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ON THE INVERSE PROBLEM OF THE SCATTERING THEORY 
FOR A BOUNDARY-VALUE PROBLEM

HAMZA MENKEN and KHANLAR R. MAMEDOV

Department o f Mathematics, Mersin University\ Turkey

Abstract, In the present work the inverse problem of the scattering theory 
for Sturm-Liouville differential equation with a spectral parameter in the 
boundary condition is investigated. The Gelfand-Marchenko-Levitan fun
damental equation is obtained, the uniqueness of the solution of the inverse 
problem is proved and some properties of the scattering data are given.

1. Introduction

We consider the boundary problem generated by the differential equation

—y" +  q(x)y =  X2y (0 < x  < cc) 

and the boundary condition

(«2 +  rhX)y' (0)  — (on +  i/?iA)y(0) =  0 

where q(x) is a real-valued function satisfying the condition

and a, ,  3, (i

r-to o
(1 +  x)|g(x)| dx < cc

Jo ' -
1,2) are real numbers such that

S Ct'i Si 
Cl'2 S 2

> 0.

(1)

(2)

(3)

In the present work the inverse problem of scattering theory (IPST) for the 
boundary problem of (l)-(3) is investigated. For the equation (1) IPST was com
pletely solved in [6], [9], [10] when the boundary condition (2) was not including 
any spectral parameter. When the boundary condition (2) was including a spectral 
parameter, the similar problem was discussed in [7], [8] and the inverse problem 
with respect to the spectral function was investigated in [12], also with respect to
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the Weyl function was investigated in [13]. In finite intervals, the inverse prob
lem with respect to distinct characterizations for the spectral parameter dependent 
boundary conditions has been considered by many authors (see [1], [2], [3], [11]). 
The physical applications of such problems were given [4],
According to [10], for any A from closed upper-half plane, the equation (1) has a 
solution e(A, x) described by

r+cxD
e(A, x) = elXx +  / K (x ,  t)elXt dt (4)

J X

' x  + t
and for the kernel function K ( x , t )  the inequality

\K(x,t)\  < -cr(— ) exp | <7i(a:) -  o i  ^

holds where
/* +  0 0  /* +  0 G

a(x) = / |g(f)|df, ai(x)  = / a(t)dt .
Jx Jx

Moreover,
\  f  + OO

K ( x , x )  = -  q(t)dt.
£ Jx

The solution e(A, x) is an analytic function of A in the upper half plane Im A > 0 
and is continuous on the real line. The following estimates hold through the half 
plane Im A > 0

|e(A, rc)| < exp{— Im Xx +  01 (a:)}

|e(A, x) — elA:r| <  |<t i(:e) — a\ ^x  +  —  'j |  exp{— Im Ax +  <r\{x)}  ̂ ^

and
|e?(A, x) — iAelA:r| < a(x)  exp{— Im Ax +  ai(x)} .  (6)

For real A /  0, the functions e(A, x) and e(—A, x) form a fundamental system of 
solutions of the equation (1) and their Wronskian is equal to 2iA

W7{e(A, x), e(—A, x)} =  e?(A, x)e(—A, x) — e(A, x)e?(—A, x) =  2iA.

2. Main Results

Let lu(A, x )  be a solution of the equation (1) satisfying the initial-value conditions

uj(X, 0) =  012 +  1/T2A, lu?(A, 0) =  ot\ -)- iB\X.

Lemma 1. The identity

2iAu;(A, x)
(a 2 +  i/?2A)e?(A, 0) — (a i +  i/?iA)e(0, A)

=  e(A, x) — S(X)e(X, x) (7)
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holds for all real A ^  0 where

e(\ \ _  + i/?2^)e'(A, 0) -  (ai + i/?iA)e(A, 0)
(a2 + i/?2A)e?(A, 0) — (ai + i/?iA)e(0, A)

and
5(A) =  S ( —X).

