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Abstract. Here we present a review of the results in the theory of the 
submanifolds related to the notion of area and mean curvature vec
tor. It is shown that if r is the radius vector of the submanifold F n 
in the Euclidean space E n+P, p =  | r 2 and H  is the correspond
ing mean curvature vector, then the Laplace-Beltrami operator satisfies 
V2 P =  77.(1 +  rH ) and therefore in the case of a minimal submanifold 
one has V2 p =  n. When n 2 it is proven that if we have a complete 
submanifold F n c E N with \H\ <  Ho — const and Ricci curvature 
Ric(r) >  —a2 =  const in a ball of radius R  then R  >  _ , f  , TT— .
The Chern’s problem of existence of a complete and unbounded min
imal surface is considered in some depth. Next we consider the con
ditions of stability of the minimal submanifolds. For submanifolds 
in Riemannian spaces the problem of stability is connected with the 
Hopf problem about the existence of metrics with positive curvatures 
on S 2 x S 2. It is shown that a two-dimensional minimal surface F 2 
homeomorphic to the sphere S 2 in a oriented simply-connected ma
nifold M n with a sectional curvature i  <  K,j  <  1 is non-stable. 
Pogorelov’s result about minimal surfaces in S 2 x S n, n >  2 is out
lined as well. Finally, an expression is derived for the Riemannian 
tensor of a submanifold defined implicitly by a system of equations in 
the Euclidean space and a remarkably simple formula is found for the 
Gaussian curvature of F 2 C E 4. 1

1
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1. The Vector of Mean Curvature of a Submanifold in the 
Riemannian Space

Let us consider some regular submanifold F n c E n+P in the Euclidean space.

Definition. We call F n a minimal submanifold if for every point x 0 G F n 
there exists some neighborhood U {x0) such that for any variation of U (x0) 
with fixed boundary of U (x0 ) the n-volume of U (x0) does not decrease.

We can reformulate this definition in geometrical terms. If ds2 =  du 1 duj 
is the metric of F n and g  =  \ g tj \ ,  then the n-dimensional volume V  can be 
represented as the integral

V  — J y /g d u 1 • • • dun .

Let us now consider a special variation of F n. In a small neighborhood of x 0 
we can construct p  normal fields £1;. . . ,  which consist of unit orthogonal to 
each other vectors.
Let r  — r ( u 1, . . . ,  un) is the position vector in F n and f  =  f ( i d , . . . ,  un, e) is 
its variation where £ is a small parameter.
We take the variation in the following form

f  =  r +  e w ia ,

where w  is some regular function of a point x G F n with the condition 
w\du(xo) =  0, and a  is a fixed number. We have

f ui =  ru, +  ew£aui +  ewui£a .

By using the Weingarten decomposition of the derivatives £aui we have

vui rui £w(y L^g ruk g>a,p\ifp) F £wuifa ,

where p ap\i are the torsion coefficients.
Therefore the metric tensor g^ of F n has the form

9ij =  (ru>ru:,) =  gl3 -  2ewL* H----- ,

where LG are the coefficients of the second quadratic form corresponding to 
the normal fields £a, and dots denote the members with e2. If we put

(  9 u \

9 i
T°t

■ L>i —

\ 9 n i  ) \ L n i )
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then

9 =  \9i ~  2 sw L ^ g 2 -  2ewL“, . . .  ]
n

= [01, • • • ,0n] -  ^wJ2[gu- ■ ■ ,L%,... ,gn\ +
k = 1

The algebraic minor of Lfj is ggt j . Hence

Vg =  g( 1 - £ w L * g lJ) + •••
The first variation of the volume for e =  0 has the form

d y
de

=  -  / w L f ^ d V ,
e = 0

where dH is the volume element of F n. In this way we obtain that

-  0 .

Here we can take a  =  1 , . . .  , p .
Let us now introduce the vector which belongs to the normal space of F n

H = - i z  ■

We call H  the vector of mean curvature of the submanifold F r

Theorem 1.1. The vector o f mean curvature for minimal submanifold is equal 
to zero, i. e.

H  =  0 .

