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Abstract, In this paper by means of similarity transformation we find some 
one-dimensional quasi-exaetly solvable differential equations and their re
lated Hamiltonians which appear in physical problems. We have provided 
also two examples with application of these differential equations.

1. Introduction

During the last decade a remarkable new class of quasi-exaclly solvable spectral 
problems was introduced in [5], These occupy an intermediate position between 
exactly solvable and unsolvable models in the sense that exact solution in an alge
braic form exists only for a part of the spectrum.
In this paper we suggest a generalization of Bender-Dunne [1] approach to possible 
one-dimensional elliptic quasi-exaclly solvable second order differential equations. 
For this purpose, and with an attention to applications of elliptic potential we are 
motivated to obtain generalized master functions A(x)  that lead to elliptic quasi- 
exaclly solvable potentials. By appropriate choice of the generalized master func
tion A(x)  we obtain some one dimensional quasi-exaclly solvable potentials that 
in all cases are functions of Jacobi elliptic function. These functions are periodic 
functions.
The paper is organized as follows: In Section 2 we show that we can generalize 
the usual quadratic master function to a master function of at most four order poly
nomials, then the most general elliptic quasi-exaclly solvable differential operators 
related to generalized master function of degree k  =  3 and k  =  4 are given. Also 
by expanding iheir solutions in powers of x, we gel three-term and four-term recur
sion relations among their coefficients, where Bender-Dunne factorization follows
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through imposing the quasi-exactly solvability conditions and in Section 3 we de
rive all one-dimensional elliptic quasi-exactly solvable differential equations for 
k  =  3 and k  =  4 and respectively the relative quantum Hamiltonian via prescrip
tion of references [3, 4], Finally, in Section 4, as an example, we derive Lame 
potential from the special case of the potential which is given by the generalized 
master function A(x)  =  4x(l  — x )(l — k 2x).

2. Quasi-Exactly Solvable Differential Equations Associated with 
Generalized Master Function

In the following, by generalizing master function of order up to two to polynomial 
of order up to k  together with the non-negative weight function W(x) ,  defined on 
the interval (a, b) such that - ^ (A (x )W  (x)) is a polynomial of degree at most 
k — 1 , we can define the operator

£  =  +  (1)

where B(x)  is a polynomial of order up to k  — 2. The interval (a, b) is chosen 
so that, we have A(a)W(a)  =  A(b)W(b) =  0. It is straightforward to show that 
the above defined operator L is a self-adjoint linear operator which maps a given 
polynomial of order m  to another polynomial of order m  +  k  — 2. Now, by an 
appropriate choice of B(x)  and weight function W(x) ,  the operator L can have an 
invariant subspace of polynomials of order up to n. Then by choosing the set of 
orthogonal polynomials {4>q, <pi,. . . ,  <pn} defined in the interval (a, b) with respect 
to the weight function W(x)

/ 4>m(x)4>n(x)W(x) da: =  0 for m  /  n (2)
J a

as a basis, the matrix elements of the operator L on this base will have the following 
block diagonal form

Lij =  0 if {i < n and j  > n +  1} or {i > n + 1 and j  < n) .  (3)

Since, according to the well known theorem of orthogonal polynomials, <j>n(x) is 
orthogonal to any polynomial of order up to n 1 and, therefore, for the matrix L 
we get

L = 'M O'
0 N (4)

where M  is an (n +  1) x (n +  1) matrix with matrix elements

f bMij = / W{x)fpi{x)L{x)fpj{x)&x, i, j  = 0 ,1 ,2 , . . . ,  n 
J a

and N  is an infinite matrix element defined as above with i, j  > n +  1 .