Proof: It can be easily proved in similar way the proof of the Theorem 1 in [8]. □

Let
E{A) = (a2 + i/32A)e?(A, 0) -  (ai + i/?iA)e(0, A).

Lemma 2. The function E (  A) may have only a finite number o f zeros on the half 
plane Im A > 0, they are all simple and lie on the imaginary.

Proof: Since E(X) /  0 for all real A /  0, the point A =  0 is the possible real zero 
of the function E ( A). Since the function E ( A, 0) is analytic in the upper half plane 
ImA > 0 we have that the zeros of E ( A) are at most countable. Now to show 
that the set of the zeros of E ( A) is bounded we assume, by way of contradiction, 
that this set is bounded, so that there exist the numbers A* such that these numbers 
satisfy the relation E (A*) =  0 for Im Â  > 0 and |A*| —» oo or

e?(Ak, 0) =

On the other hand, taking x  =  0, A

a i  +  i/?i A k 
®2 +  182Xk

e(Ak, 0).

Afc in the inequality (6) we have

e (X k,x)  — iAfc| < cr(0) exp{cri(0)}

or
a i  +  'i8\Xk
a 2 +  fihXk 

Thus, we can write
a \  +  'i8\Xk

l̂ fcl <

e(Afe, 0) — iAfe

e(Afe,0)
®2 +  i/fcAfc

< cr(0) exp{cri(0)}. 

+  cr(0) exp{cri(0)}.

According to (5) since lim/^oo e(Xk, 0) =  1, the right side of the last inequality 
has a finite limit. This contradiction shows that the set {A^} is bounded. Hence, 
the set of zeros of the function E ( A) is bounded and form at most countable set 
having 0 the only possible limit point.
Now, we shall show that all the zeros of the function E(  A) lie in the imaginary axis. 
Suppose that Ai and A2 are two arbitrary zeros of the function E ( A). Multiplying 
the first of the relations

~ e” {T1jx ) +  q(x)e(pi ,x)  = p \e{p i ,x )  

- e " ( p 2, x) +  q(x)e(p2, x) =  f ile(p2, x)
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by e(fi2,x)  and the second relation by e(jii,x),  subtracting the second resulting 
relation from the first, and integrating the resulting difference from zero to infinity, 
we obtain

r+oo
=  0. (8)

r+oo __________  __________
(a*i — A*i) /  e(jj,i,x)e(/j,2 ,x)  dx -  W[e(/j,i,x),e(/j,2 ,x)}

Jo x= 0

On the other hand, since

e(jij,x) = ~[02e(fj,j, 0) -  B1e(fj,j ,0)}uj(fj,j ,x) (9)

then

W[e(jiu x) ,e( ji2 ,x)}

1,
x= 0

= ■ [fye'ifJ.2, 0) -  0ie(ji2, 0)](yx| -  m?)-
o '

Thus, the equality (8) takes of the form

{
r+oo ______

J  e(fi1,x)e(fi2, x ) d x

+  +[02e'(pu 0) -  B i e { m M  • [+ + M 2, 0) -  0)] } = 0.

(10)

Specially, taking fi2 =  Mi iQ (10) we have Mi — m! =  0 and obtain m2 =  iAi where 
Ai > 0. That is, the zeros of the function E ( A) lie in the imaginary axis.
Now we shall prove that the function E(  A) has finitely many zeros in the half plane 
ImA > 0. This is obvious if E ( 0 ) ^ 0  because under this assumption the set of 
zeros cannot have any limit point. To verify that the number of zeros of E ( A) is 
finite in the general case too, we show that the distance between neighboring zeros 
is bounded away from zero.
We let S denote the infimum of the distances between two neighboring zeros of 
E (A) and show next that S > 0. Using the same way in [7], [8] it can be easily 
shown that S > 0. Thus, the function E ( A) has finitely many zeros.
From the equality

m - 2
k

r+oo

Jo
i

2ifikS
[fl2e'(iAi-,0)-Ae(iAk,0)]£(iAk).

