+
(
96 γ + 7664α3 − 3536β α

)
λ+784β2 − 1008α4 +1616α2β

−64αγ
)
a8 +

(
9744λ3α− 3654λ4 +

(
168β − 9688α2

)
λ2

+
(
4256α3 − 224β α

)
λ+ 224β2 + 224α2β − 672α4

)
a9

+8µa7

(
47λ3 − 94λ2α+

(
−68β + 40α2

)
λ− 2 γ + 40β α

))
a7 =

1

16µΞ2

(
− 672

(
4αλ− α2 + β − 3λ2

)(
7λ3/6− 7λ2α/3

+
(
α2 − 5β/3

)
λ+ β α− γ/24

)
a9 +

(
4680λ5 − 15600λ4α

+
(
17576α2 − 9672β

)
λ3 −

(
7664α3 + 414 γ − 18240β α

)
λ2

+
(
552αγ + 1008α4 + 3216β2 − 9280α2β

)
λ− 170α2γ

+42 γ β − 2032αβ2 + 1008β α3
)
a8 + 7 p µ5

)
.

Here Ξ2 = 4λ3 (3λ− 8α)+4
(
5α2 − 9β

)
λ2+(−3 γ + 40β α)λ+2αγ

+16β2, and µ ̸= 0, p ̸= 0, λ, α, β, γ, a6, a8 and a9 are arbitrary constants,
but λ, α, β and γ cannot be zero at the same time.

iii) For N = 3, the Lagrange function is in the following form

E = a1H
5 + a2H

4 + a3H
3 + a4H

2 + a5H + a6 + a7K

+a8KH + a9K
2 + a10KH2 + a11K

2H + a12KH3

where a1, a2, a3, a4, a5, a6, a8 can be written in terms of a9, a10, a11, a12,
α, β, γ, µ, p and λ.
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For general N ≥ 3, from the above examples, the polynomial function E takes the
form

E =
N∑

n=0

Hn

⌊ (N−n)
2

⌋∑
l=0

anlK
l

where ⌊x⌋ denotes the greatest integer less than or equal to x and anl are constants.

8.1.1. Position Vector of KdV Surfaces

In this section, we find the position vector of the KdV surfaces using the solution
of KdV equation and its the Lax pairs. We will consider two different solutions of
the KdV equation.

Example 16. Consider the constant solution

u = u0 =
2

3
(α±

√
α2 + 3β) (85)

of the integrated form of the KdV equation (84), where α = −1/c, c ̸= 0.
Using this solution and corresponding matrix Lax pairs U and V given by equa-
tions (82) of KdV equation, we solve the Lax equations given in equation (38). The
solution of Lax equation is a 2× 2 matrix Φ

Φ =

(
Φ11 Φ12

Φ21 Φ22

)
.

We find these components of Φ as

Φ11 = C1 e
m(nt+x) +D1 e

−m(nt+x)

Φ12 = C2 e
m(nt+x) +D2 e

−m(nt+x)

(86)
Φ21 = m

(
C1 e

m(nt+x) −D1 e
−m(nt+x)

)
Φ22 = m

(
C2 e

m(nt+x) −D2 e
−m(nt+x)

)
where λ−u0 = m2, (2λ+u0)/2 = n, C1, C2, D1 and D2 are arbitrary constants.
Here we find that det(Φ) = 2m(C2D1 − C1D2) ̸= 0.

By using A, B, and Φ, we solve the equation given in equation (39) and write the
immersion function F in the following form

F = Φ−1∂Φ

∂λ
= y1e1 + y2e2 + y3e3
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where e1, e2, e3 are basis elements of sl(2,R) and

y1 = −
(
D1C2 + C1D2

D1C2 − C1D2

)
(4λ− u0)t+ x

2
√
λ− u0

y2 =

(
D1C1 −D2C2

D1C2 −D2C1

)
(4λ− u0)t+ x

2
√
λ− u0

(87)

y3 = −
(
D1C1 +D2C2

D1C2 −D2C1

)
(4λ− u0)t+ x

2
√
λ− u0

·

Hence we find the position vector Y = (y1(x, t), y2(x, t), y3(x, t)) of KdV sur-
faces in M3 using the constant solution given in equation (85). The components
y1, y2 and y3 of the position vector the KdV surfaces are given by equations (87),
respectively. This surface is plane in M3.