We can introduce also the vector H  for submanifolds in the Riemannian space 
also. A similar theorem is also true.
Let f  is a regular function on F n and are its covariant derivatives with 
respect to gij . The Laplace-Beltrami operator has the form

V20 =  f i j g13.

Now we consider every component of r as a function on F n. By using the 
Gauss decomposition we have

V2r =  r i j9ij = L ? j gijÇ<r=  0 .

Hence, all components of the position vector r  of any minimal submanifold in 
Euclidean space satisfy the Laplace-Beltrami equation.
This circumstance makes the theory of minimal submanifolds close to the theory 
of analytic functions.
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Let us consider now the function

2

We have pi =  rr, and

=  9 i j  +  r r , i j  =  9 i j  +  '  V .  I f ,  ■ 

Hence, for an arbitrary submanifold F n c  E n+P we have

V2p =  n( 1 +  r H ) .

If F n is minimal, then

V2p =  n .

We will use this simple equation to prove the following property: a minimal 
submanifold in Euclidean space can not be closed.
Indeed, if F n is a closed and regular, then there exists a point P0 with maximal 
value of the function p. At this point all p t — 0 and the ordinary derivatives

d 2 p
satisfy . < 0 .  But at that point

ou 1 ou 1

d 2p 
du 1 du 1

d 2p 
du 1 du 1

Therefore V2p <  0, and that contradicts with the equation V2p =  n.
Chern [1] suggested that perhaps a complete minimal submanifold F n in Eu
clidean space E n+P is unbounded.
For a minimal surface F 2 c  E m I have proved this hypothesis under the 
condition that the Gauss curvature of F 2 is bounded from below [2]. In the 
same article I have proved also the following theorem:

Theorem 1.2. Let the complete surface F 2 C E N with \H\ <  H0 =  const and 
with Gauss curvature bounded from bellow lies in a ball with radius R. Then

R  >
1

H~o
( 1 . 1 )

Corollary. A complete minimal surface F 2 C E N with Gauss curvature lim
ited from bellow is unbounded in the space E N.

For n >  2 1 have obtained an estimate which depends on H0 and the lower 
boundary of the Ricci curvature Ric(r) for the tangent vector r.
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Theorem 1.3. Let the complete Riemannian submanifold F n C E N with 
H0 and Ric(r) >  —a2 — const lies in a ball with radius R. Then

n
R  >

2 \ /n  — 2 a +  H0n

\H\ <

( 1.2)

To demonstrate the idea of the proofs we consider the case n =  2.
Let F n lies in a ball with radius R. Let the origin of the coordinate system 
lies at the center of the ball. If F n is closed, then there exists a point with 
maximal value of p and at that point

0 >  V2p > n( 1 — H r) >  n( 1 — H0R ) .

So for closed F n the estimates (1) and (2) are true.
Now consider non-closed but a complete surface F 2 c E N. Let 1 -  H 0R  =  
m 0 >  0. We introduce a new metric

d a2 =  e~2ßp d s2 ,

where d s2 is the metric on F 2 and \i is a positive number which we shall choose 
later. If K  is the Gaussian curvature of the metric ds2, then the Gaussian 
curvature of d a 2 has the expression

K a =  e- 2ßp( K  +  fi V 2p) .

By the assumption of the previous theorem there exists some number a, such 
that K  >  —a2 on the whole F 2. We have V2p > m 0 >  0. So, if p  is enough 
large (2m 0p >  a2), then the curvature K a is positive, and we will have the 
estimate

K a >  —a2 +  2m 0p, >  0 . (1.3)

Let D  is a region on the surface F 2 with an inner radius r and let O is a point 
in D  which distance from O  to the boundary of D is equal to r. Let /  is the 
shortest curve with respect to the metric der2 going from O  to the boundary of 
D. We denote its length by L a. Then we have

L a > j da =  J e~ßpd s >  e~ßR2/2r .
r r

Because the curvature K a is bounded by a positive number, we 
the estimate for this length

T <  n
~  ^ 2 m 0p — a2

can indicate 

(1.4)

By using estimates (1.3) and (1.4) we obtain

r \ /2 m 0u — a2 uR 2 
I n -------------------  <  ------

7r 2
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Let us take p  such that the expression under the sign of In is greater than 1 for 
all numbers r. For example, if a f  0 then we can put

a2 7T
M = ^  +  2 ^ -

We have
7T

m 0 ln(l  +  {ar/ir)2) <  (a +  —  ) # .