2

(11)

it follows that the zeros of the function E ( A) are simple. The lemma is proved. □

We need also the following lemma.
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Lemma 3. The function S  (oo) —S (  A) is the Fourier transform o f a function Fs (a:) 
in the form

Fs (x) = F p ( x )  +  F p ( x )
where

F p ( x )  e  L i ( —oo,+oo), F p ( x )  e  L 2(—oo, + oo), sup |F o2̂ (:c)| < oo
—o o < x < o o

and

S(  oo)
- 1 ,  i f  fk #  0 

1, i f  02 = 0.

Proof: From the formula (4) it follows that
r+oo

e(A, 0) =  1 +  /  K ( 0, t)elXt dt
Jo

r +oo
e?(A, 0) =  iA -  K ( 0,0) +  /  K x {0, t)elXt dt.

Jo
We shall use the following notations

qo = K ( 0, 0), 990(A) =  (02 +  i,/?2A)iA — (a i +  i0iX)
K x(t) = a 2K x (0, t) -  a i K ( 0, t), K 2(t) = f o K x (0, t ) -  faK(0,  t )

and
__ f+00
K j ( - A) =  /  Kj(t)elXt dt, j  =  1,2,

Jo
Let /?2 #  0. Then we have

5(oo) -  5(A) =  -[1  +  5(A)]

= __________________T(  A )^_________ _ (12)
990(A) -  q0(a 2 +  i&A) +  K i ( —X) +  iXK2(-X)

where

T(X) = 2 (a i +  i f fX)  +  2q0(a2 +  i02X) -  [Ki( -X)  +  iXK2{-X)}

— Ki(X)  — iAJT2(A).

Every one of the functions

f ( \ \ - a3 +  1 9 - 1 0  7±tx\ _  K i(± x ) +  iXK2(±X)
m - ^ M x T q° ’ / ( A ) "  ^ ( a)

is the Fourier transformation of a summable function. Hence we have

m
1 +  K ( —X)

S ( 00) -  5(A)
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where

7(A) = 27(A) + 2/2(A) + f - (A) + 7+( A) 

^ ( - A )  =  -/2(A ) +  /(A).

We can rewrite the formula (12) in the form

5(oo) -  5(A) /(A) 1 +  ( l  -  h i X N - 1)) K ( - X ) }
-1

-  1 +  / ( A)

where

(
) 1

b  + { 1 -
7 (A iV _ 1 ) i 7 ( —A ) |

\) =  <

(
1
2  -

i f  |A | <  1 

|A | i f  1 <  A <  2

0 i f  |A | >  2

1
1 +  K ( - A)

| (13)

j

is the Fourier transform of a function h(x)  e  L i(—00, + 00), also, h,(AiV x) is the 
Fourier transform of the function h ^ i x )  =  N h (x N ) ,  and

lim N  -> oo||/(a:) - h i y * /(a:)||i,i =  0

for all f ( x )  e  L \(—oo, + 00), where * f ( x )  is the convolution of functions 
h;sf(x) and f ( x )  from L i ( —oo, 00): * f ( x )  =  htq(x — t ) f ( t )  dt.

The function j  1 +  1̂ — /i(AiV_1)) K ( —X) j  is the Fourier transform of a sum-
mable function for sufficiently large numbers N.  In this case the summation of the

f 1)first two terms of the formula (13) is the Fourier transform of a function Fg J (x) e 
L \(—oo, + 00). For |A| > 2 the third term equals to zero and bounded. As such, 
it is the Fourier transform of a bounded function F g ( x )  e  L->{ :x-.. —:x). For 
/?2 =  0 the statement can be proved similarly and in this way the lemma is proved 
as well. □

Now we shall obtain a linear integral equation for the kernel function K ( x , t )  of 
the special solution (4). For this we use the equality (7) proved in Lemma 1

— —  = e(—A, x)  -  5(A)e(A, x).