Example 17. In this example, we consider nonconstant solution. Consider the
following one soliton solution of the KdV equation

u = 2 k2 c2sech2k(t− cx) (88)

where k2 = −1/c3.
We solve the Lax equations given in equation (38) using one soliton solution and
corresponding matrix Lax pairs U and V given by equations (82) of KdV equation.
Here we denote k(t− cx) = ξ and let λ = k2c2. The solution of Lax equation is a
2× 2 matrix Φ

Φ =

(
Φ11 Φ12

Φ21 Φ22

)
where Φ11, Φ12, Φ21, Φ122 are given as

Φ11 = B1 (2kt sech ξ + sinh ξ + ξsech ξ) + C1sech ξ

Φ12 = B2 (2kt sech ξ + sinh ξ + ξsech ξ) + C2sech ξ

Φ21 = kc

(
B1

(
2kt sech ξ tanh ξ − cosh ξ − sech ξ

(89)
+ξsech ξ tanh ξ

)
+ C1sech ξ tanh ξ

)
Φ22 = kc

(
B2

(
2kt sech ξ tanh ξ − cosh ξ − sech ξ

+ξsech ξ tanh ξ
)
+ C2sech ξ tanh ξ

)
where B1, B2, C1 and C2 are arbitrary constants. The determinant of the matrix
Φ is a constant, we find it as

det(Φ) = 2 k c(C2B1 − C1B2) ̸= 0.
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In order to find the immersion function F explicitly, we insert the matrices A and
B provided by equations (82), and the the matrix Φ given by equations (89) into
the equations for Fx and Ft given in equation (39). When we solve the consequent
equations, we acquire the immersion function F as

F = y1e1 + y2e2 + y3e3

where

y1 =
2W9

ζ1

((
Ω6ζ2 +Ω7ζ1 + ζ3

)
W10 +Ω8ζ2W11 +W12

)
y2 =

W9

ζ1

((
Ω9ζ2 +Ω7ζ1 + ζ4

)
W13 +

(
Ω10ζ2 +Ω11

)
W14 +W15

)
(90)

y3 =
W9

ζ1

((
Ω9ζ2 +Ω7ζ1 + ζ4

)
W16 +

(
Ω10ζ2 +Ω11

)
W17 +W18

)
and e1, e2, e3 are basis elements of sl(2,R). Here ζi, i = 1, 2, 3, 4, Ωj , j =
6, 7, ..., 10, and Wl, l = 9, 10, ..., 18 are given as

ζ1 = 1 + e−2ξ, ζ2 = e−2ξ − 1, ζ3 = c3(e−4ξ − 1− 2 sinh(2ξ))

ζ4 = ζ3 + 288t2, Ω6 = −8(cx+ 3t)2, Ω7 = 4kc3(9t− cx)

Ω8 = 8kc3(3t− cx), Ω9 = −8(c2x2 − 6tcx− 9t2)

Ω10 = −16kc3(cx+ 3t), Ω11 = −192kc3t

W9 = µ/32c2 (B1C2 −B2C1), W10 = B1B2, W11 = C1B2 + C2B1

W12 = −16c3C1C2, W13 = B2
2 −B2

1 , W14 = B2C2 −B1C1

W15 = 16c3
(
C2
1 − C2

2

)
, W16 = B2

1 +B2
2 , W17 = B1C1 +B2C2

W18 = −16c3(C2
1 + C2

2 )

where ζi, i = 1, 2, 3, 4 and Ωj , j = 6, 7, ..., 10 are functions of x and t, and
Wl, l = 9, 10, ..., 18 are constants given in terms of arbitrary constants B1, B2,
C1, and C2.
Hence we obtain the position vector Y = (y1(x, t), y2(x, t), y3(x, t)) of the KdV
surfaces in M3 using one soliton solution of KdV equation given in equation (88).
The components y1, y2 and y3 of the position vector the KdV surfaces are provided
by equations (90) respectively. Here y3 is the time like and y1 and y2 are space like
coordinates in M3.

8.1.2. Plotting KdV Surfaces From Spectral Parameter Deformation
Position vector Y = (y1, y2, y3) of the KdV surfaces corresponds to the spectral
parameter deformation is given by equations (90) that we obtained in Example 17.
We plot some of these KdV surfaces for some special values of the constants µ, k,
c, B1, B2, C1, and C2 = 1.
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Example 18. Taking µ = 1, k = 1, c = 1, B1 = −1, B2 = 1, C1 = 1, and
C2 = 1 in the equations provided by equations (90), we get the surface given in
Fig. 11.

Figure 11. (x, t) ∈
[−1.7, 1.7]× [−1.7, 1.7]

Figure 12. (x, t) ∈
[−2, 2]× [−2, 2]

Example 19. Taking µ = 1, k = 1, c = 3, B1 = −1, B2 = 1, C1 = 1, and
C2 = 1 in the equations (90), we get the surface given in Fig. 12.