(5)
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The block-diagonal form of the operator L indicates that by diagonalizing the 
(n + 1) x (n + 1) matrix M ,  we can find n +  1 eigenvalues of the operator L  
together with the related eigenfunctions as linear functions of orthogonal polyno
mials {4>0, 4>i,. . .  ,4>n}•
In order to determine the appropriate B(x)  and W(x)  for given generalized master 
function A(x),  we use the Taylor expansion of these functions

, ,  , 0) t A(i, . ns dlA(x)
M X) = Z ^ — ^ ~ x , with ^W(O) =

i= 0 ii dxl x=0

(A{x)W{x)) '  _  ^  ( ^ ^ ) w (0)

and, therefore,

W{x)

( ^ ) ?\ «

ili=0

d* f (A(x)W(x))'\
K Wlx) )

dxl

with B ® { 0) -  d

x=0

d lB(x)

i= 0
da:1 x=0

(6)

(7)

(8)

Then, the existence of invariant subspace built by the polynomials of order n of the 
operator L  leads to the following linear equations between the coefficients of the 
above Taylor expansions

where
(i + 2)!

1)
f (Awy
v w >

(* +  !)!
+ = 0

I =  n and i =  1 , 2, — 2
I =  n — 1 and * =  2, 3, — 2

I =  n — k  +  4 and * =  k  — 3, k  — 2 
l = n — k + ?> and i = k — 2.

(9)

(10)

The number of above equations for a given value of k  is (fc xKfc 2)_ if  we ^  to 
determine only the unknown function I?(a:) without having any further constraint 
on the weight function W(x) ,  then the above (fc~xKfc~2) equations should be sat
isfied with (k — 2) coefficients of Taylor expansion of B  as the only unknowns, 
since B (°1 can be absorbed in the eigenspectrum operator L. Therefore, we are left 
with k  — 2 unknowns to be determined, where the compatibility of equations (9) 
require that k = 3 at most. On the other hand, if we add the coefficients of Taylor
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expansions of A(x)  and to our list of unknowns, (to be determined by
solving equations (9)), then their compatibility conditions require that

3(fc -  1) >
( k -  l )(k  

2
2)

( 11)

or k  < 8, where further investigations show that we can have at most k  =  4, since

for k > 5 the coefficients A.W(0) and ( ^ | | | ^  (0) will vanish. Below 
we summarize the above-mentioned discussion for k  =  3 and k  =  4, separately.

2.1. The Case k = 3

In this case, B(x)  is a second order polynomial where I?W can be determined by 
solving equations (9)

B {1)
n
2

^ (3) (0)

3
(n 1) + (aw7)?\ (2)

w ) ( 12)

which is the only unknown in this case.

2.2. The Case k = 4

Again, solving the equation (9) leads to

(13)

(14)

=  -  2

'^(3)(0)
(n -  1) +

( A W )1 ( 2 ) N

B {2} = - — n ( n -  1) 
12 v

and

(AW7)?\ (3)
w ) !)• (15)

Here, besides having a constraint over the second order polynomial B(x),  we have 
to put further constraints on the weight function W(x)  given in (15).
Definitely, we can determine n + 1 eigenvalues of the operator L, simply by di
agonalizing the (n +  1) x (n +  1) matrix M ,  since it is a self-adjoint operator in 
Hilbert space of polynomials and it has a block diagonal form given in (4).
As we are going to see at the end of this section, we can determine its eigenspec- 
trum analytically, using some recursion relations.
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2.3. Recursion Relations

Now we show that the eigenfunction of the operator L is a generating function for 
a new set of polynomials Pm(E)  where the eigenfunction equation of the operator 
L  leads to the recursion relations between these polynomials. Quasi-exact solvable 
constraints (9) will lead to their factorization, that is, Pn+N+i(E)  =  Pn+i ( E )Q ^  
for N  > 0, where the roots of polynomials Pn+i(E)  turn out to be the eigenvalues 
of the operator L. To achieve these results, first we expand ip(x), the eigenfunction 
of L, as

