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Abstract, The well known Laplace-Young equation asserts that the pressure 
difference across the film or a membrane in a equilibrium is proportional 
to the mean curvature with a proportionality constant the surface tension of 
the interface. Here we present two variants of this equation leading to the 
surfaces of Delaunay and the mylar balloon and in this way provide their 
nonvariational characterization.

1. Introduction

The equations describing axisymmelric membranes are used not only in Biology 
but also in many other areas including the design and development of scientific 
balloons. The balloons are used by many space agencies to carry out researches in 
the upper stratosphere. The equilibrium equations of such surfaces are expressed 
as some boundary value problems. In order to study all external and internal forces 
acting on to the surface we are lead to many different cases of equilibrium condi
tions. Some of them can be solved exactly to determine the shape. The physical 
meaning of these parameters plays a very important role. The most crucial quanti
ties as the membrane weight density, circumferential and meridional stresses, the 
differential pressure could variate. Guided by mechanical ideas we will derive two 
classes of shapes having quite interesting geometrical properties.

2. Axisymmetric Membranes

As usual we will think of the axisymmelric surface S  by specifying its meridional 
section, i.e., a curve u — ► (r(u) ,z(u))  in the X O Z  plane, assuming lhal u is 
the so called natural parameter provided by the corresponding arc length. We will 
denote the total arc length by L. The surface S  can be presented in the ordinary
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Euclidean space R3, with a fixed orthonormal basis (i, j, k), by making use of the 
parameter u and the angle v specifying the rotation of the X O Y  plane via the 
vector-valued function

x(u,  v) =  r(u)ei(v)  +  z(u)e^(v),  0 < u < L, 0 < v < 2tt. (1)

Here the vector e i (v) is the new position of i after the rotation at angle v

e i(v) =  cos ui +  sin uj. (2)

Since the rotation is around the third axis k the vector representing it in (1) is a 
constant, i.e., e-^(v) =  const =  k. The pair {ei, e.3} can be completed to the 
orthonormal basis set (ei, e2, 03) in R3. The third vector e 2 (v) is introduced as a 
cross product of the vectors e%(v) and ei(u), i.e.,

e 2(v) =  63(1;) x ei(v)  =  k x ei(v) = — sinui +  cosvj .

More detailed specification of the surface require to find some other important 
characteristics of the generating curve. This relies mostly on the derivatives of 
x(u,  v). E.g., the tangent vector at each point of the generating curve is given of 
the first derivative with respect to u

t (u, v) =  x u(u, v) =  r '(u )e \(v) +  z?(u)k. (3)

In equation (3), and elsewhere in this paper, the prime denotes a derivative with 
respect to the meridional arc length u. Let us introduce also 0(u), which measures 
the angle between the tangent vector t  and k. Then, the coordinates r(u) and z(u)
depend on 0(u) through the equations

r'(u) =  cos6(u) (4)

z'(u) = — sin 9{u). (5)

Using these equations we can express the tangent vector as

t  (u,v) = cos0(u)ei(v)  — s in 0(u)k. (6)

By differentiating the last relation with respect to the parameter u we get

xuu =  — 0,(u)(sm 0(u)ei(v)  +  cos0(u)k). (7)

Next, we compute the first and second order derivatives of x(u, v) upon v

x„ =  r(u)(e i (v))v = r(u)e2(v) (8)

x w =  r(u )(e2(u))„ =  - r ( u ) e  i< »  (9)

and finally, the mixed derivative

x u v = x vu = cos 0(u)e2(v). (10)
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Another significant object that we will need to know is the outward normal vector 
n (u, v). We can present it as a cross product of the vectors t(u,  v) and e 2 (v), i.e.,

n(«, v) =  t(u , v) x e 2(v) =  sin 0(u)ei(u) +  cos 0(«)k. (11)

The last couple of relations are sufficient to obtain the coefficients of the first,

E  = x 2u = 1, F  = x u.xv =  0, G = x 2v = r2(u). (12)

and that of the second fundamental form of S,  namely

L = n .xuu = — 0'(s), M  = n .xuv =  0, N  = n . x vv = —r(u) sin 0(u). (13)

Having them one can find easily the mean curvature H  (meaning average) of the 
membrane surface under consideration. Using the standard formula for H  which 
appears in the textbooks on classical differential geometry (see, e.g., [7, 13, 17])

„  _  L G - 2 M F  + N E  _  1 K x 
2 (EG -  F 2) “  T ' * 1 +  V)

where

= L / E  = -0 '(u)  and = N / G  = (14)
r(u)

are the so called principal curvatures along meridional, respectively parallel direc
tions, so that the mean curvature can be finally expressed in the form

H
1
2

e'(u) +
sin 0(u) 

r(u)
(15)

3. Equilibrium Equations

The results obtained in the previous section will help us to find the shape’s equilib
rium conditions. For that purpose we will consider the forces acting on the surface. 
The internal forces are

fi(« , v) =  am(u)t(u, v) and f2 (u,v) =  ac(u)e2(1;). (16)