8.2. KdV Surfaces From the Spectral-Gauge Deformations

In this section, we develop KdV surfaces using spectral-Gauge deformation.

Proposition 34. Let u satisfy the KdV equation given in equation (81) and sl(2,R)
valued Lax pairs U and V are defined by equations (82), respectively. sl(2,R)
valued matrices A and B are defined as

A = µ1
∂U

∂λ
+ µ2[e1, U ] =

(
0 2µ2

2µ2(u− λ) + µ1 0

)
B = µ1

∂V

∂λ
+ µ2[e1, U ]

=

(
0 µ2(2λ+ u) + µ1

µ2

2
(uxx − 2(2λ− u)(u+ λ)) +

µ1

2
(4λ− 4) 0

)
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where µ1 and µ2 are arbitrary constants. First and second fundamental forms of
the surface S are given as

ds2I ≡ gij dx
i dxj = 2µ2

(
2µ2(u− λ) + µ1

)
dx2

+
(
µ2

(
µ2 u2x − 2(u+ 2λ)(µ1 − 2µ2 (λ− u))

)
+ µ2

1

)
dxdt

−1

2

(
2(u+ 2λ) + µ1

)(
2µ2(u+ 2λ)(λ− u)− µ1(4λ− u)− µ2uxx

)
dt2

ds2II ≡ hij dx
i dxj =

(
4µ2(λ− u)− µ1

)
dx2

−
(
µ2 u2x +

(
µ1 − 4µ2 (λ− u)

)(
2λ+ u

))
dxdt

−1

4

((
µ1 + 2µ2(2λ+ u)

)
u2x +

(
µ1 − 4µ2(λ− u)

)(
u+ 2λ

)2)
dt2

and the corresponding Gaussian and mean curvatures have the following form

K1 =
uxx

µ2
2uxx + µ1 (4µ2(λ− u)− µ1)

, H1 =
2µ1(λ− u) + µ2uxx

µ2
2uxx + µ1 (4µ2(λ− u)− µ1)

where x1 = x, x2 = t.

8.3. HD Surfaces

In this section we obtain surfaces in M3 corresponding Harry Dym (HD) equation
[44], [45]. Let u(x, t) satisfy the following HD equation

ut = −u3 uxxx. (91)

The Lax pairs U and V of the HD equation in equation (91) are given as

U =

 0 1
λ2

u2
0

 , V = 2λ2

 ux −2u

uxx −
2λ2

u
−ux

 (92)

were λ is a spectral parameter.
In the following proposition, we develop HD surfaces using spectral deformation
of the Lax pairs U and V .

Proposition 35. Let u satisfy the HD equation given in equation (91) and sl(2,R)
valued Lax pairs U and V are defined by equation (92). The matrices A and B are
obtained as

A = µ
∂U

∂λ
= 2µλ

(
0 0
1

u2
0

)
, B = µ

∂V

∂λ
= 4µλ

(
ux −2u

uxx −
4λ

u
−ux

)
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where µ is a constant and λ is a spectral parameter. The first and second funda-
mental forms of the surface S are given as

ds2I ≡ gjk dx
j dxk = −16µ2 λ2

(1
u
dxdt+ (u2x − 2uuxx + 8λ2)dt2

)
ds2II ≡ hjk dx

j dxk = −2µλ

u2

(
dx2 − 8λ2 u dxdt

+2u2
(
2u2 ux uxxx + u3 u4x + 8λ4

)
dt2
)
.

The Gaussian and mean curvatures of the surface S are obtained as

K = − u2

8µ2 λ2

(
2ux uxxx + uuxxxx

)
, H =

1

4µλ

(
u2x − 2uuxx + 4λ2

)
where x1 = x, x2 = t.

When we use traveling wave ansatz ut − αux = 0 in HD equation given by equa-
tion (91), we obtain the following form of the HD equation

uxx =
α

2

1

u
− C1 (93)

where α and C1 are arbitrary constants.
When we multiply the HD equation in equation (93) by ux and integrate the resul-
tant equation, we obtain the following equation

u2x = −α
1

u
− 2C1 u+ 2C2. (94)

In the following proposition we give HD surfaces belong to Willmore-like surfaces.

Proposition 36. Let u satisfy the equation given in equation (94) and S be the
surface obtained in Proposition 35. Then the surface S is called a Willmore-like
surface. This means that the Gaussian and mean curvatures of the surface S satisfy
the partial differential equation given in equation (54), where a, b, C1, and C2 have
the following form

a = −2, b = 6, C1 =
16λ4

α
, C2 = −6λ2

and λ is an arbitrary constant.