QG
ip(x) = Y  Pm(E)xm (16)

m=0

where the eigenfunction equation

Lip(x) =  Eip(x) (17)

can be expressed as

QG
- A ( x )  Y  m (m  ~  1 )Pm(E)xm~2

(AW) f poo
/ m P tn(E)xm~1 dx 

J m = lm =  2 (18)
+B(X) Y  Pm(E)xm = E Y  Pm(E)xm

m=0 m=0

and this leads to the following recursion relations for the coefficients Pm(E) 

^W (m  +  l)(m  +  2) +  j  (m +  2) j  Pm+2(E)

+  ^ m ( m  +  1) +  ( ^ P ^ J  ( \ m + l )  + E  j  Pm+1(E)

(  m  Z(AWn<2) \  (19>

( A(P £ (2>\
+  “  1)(m -  2) +  “ --- jjj-----m  ~  ~ ^ T  P m - l ( E )  =  0.

Below we investigate recursion relations which are obtained in the cases when 
k = 3 (cubic A(x))  and k = 4 (quartic A(x)),  separately.
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Cubic A:
In this case the four-term general recursion relation reduces to the following three- 
term recursion relation

A ^ ( m  +  l)(m  +  2) +
(AW)'

W

(0)
(m +  2) Pm+2(E)

A ®  , , /  (AW)
+  I +  1) +

(i)

+

2!

(  A® m (m  — 1) +

W

{AW)' \  ̂

(m  +  1) +  E l  Pm+i(E) (20)

w r  \' r?(l) !
2!

m  — | Pm (E)  =  0.

In order to have finite eigenspectrum, that is, quasi-integrable differential equation, 
the above recursion relation should be truncated at some value of m  =  n, which is 
obviously possible by an appropriate choice of

B {1)
n
2 3

(n 1) + (AW7)?\ (2)
w ) (21)

and this is in agreement with the results of previous subsection.
Using the recursion relations (20) with B ^  given in (21), we get a factorization of 
the polynomial Pn+M+i(E) for N  > 0 in terms of Pn+i(E)  as follows

Pn+N+i(E) =  Pn+i(E)QM(E), N  > 0 (22)

where, by choosing the eigenvalue E  as a root of the polynomials Pn+i(E),  all 
polynomials of order higher than n will vanish.
By using equations (16) we obtain the eigenfunctions ibdx)

n
'k ix )  = Pm(Et)xm, i = o, 1 , . . . ,  n (23)

m=0

where Ei are roots of the polynomial Pn+i(E).
The above eigenfunctions are polynomials of order n, hence they have at most n 
roots in the interval (a, b) , where, according to the well-known oscillation and com
parison theorem for the second-order linear differential equation [2] these numbers 
order the eigenvalues according to the number of roots of corresponding eigenfunc
tions. Therefore, we can say that the eigenvalues thus obtained are the first n +  1 
eigenvalues of the operator L. Using the recursion relations (20), we can evaluate 
the polynomials Pm(E)  in term of Pq(E), where we have chosen Pq(E)  =  1. 
Following the above scheme we have evaluated the first five polynomials shown in 
the Appendix.
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Quartie A:
Again in order to truncate the recursion relations (19) and to factorize the polyno
mials Pn+N+i(E) in terms of Pn+i(E ),  we should have

B «  =  -
,4(3) Co)

(n -  1) +
(AW)'
w

(2)
(24)

and

£ ( 2) _  ^(4)
~ 2 T  ~  I T

B m  a «
2! 4!

Solving the above equations we get

( (Awy_ , (3)
(n -  1 )(n -  2) +  1 w/ - n K A  l 3|

( {A w y . m
n(n  — 1) -|-----——: (n +  1).

3!

B { 2) =  - — n ( n -  1) 
12 v

and
(AW7)?\ (3) AW

(n -  1).

(25)

(26)

(27)

(28)

The equations (24), (27) and (28) are the same equations which are required for 
the reduction of the operator L  to its block diagonal form.
Again the roots of the polynomial Pn+1 will correspond to n + 1 eigenvalues of 
the differential operator L  with eigenfunctions which can be expressed in term of 
Pm(Ei) for m  < n, where polynomials Pm(E) can be obtained from recursion 
relation by choosing Pq =  1 and P_i =  0.