In the left hand side of equation (16) am(u) means the meridional stress resultant 
and in the right one ac(u) is the circumferential stress resultant (see [1] for more 
details). Let us mention that the situation when ac(u) =  0 is referred in ballooning 
literature as the natural shape model.
The external forces depend on the pressure and the density of the membrane’s 
material, namely,

f(-u, v) =  p(u)n(u,  v) — w(u)k. (17)
Here p(u) is the hydrostatic differential pressure and w(u) is the weight density of 
the film.
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The balancing of the internal and external forces led us to the following equilibrium 
equations

(am (u)r(u)t)u -  ac(u)ei(v)  +  r(u){(u, v) =  0. (18)
The above vectorial equation projected onto n  and t  gives us respectively

d Q
(crTO(‘u )r(‘u ))—  =  —w(u)r(u)  cos 8{u) — ac{u) sin 8{u) +  p(u)r(u) (19)

d (o " jn ( t i ) r ( t i ) )  f  \ f  \ • o f  \ < f  \ o f  \-------- ---------- =  — w(u)r(u)  sm &(u) +  crJu) cos&(u). (20)
du

4. Shapes and Related Surfaces

The first profound analysis on the axisymmetric balloon shapes was done in the 
period between 1960 and 1970 by J. Smalley. For this purpose he implemented 
numeric models on a digital computer (all relevant references on the subject can be 
found in [2]).
As Smalley’s considerations were of numerical origin it seems worth to look for 
those models possessing analytical solutions. Despite that the system governing 
these shapes is highly nonlinear we have been successful in finding a few exact 
solutions which will be presented below.
These solutions are retrieved by neglecting some of the parameters from the equi
librium equations. Starting with the case where the film weight contribution is 
assumed to be zero, i.e., supposing that w(u) e Owe will have instead the equa
tions (19) and (20) the system

-(<rm(u)r(u)) —
du

d (am (u)r(u)) 
d u

= (Tc(u) sin 0(u) — p(u)r(u) 

=  CTc(u) cos 6(u).

(21)

(22)

Following the geometrical relation (4), the second equation in this system implies 
that the meridional and circumferential stresses are constant and of the same mag
nitude, i.e., am(u) =  ac(u) =  a  =  const, while the first equation (21) can be 
recognized as the mean curvature of <S, namely

H p ( u )  

2 a (23)

If we continue with examination of the case where the hydrostatic pressure is also 
a constant, i.e., p(u) =  pQ =  const, we end up with a surface of constant mean 
curvature

H  = — —  = const. (24)
2 cr

This class of surfaces was isolated many years ago by Delaunay [3], following 
a genuine geometrical argument -  all they are just the traces of the foci of the
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non-degenerate conics when they roll along a straight line in a plane (roulettes 
in French). On the other side, these surfaces of revolution have a minimal lateral 
area at a fixed volume as proved by Sturm in an Appendix to the same paper. That 
in turn revealed why these surfaces make their appearance as soap bubbles, liquid 
drops [4, 6,12] or cells under compression [5,18] and now as balloons shape. The 
list of all Delaunay’s surfaces includes cylinders of radius R  and mean curvature 
H  =  1/2R, spheres of radius R  and mean curvature H  =  1/R,  catenoids of mean 
curvature H  =  0, and nodoids and unduloids of constant non-zero mean curvatures 
with all their profile curves shown in Fig. 1.

Cylinder Sphere Catenoid Unduloid Nodoid

Circle Line Segment Parabola Ellipse Hyperbola

Figure 1, The profile curves of Delaunay’s surfaces obtained by rolling 
the conics listed below the horizontal line on it.

5. Nodoids and Unduloids

In this section we will derive the analytical description of the last two and most 
interesting cases from the Delaunay’s list. We start with the system formed by the 
equations (21) and (22) which ensures the geometrical relation

sin 9(u) =  — H----  (25)
' 2 r

where C  is some integration constant. Combined with (4) this leads to the equation

d r(U) =  cos 0(n) =  — \ / —p2r4 +  4(1 — pC)r2 — 4C2 (26)
d u ' 2r v '

in which the variables can be separated, i.e.,

2rdr
=  dtt. (27)

Introducing £ =  r 2 we end up with the task for the evaluation of the elementary 
integral (on the left) written below

£ ) ( £ - « 2)
du =  it +  o (28)
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where

1 -  VI -  2pCa =  -------------------
V

1 +  VI -  2pC  c =  -------------------
V

and

is some integration constant.
After some calculations the result can be written in the form

£(u) = r 2(u) =  [(c2 — a2) s in u  +  (c2 +  a 2)]/2

(29)

(30)

in which the integration constant is omitted as it is inessential for our further con
siderations.
In order to find the generating curve we have to solve also the equation (5) which 
in view of the above notation reads

and, therefore,

d z
—  =  — tan 0 = — 
dr

z(r) = -  j

pr2 +  2(7

V  (c2 — r 2)(r2 — a?)