The following proposition gives HD surfaces belongs to Weingarten surfaces.

Proposition 37. Let u be a travelling wave solution of the HD equation given in
equation (94) and S be the surface obtained using spectral parameter deforma-
tion in Proposition 35. Then the surface S is a Weingarten surface that has the
following algebraic relation between Gaussian and mean curvatures of the surface

4µ2λ2(4K − 3H2) + (24µλ3 + 4µλC2)H + C3 = 0
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where C3 = −4λ2(3λ2 − C2)− 2αC1 + C2
2 .

In the following proposition we obtain HD surfaces arise from a variational prin-
ciple in another words solve the Euler-Lagrange equation (52).

Proposition 38. Let u satisfy the equation given in equation (94) and S be the
surface in Proposition 35. Then there are HD surfaces satisfying the generalized
shape equation given in equation (52) where the Lagrange function E is a polyno-
mial of Gaussian and mean curvatures of the surface S.

We now give some examples of E with deg (E) = N for the HD surfaces that solve
the Euler-Lagrange equation given in equation (52) and provide the constraints
[45].

Example 20.

i) For N = 3, the Lagrange function is in the following form

E = a1H
3 + a2H

2 + a3H + a4 + a5K + a6KH

where
a1 = −11µa2

30λ
, a3 = −4λa2

15µ
, a6 =

14µa2
15λ

a4 = 0, C1 = p = 0, C2 = 2λ.
Here λ ̸= 0, µ, and a5 are arbitrary constants.

ii) For N = 4, the Lagrange function is in the following form

E = a1H
4 + a2H

3 + a3H
2 + a4H + a5 + a6K + a7KH + a8K

2 + a9KH2

where
C1 = p = 0, C2 = 2λ, a1 = − 1

64
(15 a8 + 34 a9)

a2 =
1

480µλ

(
λ2 (358 a9 − 7 a8)− 176µ2 a3

)
a4 =

4λ

15µ3

(
λ2 (13 a8 + 8 a9)− µ2 a3

)
, a5 = −3λ4

4µ4
(3 a8 + 2 a9)

a7 =
1

120µλ

(
λ2 (359 a8 + 154 a9) + 112µ2 a3

)
.

Here λ ̸= 0, µ ̸= 0, and a6 are arbitrary constants.

iii) For N = 5, the Lagrange function is in the following form

E = a1H
5 + a2H

4 + a3H
3 + a4H

2 + a5H + a6 + a7K

+a8KH + a9K
2 + a10KH2 + a11K

2H + a12KH3



66 Metin Gürses and Süleyman Tek

where
C1 = p = 0, C2 = 2λ, a1 = − 3

464
(51 a11 + 92 a12)

a2 = − 1

1856µ
(µ (435 a9986 + a10)− λ (2590 a11 + 2268 a12))

a3 = − 1

13920µ2 λ

(
µλ2 (203 a9 − 10382 a10)

−λ3 (14486 a11 + 14220 a12) + 5104µ3 a4

)
a5 = − 4λ

435µ4

(
− µλ2 (377 a9 + 232 a10)

+λ3 (1544 a11 + 720 a12) + 29µ3 a4

)
a6 = − 3λ

116µ5

(
µ (87 a9 + 58 a10)− λ (494 a11 + 252 a12)

)
a8 =

1

3480µ2 λ

(
µλ2 (10411 a9 + 4466 a10)

−λ3 (34582 a11 + 17100 a12) + 3248µ3 a4

)
.

Here λ ̸= 0, µ ̸= 0, a7 are arbitrary constants.

iv) For N = 6, the Lagrange function is in the following form

E = a1H
6 + a2H

5 + a3H
4 + a4H

3 + a5H
2 + a6H + a7

+a8K + a9KH + a10K
2 + a11KH2 + a13KH3

+a12K
2H + a14K

3 + a15K
2H2 + a16KH4

where
a1, a2, a3, a4, a6, a7, a9 can be written in terms of a5, a10, a11, a12, a13,
a14, a15, a16 and C1 = p = 0, C2 = 2λ.

Here λ ̸= 0, µ ̸= 0, are arbitrary constants.

For general N ≥ 3, from the above examples, the polynomial function E takes the
form

E =
N∑

n=0

Hn

⌊ (N−n)
2

⌋∑
l=0

anlK
l

where ⌊x⌋ denotes the greatest integer less than or equal to x and anl are constants.