3. Quasi-Exactly Potential Associated with Generalized Master 
Function

As in [3,4], writing
ib(t) = A 1/4( x ) W 1/2(x)<j)(x) (29)

by a change of the variable | f  =  \JA(x),  the eigenvalue equation for the operator 
L  reduces to the Schrodinger equation

H(t)ib(t) = Eib(t) (30)
with the same eigenvalue E  and ib(t) given in (30), in terms of eigenfunction of L, 

12
where H(t) = — ̂  +  V(t)  is the similarity transformation of L(x)  defined as

H(t) =  A 1/ 4 {x ) W 1^2{x ) L { x ) A ~ 1/ 4 {x ) W ~ 1^2{x ) (31)

3 A 2(t) _  1 W * W  1 A(t )W(t )  1 # )  1 # ( f )
16 A2(f) 4 W 2(t) 4 A(t )W(t )  4 A(t)  2 W(t)  { ’ U }

with

V(t)
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and

V ( ) =  ^ 2 _  ^ 2(g ) _  A(x)W(x)2 A(x)W(x) A(x)W(x)
{X) 4 16A(:c) 4 W 2(x) 2 W(x)  2 W(x)  {X)

It is also straightforward to show that

4>(t)H(t)ip(t) dt =  / W(x)ip(x)L(x)ip(x) dx.
J a

Hence block diagonalization of L  leads to block-diagonalization of H.

(33)

3.1. Elliptic Quasi-Exactly Solvable Potential

The starting point to find elliptic quasi-exactly solvable potential is generalized 
master function A(x),  as mentioned before. Therefore, the selection of master 
function A  which leads to elliptic potential, is very important. Considering the 
relation ^  =  y/A(x),  we select the master function so that x  comes into the 
form of elliptic Jacobi functions. The weight function W(x)  related to the given 
master function A(x)  of order three and four can be obtained so that the polynomial 
W A x ^ ^ W ) to °f order two or three, respectively.
After determining B \  and B 2 from equations (13) and (14), the function B(x)  can 
be obtained easily

B(x)  =  B \ x  +  ^ B 2X2.

Now, we can determine operator L  and potential V(t)  by knowing A, W  and B.  
The interval (a, b) for x  is chosen so that to have A(a)W(a)  =  A(b)W(b) =  0, 
and the interval of the parameters a, 0, 7 and S such that A (x)W (x)  has not any 
singularity and also A(a)W  (a) =  A(b)W(b)  =  0 and equation (28) are conserved. 
We introduce the possible 24 generalized master functions A(x)  of order three and 
four in Table 1 below.

4. Example

As an example we are going to obtain the Lame potential. For this purpose we con
sider the generalized master function A(x)  =  4x( l  — x) ( l  — k 2x), x  =  sn2(t, k) 
where its corresponding differential equation L, weight function W(x) ,  polyno
mial B,  potential V  and the interval of x  are given bellow.
W  =  x a{l — x)P{l — k 2x )7, 0 < x  < 1, 0 < k < 1, 

a  > —1 , 0  > —1 , —00 <  7 < 00

B  = 4nk2(n +  2 +  a  +  0  +  7 )2:
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Quartic A

4x(l  — x ) ( l  — k 2x) sn2(t, k) (x2 -  k 2)(x2 -  1)
dn(t, k)
cn(t, k)

4x( l  +  x) ( l  +  (1 — k 2)x)
sn2(t, k) 
cn 2(t, k) (1 + x 2)(l -  k 2 + x 2)

en(t, k) 
sn(t, k)

4x(l  +  k 2x)(  1 +  (k2 — l)a:)
sn 2(t,k)  
dn2(t, k)