Let us introduce the following function which depends on r

^ =  (a2 + ^ ) - 1ln (l +  ( - ) 2).

Then

Now we have the inequality

R 2 >  m 0tp .

R 2 > {  1 -  W  ,

and then
ipp ^  _____

-  # + # '

Because for r oo the function ip oo as well, we obtain

R  >
Ha

All those means that the estimate (1.1) is proved.
For n-dimensional submanifold with n >  2 and with bounded from bellow 
sectional curvature the estimate (1.1) was obtained in the work by Hasanis and 
Koutroufiotis in [3]. They have used the strong and beautiful work by Omori 
[4]. There he considered the behaviour of a smooth function /  on the complete 
Riemannian space M  and proved the following theorem

Theorem 1.4. Let M  is a connected and complete Riemannian manifold whose 
sectional curvature K ( X , Y )  has a lower bound, i. e. K ( X , Y )  >  —K 0. 
If a smooth function f  on M  has an upper bound, then for any e >  0, 
there exists a point p  E M  such that ||grad /(p )|| <  e and m(p)  =  
m axpCX^i Wj f i p ) - ,  \\X\\ =  1] <  e.

By its definition m{p)  is maximal among all second derivatives f ss along all 
geodesic curves of M  with respect to the arc length s.
The condition on the curvature K  is important. Take on E 2 the metric dr2 +  
g(r)  dO2 where the function g{r)  satisfies: (a) g{r)  is smooth and g(r) =  r  for
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1 cfYt) 2c
0 <  r <  (b) g(r)  is a solution of , . Let f ( r , 9 )  =

r

Since
5 (r ) / ' ( r ) 

dx* dxJV iV j /  =  / " ( r )  d r 2 +  ^f'(r)g'(r) d02

1 +  r2

so m(p)  is bounded below from 0. Omori gave also some applications of the 
above cited theorem to submanifolds, but these applications were not connected 
with the function p.
Let us now apply Theorem 1.3 to the function p. If p is bounded from below, 
then for any e >  0 there exists a point with V2p <  e that contradicts equation 
V2p — n. The theorem from [3] is proved.
We remark that the estimate (2), which contains the Ricci curvature Ric(r) 
now is near the best.
In connection with Chern hypothesis let us note the work of Jorge and Xavier [5] 
in which they have answered the Calabi question: does there exist a complete 
minimal surface in E 3 entirely contained in half-space which is different from 
the plane? They have proved:

Theorem 1.5. There are non-flat complete minimal surfaces in E 3 entirely 
contained in a slab.

It is a well-known fact that every minimal surface F 2 can be represented in 
the form

Xk =  Re / f t  d^ +  Cfc , k =  1, 2, 3

where

0i = ^ ( i  - g 2), 02 = i ^ ( i  + p2), 03 =  fg-

Here /  and g are holomorphic functions in the disc D  and /  vanishes nowhere. 
The metric of F 2 has the isothermal form: d s2 =  A2| dz \2 and

A =  - 0 ( l  +  lfl|2).

Let g — then 0 3 =  1 and

x s =  Re J  dz  + c3

and consequently |x3| <  const. To obtain the completeness of F 2 one takes 
the function g in a special form. In this case

X=l(l9l + V\2 V \g\
>  1 .
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Let a  is a curve in the disc D  going to the boundary of D.
We shall distinguish two cases.
1. The Euclidean length of a  is infinite.

Then the image of this curve on F 2 has the length
OO

1(a) =  j X(a(t))  dt =  oo . 
o

2. The Euclidean length of a  is a finite number b.
Let g =  eh where h is some holomorphic function in D  which is close to the 
positive number cn on special subset K n c D.  The subset K n has the form of 
circular annulus centered at the origin without some little pieces (see Fig. 1). 
In connection with the evenness or oddeness of the number n, one takes this 
piece from different sides of annulus. Let E  =  LFenK n and O =  U°dditTn. The 
boundaries of K n for n —> oc approximate the boundary of D.  The following 
is true:
Any divergent path in D  is either o f finite Euclidean length will be such that: 
(a) cross all with the exception of a finite number K n in E  or (b) cross all 
with the exception of a finite number K n in O.