Using (4) in this relation we obtain

2tAu;(A X) =  e_lA2 _  +  f +°° f  )e-iAt df +  _  5 (A)]eiArr
A) Jx

/ ‘ +CXD

+  / K(x,t)[S(oo) — S(X)}elXx dt — S(oo) / K (x , t ) e lXt dt 
Jx Jx
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where

S(  oo) =
- 1  if 02 + 0 

1 if  02 = 0.

If 02 /  0 the last equality takes the form

2lAw(A, x) _  2 cog ^  =  f+°° df +  _  5 (A)]eiAx
E (  A)

r+oop + o c  p + o o
+ K (x ,  t) [5(oo) -  S(A)]eu t df -  5(oo) / K (x ,  t)elXt 

Jx Jx

(14)
df

and if /% =  0 it takes the form

2iAw(A, •'•) _  2 g,n Aa; =  r+°° R ( x  ̂t ^ _ iXt df  +  _  s ^ ei\x
E (  A)

p-\~OG p~\~00
+  / K(x,t)[S(oo) — S(X)]elXt dt — S(oo) / K (x ,  t)elXt df.

Jx Jx

(15)

We let multiple both sides of the equalities (14) and (15) by ^ e lXy and integrate 
from — oo to +oo with respect to A. Taking y > x, by Lemma 3 on the right side 
we have

f  +  OO

K ( x , y )  + Fs ( x +  y) + K (x ,  t)Fs (t +  y) df
Jx

and on left side using Jordan’s lemma and the residue theorem we have

• i2iAfcu;(iAfc, x ) ^_Xky 
E{  iAfe)

Using (9) and (11) the last statement can be rewritten as

_  A  2 i \ku ( i \ k ,x)  ̂ _XkV =  _  A  2iXk5e(iXk, x)e~Xky 
^  E(iXk) 6 ^  [,/?2e?(iAfe,0 )-,/Jie(iA fe, 0)]v9(iA)

n

= — m ke(iXk, x)e~Xky 
k=  1

n  f  p-\-cc  ^

=  -  Y ,  m l  I e - Afc(2+a) +  / K (x ,  t ) e - Xk^  df \ . 
k=  i  *• J x  J

Thus, for y > x  we obtain

n  f  p-\-oo  ^

-  ]T  mjN e_Afc0x+y  ̂ +  / K (x ,  t)e~Xk<*+») df \ 
k = i  ^ J x  J

f  +  OO

=  Fs(x  +  y) +  K ( x , y )  +  / K(x ,  t )Fs(t  +  y) df
Jx
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or

F(x  +  y) +  K (x , y )  + /  K (x ,  t )F(t  +  y) dt =  0 (16)
X

where

(17)

The equation (16) is called the fundamental equation for the boundary problem 
(l)-(3).
Hence, we have proved the following theorem.

Theorem 1. For all x  > 0 the kernel function K (x , y )  of  the solution (4) satisfies 
the fundamental equation (16).

As it is seen that, to construct the fundamental equation we have to know the func
tion F(x).  The function F(x)  itself is determined by the set {5(A) (—oo < A < 
oo); Ak, m k (k = 1 , . . .  ,n)}.

Definition. The set {5(A) (—oo < A < oo); A ,̂ (k = 1 , . . . ,  n)} is called the 
scattering data fo r the boundary problem (1), (2).

In fact, if the scattering data is known, the function F(x)  is constructed by the 
formula (17) and the fundamental equation (16) is constructed with respect to the 
unknown function K(x ,  y). Solving this equation the kernel function K ( x , y )  of 
the solution (4) is found, and using the kernel function K (x ,y ) ,  the coefficient
q(x) =  “ | a y:K(x,x)  is obtained.

Theorem 2. For each fixed x  >  0 the fundamental equation (16) has a unique 
solution K (x ,  y) 6 L\[x, oo).