(x2 — 1)(1 — k 2 — x 2) dn(t, k )

sn2(t, k)
(x2 — l ) ( x 2 —

1
sn(t, k)

— k 2)x +  k 2)
cn 2(t, k) ( l - x 2) ( ( l -

1
dn(t, k )

4x(l  — x ) ( l  — k 2 +  k 2x) cn 2(t, k) (x2 -  1)((1 -  k 2)x2 +  jfe2)
cn(t, k )

- l + x ) dn2(t, k) (1 - x 2)(l - sn (t, k )

-  l ) x  +  1)
1

dn2(t, k)
( l - x 2) ( l - cn (i, k )

4x(l  +  x) ( l  — k 2 +  x)
cn 2(t, k) 
sn 2(t,k)

(k2 + x 2)(k2 -  l + x 2)
dn(t, k) 
sn (t, k )

4 x (k2x  — l) (x  — 1)
cn2(t, k) 
dn2(t, k)

(k2 + x 2)(k2 -  l + x 2)
dn(i, k) 
sn (t, k )

4x(x — k 2)(x — 1)
dn2(i, k) 
cn 2(t, k)

(1 +  k 2x 2){ 1 -  (1 -  k 2)x2)
sn (t, k) 
dn(t, k)

4 x (k2 +  x)(x  +  k 2 — 1)
dn2(t, k) 
sn2(t, k)

(1 + x 2)(l  + (1 -  k 2)x2)
sn (i, k) 
cn (t, k )

Table 1, Cubic and Quartic Master Functions

L = —4x(l  — x )(l — k 2x ) — r — [4k2 (3 +  a  +  0  +  7 )x2 +  (—8k 2 — 8 — 4 a k 2
axz

— 4a — 48 — 47k 2)x +  4 +  4a] - — h 4nk2(n +  2 + a  + 8 + 7 )2:
dx

V = 4(1 -  k 2)
(3C4 +  Cz)cn2(t, k) — C4en4(i, k) +

(74dn4(t, k ) 
¥  "

1

+

3A ±  + § )  -  ( §  + §  +  C2 +  m  + kV:0j i A t  k)

Co 3(1 +  k 2)C4 
4sn2(t,k)  4k4 2k 2 J
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Ci =  —83 — 8ak2 — 87 k 2 — 8a — 4 k 2 — 8a3 — 8 a 2k 2 — 807 k 2 — 8a2 — 4 
C2 = 32 a k 2 +  243k2 +  247 k 2 +  26 k 2 +  432 +  4 a 2 +  8a3  +  4 k4 +  8a  

+  16n&27 +  8/?7 k 2 +  16 a 3 k 2 +  87 k4 +  32 nk2 +  4 a 2k4 +  16a2 A;2 
+  8 a k 4 +  472&4 +  16 n 2k 2 +  83 +  4 +  16a 7 &2 +  16 nk23  +  16 n k 2a  
+  807k4

C% =  —4k2(fiak2 +  43k2 +  4an  +  4 3n  +  67 A;2 +  47 +  5 k 2 +  2k2ry2 +  4771 
+  232 +  2 a2 +  4a3  +  6a  +  4nk2j  +  4n2 +  23"fk2 +  2 a 3 k 2 +  2 3 j  
+  8 n +  8 nk2 +  2 a 2k 2 +  4 n2k 2 +  6 3  +  2a-f +  5 +  4a-fk2 +  4nk23 
+  4nk2a)

C4 = k4(2-f +  5 +  4 n + 23 +  2a) (27 +  3 +  4n +  23 +  2a)
C0 = 4 a 2 -  1.
Let us restrict ourselves to the case in which the parameters a , 3, 7 are

(34)

(35)

a  = 3 = 7 =  —

The relative potential of the generalized master function A(x)  reduces to

V{x)  =  2n(2n +  l ) k 2x 2 

which is exactly the Lame potential.
Below we obtain the low laying eigenvalues and eigenstates for this potential. In 
order to find the eigenvalues and eigenstates for n =  1 , first we obtain from P2 =  0 
the eigenvalues E\  and E 2

n  +  + D £  , e  
2I --------6—  +  T

Ei = 2k 2 +  2 -  2 V k 4 - k 2 + l 

E 2 = 2k 2 +  2 -  2 \ / k 4 -  k 2 +  1.