8.3.1. Position Vector of HD Surfaces
In this section, we find the position vector of the HD surfaces that we obtained
using spectral parameter deformation in Proposition 35.
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Consider the solution
u = −(α/2) 181/3 ξ2/3 (95)

of the HD equation, where ξ = t+ x/α and α ̸= 0 is a constant.
In order to find the position vector first we need to solve the Lax equation given
in equation (38). We insert solution of the HD equation given in equation (95)
and Lax pairs U and V given by equations (92) into the Lax equations provided
by equation (38). We solve the resulting equation and obtain the solution of Lax
equation 2× 2 matrix Φ

Φ =

(
Φ11 Φ12

Φ21 Φ22

)
where Φ11, Φ12, Φ21, Φ22 are given as

Φ11 =
1

λ3/2

(
A1

(
181/3 − 6λ ξ1/3

)
Exp

(
4λ3 t+ λ 182/3 ξ1/3/3

)
+B1

(
181/3 + 6λ ξ1/3

)
Exp

(
− 4λ3 t− λ 182/3 ξ1/3/3

))
Φ21 = −2

√
λ 182/3

3α ξ1/3

(
A1 Exp

(
4λ3 t+ λ 182/3 ξ1/3/3

)
+B1 Exp

(
− 4λ3 t− λ 182/3 ξ1/3/3

))
(96)

Φ12 =
1

λ3/2

(
A2

(
181/3 − 6λ ξ1/3

)
Exp

(
4λ3 t+ λ 182/3 ξ1/3/3

)
+B2

(
181/3 + 6λ ξ1/3

)
Exp

(
− 4λ3 t− λ 182/3 ξ1/3/3

))
Φ22 = −2

√
λ 182/3

3α ξ1/3

(
A2 Exp

(
4λ3 t+ λ 182/3 ξ1/3/3

)
+B2 Exp

(
− 4λ3 t− λ 182/3 ξ1/3/3

))
where ξ = t+ x/α, and A1, A2, B1, B2, and α ̸= 0 are constants.
Here the determinant of the solution,Φ, of the Lax equation is constant and it has
the following form

det(Φ) =
8 · 182/3

α
(A1B2 −A2B1) ̸= 0.

We use the equation

F = µΦ−1 ∂Φ

∂λ
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in order to find the immersion function F . We obtain F as

F = y1e1 + y2e2 + y3e3

where y1, y2, and y3 are given as

y1 = Ω12

(
Ω13W19 +Ω14W20 +Ω15W21

)
y2 =

Ω12

2

(
Ω13W22 +Ω14W23 +Ω15W24

)
(97)

y3 =
Ω12

2

(
Ω13W25 +Ω14W26 +Ω15W27

)
and

Ω12 =
µ

3α2/3 λ2 (A1B2 −A2B1) (α t+ x)1/3

Ω13 =
1

2

(
3λα2/3(α t+ x)1/3 + α 181/3

)
Exp

{
− 2λ

(
12λ2 α1/3t

+182/3 (α t+ x)1/3
)
/(3α1/3)

}
Ω14 =

1

2

(
− 3λα2/3(α t+ x)1/3 + α 181/3

)
Exp

{
2λ
(
12λ2 α1/3t

+182/3 (α t+ x)1/3
)
/(3α1/3)

}
Ω15 = 2λ2 182/3 α1/3 (α t+ x)2/3 + 72λ4 α2/3 t (α t+ x)1/3 + 181/3 α

W19 =B1B2, W20 =A1A2, W21 =
1

2
(A1B2 +A2B1)

W22 =B2
2 −B2

1 , W23 =A2
2 −A2

1, W24 =A2B2 −A1B1

W25 =B2
2 +B2

1 , W26 =A2
2 +A2

1, W27 =A2B2 +A1B1.

8.3.2. Plotting HD Surfaces

In this section, we plot some of the HD surfaces given by equations (97) for some
special values of the constants µ, k, c, B1, B2, C1, and C2 = 1.

Example 21. Taking µ = 1, α = 1, λ = 1, A1 = 1, A2 = −1, B1 = −1,
B2 = −1 in the equations provided by equations (97), we get the surface given in
Fig. 13.

Example 22. Taking µ = 1, α = 0.2, λ = 0.7, A1 = 1, A2 = −1, B1 = −1,
B2 = −1 in the equations provided by equations (97), we get the surface given in
Fig. 14.
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Figure 13. (x, t) ∈
[−0.2, 0.2]× [−0.2, 0.2]

Figure 14. (x, t) ∈
[−0.2, 0.2]× [−0.2, 0.2]
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