(31)

(32)

The integral on the right hand side can be uniformized by performing the change

r(t) =  c dn(t, k) (33)

where dn(t, k) is one of the Jacobian elliptic function of the argument t  and the 
elliptic module k  (details about elliptic functions, their integrals, and properties 
can be found in [8]). Choosing k  to be Vc2 — a?/c we get

z(t) =  cp dn2(t, k)dt  + 2C
c

d t (34)

and consequently

2(7
z(t) =  cpE (am(t, k),k)  H------F  (am(t, k), k ) . (35)

c

Finally, equations (30) and (33) will be compatible if the natural parameter u and 
the uniformizing parameter t  are related by the equation

sinu =  1 — 2sn2(f, k). (36)

Let us mention also that another pair of formulas in place of (33) and (34) used 
for drawing Fig. 2 and Fig. 3 has been derived following the variational approach 
in [10].
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Figure 2, The unduloid sur
face.

Figure 3, The shape of the 
nodoid.

6. The Mylar Balloon

This is another case in which the system of equations (19) and (20) can be solved 
up to the very end. Assuming that ic(u) =  ac(u) =  0 and that the hydrostatic 
pressure p(u) =  pQ is a non-zero constant, the initial system (19) and (20) reduces 
to the equations

(o-m(u )r(u ))d^-Û  =  p0r(ii) (37)
d it

d(‘y'" lf ) r (“ )1 =  0. (38,
du

The second equation above tells us that a.m(u)r(u) is a constant quantity. Follow
ing Gibbous [4] we introduce the meridional stress resultant d on the equator of 
the balloon, i.e., the points for which r(u) =  a, z(u) =  0 and rewrite the above 
integral in the form

, , ad
am(it) = — - .  (39)

r(u)
This allows as to rewrite the first equation (37) as

d 8(u) 
du pr(u), aa

(40)

If we combine this equation with (4) we gel the following geometrical relation

r2(u) — sin 6 (it). 
P '

(41)

This last relation, as we shall see, characterizes uniquely the surface in question. 
Lei us start with solving (41) for r(u). After lhal we replace the result in (40) and
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in this way obtain a differential equation with separated variables

~ ^ =  = v/2#d«. (42)
y s in tf

Next we introduce rj =  sin 9 which transforms the left hand side into
drj

VvO- -  i 2)
and this suggest a new change rj =  C2 of the independent variable rj which gives 

d rj _  2dC _  2dC 

\/ri( 1 -  92) \J\ - C 4 V ( 1  +  C2) ( l  -  C2 ) ’
By all these changes equation (42) reduces to the form

2dC

V(1 + C2) ( 1 - C 2)=
\/2f>d■ (43)

However, this is a standard elliptic integral (cf. [8]) which can be inverted directly

As a consequence we have also

and therefore

Here en(t, k) is the so called Jacobian cosine elliptic function.
In order to find z(u) we make use of (5) and (44) which lead to

d z(u)
du

=  — cn
v/?“ - 7 l )

(44)

(45)

(46)

Details about the integration of the above equation can be found in [11] and the 
result is

z(u)
71

(47)
If we compare the obtained parametrization of the profile curve (r(u),z(u))  pro
vided by (45) and (47) with that one in [11] we can easily conclude that we are 
dealing here with the mylar balloon. The profile curve and the surface generated 
by them are shown in Fig. 4 and Fig. 5. For commercial purposes the just men
tioned mylar balloon is fabricated from two circular disks of mylar, sewing them 
along their boundaries and then inflating. Surprisingly enough, these balloons are
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Figure 4, The profile of the mylar 
balloon in X O Z  plane.

Figure 5, An open part of the mylar balloon.

not spherical as one naively might expect from the well-known fact that the sphere 
possesses the maximal volume for a given surface area. An experimental fact like 
this suggests a mathematical problem regarding the exact shape of the balloon 
when it is fully inflated.
This problem was first spelled out by Paulsen in a variational selling [14] while 
here we have provided in fact its non-varialional characterization. One should 
mention also the remarkable scale invariance (i.e., independence of the actual size) 
of the thickness lo diameter ratio of the inflated balloon which turns out to be with 
a good approximation equal lo 0.599. Another important fact about this surface 
is the very simple expression for its area given by the formula A  =  t r a 2 where 
a is the radius of the inflated balloon. In some sense all these nice properties are 
due lo the remarkable properly which specifies uniquely the mylar balloon as the 
only surface of revolution for which the principal curvatures kfI and k^ obey lo the 
equation

kfj =  Sfejr- (48)
As has been noticed by Gibbons [4] this (Weingarien) properly can be derived 
within membrane approach as well by rewriting (41) in the form

—pr(u) = —2
sin 6(u) 

r(u)
(49)

Taking into account (40) along with the definitions of the principal curvatures given 
in (14) amounts directly lo the equality (48).
Detailed differential-geometric proofs of the other facts mentioned above and many 
additional comments can be found in the already cited papers [10] and [11].
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