Now from ib^x) =  ^m =o Pm(Ei)xm, we can obtain the eigenstates ib 1 and ib2 as 
given below

ibi{x) = 1 +  2 {k2 +  1 +  V k 4 -  k 2 +  l )

ip2(x) = 1 +  2 (jfe2 +  1 -  \Jk4 -  k 2 +  l )

Similarly for n =  2 with F j =  0 we obtain Ei , E 2, E 3 and relative eigenstates as

Pi = ------- E ’’ +
720
20 20 , 

Ei = -  — -  — r

(1 +  k 2)E 2 k 2(4k2 +  21 )E  8 k 2(k2 +  1)
45

+
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10 10.
F 2 =  — +  — k 2 +  2\J 9k4 — 4k2 +  9

O O

F 3 = ^  +  ^ - k 2 -  2V9k4 -  4k2 +  9

ipi(x) — 1 H——(1 + k 2)x2 + — (80 k 4 + 205k 2 + 80)a:4 
3 £ {

ib2{x) =  — \  — \ h 2 — \J 9 k4 — Ak2 +  9x2
o o

+  ^  (6V9A;4 -  4fc2 +  9(1 +  k 2) +  38k 4 +  22k 2 +  38) x 4 

i>z{x) =  — -  — - k 2 — \J 9 k4 — 4 k 2 +  9x2
o o

+  ^  ( - 6 ^ 9 ^  -  4fc2 +  9(1 +  k 2) +  38k4 +  22k 2 +  38) x 4.

Appendix: The First Four Polynomials Pn(E) for k =  3

To abbreviate, we set F ^  =  ^

Pg = 1
_ E
Pl ~  ~  p d
_ 1 B 1F°  + EE1 + E2
2 “  2 F°(A1 + F°)

P3 = -  (2F F (1)A(1) + A(2)F 2 + 2F (1)F (0)F (0)

+  A(2) F (1) F (0) +  Ai:2)E F iJ) +  3 F F (1)F (0) +  F 3 

+  2F F (1)2 +  3F (1)F 2 -  F F (2)A(1) -  F F (2)F (0))

/ ( 6F W 2AW2 +  +  f ( ° )2)

F4 =  ( - A (3)F F (1)F (0) +  4A(2)F 3 +  6F (1)F 3 +  6F F (1)3 +  11 F (1)2F 2 

+  3 F (1)2F (0)2 -  2A(3)F 2A(1) +  3A(2)2F (1)F (0) +  3A(2)2F F (1)

+  6F W 2f Wf ®  +  8E 2B ^ A ^  +  6F 2f W f ®  -  7E 2F ^ A ^  

-  4F 2F (2)F (0) + 9A(2)F F (1)2 + 13A(2)F (1)F 2 -  3F(2)F (1)F (0)2 

+ 6A(1)F (1)2F (0) -  2A(3)F F (1)A(1) + 6A(2)F F (1)A(1)

+  9A(2)F (1)F (1)F (0) +  10A(2)F F (1)F (o) -  3A(2)F F (2)A(1)
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-  3,4(2)F F (2)F (0) +  12F (1)F F (1U (1) +  14F(1)F F (1)F (0)

-  9 F ^  E F ^  — 6 F ^ E F ^  F^0) — 6.4 ^  F^2) F^0)

-  2 4 (1)4 (3)F (1)F (0) -  AzB 1F (-0)2 -  4 (3)F 2F (0) +  3 4 (2)2F 2 +  F 4)

+  114l2F ®  +  6 4 « F ® 2 +  F<°>3)).
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