Proof: The transition function Fs(x)  possesses properties similar to those of 
the transition function for the problem without spectral parameter in the boundary 
conditions and, therefore, the proof of Theorem 2 follows ([10], Theorem 3.3.1).

Theorem 3 (see [10], p. 210). The function Fs(x)  is differentiable on (0, +oo) 
and its derivative satisfies the condition

Theorem 4. The scattering function S  (A) is continuous on the whole real axis. 

Proof: For all real A ^  0 the continuity of the function 5(A) can be obtained from

□

Lemma 1. In the case E (0) /  0 the continuity of the function 5(A) at A =  0 is
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clear and 5(0) =  1. Now we shall prove the continuity of the function 5(A) in the 
case

E (  0) =  a 2e?(0, 0) — a ie (0 ,0) 

=  a 2

(18)
r+oo

- i f  (0, 0)+  /  K x (0,t) dt
Jo

Qfl
r+oo

1+ / K ( 0 , t ) d t
Jo

= 0.

Substituting x = 0 into the fundamental equation (16) and integrating from z to 
infinity with respect to y we have

(19)

' r+ o o  's r+ o o  r+ oo
1+  K ( 0 , t ) d t \  F ( y ) d y +  /  K (0 ,y )d y

s. J 0 )  J z J z
r+ o o  (  r+ o o  's

- J q K ( 0 , 0  j- F ( t  +  z) df =  0.

Deriving the fundamental equation (16) with respect to x  we have

r+ o o  I r+ oo
- i f  ( 0 , 0 ) + /  K x (0,t) dt /  F(y)  dy — F(z)

JO J Jz
r+ o o  r+ o o  (  r+ oo

+  /  ifr(0 , y) dy — /  /  K x ( 0 ,0  d ^ \  F( t  + z) dt = 0.
Jz Jo l Jt J

If the equality (18) satisfies, from (19) and (20) we obtain that the function

r+ oo
K 1( z ) =  [a2K x (0,t) -  atiK(0, i)] dt

J Z

is a solution of the equation

r+ oo
i f i ( z ) - /  K 1(t)F(t + z ) d t  = a 2F(z) .

Jo

(20)

Every bounded solution of this equation is summable on semi-axis, that is, K i (z) e 
Li[0, oo). Hence, in the considered case we have

E(X)  =  (ck2 +  iB2\) e '( \ ,  0) — (a i +  i«0iA)e(A, 0)
r+ o o  r+ oo

=  —a 2K ( 0 , 0) +  oi2 /  K x (0,t) dt — a>i — a>i /  K ( 0 , t ) d t
Jo Jo

+  QO
+iA a 2  +  i,52A -  B2K (0,0) +  02 f K x {0, t)eiXt dt -  Bi

—Bi I K { 0, t)em  dt  +  [ +°° i f i  (t)eiM dt [> =  iAif(A).
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In the similar manner we can obtain

.Ei (A) =  (a 2 +  i/?2A)e?(—A, 0) — (a i +  i/?iA)e(—A, 0)
/* +  0 G  f + O C

=  — 0 2 ^ (0 ,0 ) +  a 2 /  K x (fi,t) dt — a i  — a i  / K(f i , t )d t  
Jo Jo

( r+oo
-iA  | a 2 +  i/32A +  82K {0,0) -  82 J  K x {0, i)e- lAt d t +  [h

/ * + 0 G  / * + 0 G  ' ,|

+0! J  K(0, t)e~lXt dt + J  E i ( t ) e - lA<d t |  = i X K 1(X). 

Hence we obtain the result

5(A) =  -
E i  (A) 
K ( A) '

According to equality (7) and the formula (21) it follows that 

2u>(x, A) =  K (A) [e(—A, x) -  S (A)e(A, a:)].

So, we have that K (A) ^  0. This results show that the scattering function 5(A)

This completes the proof of theis continuous at A =  0, and 5(0) =  — 
theorem.

_  K} {0)
K (0 )  '
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