K,

Kn+1

We take a sequence cn oo. The possibility to approximate this sequence 
by the function h follows from the theory of analytic functions [7]. We can 
suppose that \h — cn\ <  1 on K n.
In the case (a) let m is  a such integer, then a  crosses all K n G E  with n >  m. 
We put g =  eh =  ec" eh~c", then \g\ >  ec,l_1. Let Jn is the set of all points t 
with a( t )  G K n. Then

b

21(a) >  J \ g ( a ( t ) ) \ d t >  £  /  Ig(a(t ) )  j dt
n n > m , n  even
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>  ^2  eCn 1J  d t ~  S  eC" 1 ’
n > m , n  even T n > m , n  evenJ n

where rn is the width of K n. If cn is chosen to grow fast enough, the curve 
a  will have infinite length in F 2. For example, if we take cn =  — ln rn, then 
1(a) —  oo. In case (b) a similar conclusion is also true. Therefore the minimal 
surface F 2 is complete and lies in the slab.
Jorge and Xavier [6] have proved the existence of a complete bounded minimal 
surface in n-dimensional Euclidean space for n >  4.
Some examples of minimal submanifolds.
1. In the Euclidean space E 4 with coordinates x l . . . . .  x 4 we represent the 

surface F 2 in the form

x 3 =  Re f ( z ) , x 4 =  Im f ( z ) ,

where f ( z )  is an analytic function of s =  .r1 F i x 2. This surface is minimal.
2. More general case. If f j ( z 4, . . . ,  z n) are analytic functions of z l, then the 

submanifold represented by the system of equations

f i ( z \ . . . , z n) = 0 ,

f k( z \ . . . , z n) =  0 ,

where k <  n is a minimal submanifold fc) c  E 2n.
3. The Klifford torus T 2 is a minimal surface in the sphere S'3.
4. The Veronese surface with the position vector

/  x lx 2 x 2x 3 x 1x 3 (x1)2 — (x2)2 (x1)2 +  (x2)2 — 2(x3)2
r ~  \  V s  ' V s  V s  ’ 2V3 ’ 6

5
with the condition 'W r~ =  3, is a minimal surface in the unit sphere S 4.

1=1

The Gauss curvature of this surface is equal to
1
3'

5. There exist much examples of isometric immersions of /,--dimensional 
spheres S k in the unit sphere S m , m  > k in the form of minimal sub
manifolds (cf. Calabi, do Carmo, and Wallach).

Let SI is a /-dimensional sphere with radius equal to
1

Theorem 1.6. For each positive integer s there exists an isometric minimal 
immersion ijj2,s ’■ Sl(s) &i s> where k (s ) =  2/ ( s ( s  +  1)). Let (j): S i  —> S[
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is an arbitrary isometric minimal immersion and assume that f ( S l )  is not 
contained in a hyperplane of E l+1. Then, modulo of a rigid motion

<t> =  4>2,s

for some s.

In [8] do Carmo and Wallach have associated with each positive integer s an 
isometric minimal immersion

oh , • Qn —, Cm(s)
T n , k  • i J k ( s )  ^  5

with

k(s) =  -- -------------  ,
s(s  +  n — 1)

m (s) =  (2s +  n _  ! ) ( *  +  « _ - J)’

2. The Second Variation of the Area of a Minimal Surface in the 
Euclidean Space E 3

For a minimal surface in the 3-dimensional Euclidean space, the phenome
non of instability was considered in the XIX century by H. A. Schwarz. He 
have obtained the conditions of stability of a region on a minimal surface and 
constructed a number of examples.
The expression for the second variation of the area of a minimal surface F 2 
with fixed boundary is

ö2S  — J [ 2Kw2 +  I grad w\2] dS.
G

As in the previous Section the variation of the minimal surface has the form

f  =  r  +  ew£ ,

where £ is the unit normal to F 2 and e >  0 is a constant. He have obtained 
also more general expression for the variation with a boundary which can move 
on the given surface.
Now we consider the variations with a fixed boundary.
We call the minimal surface F 2 unstable if in some neighborhood of F 2 there 
exists a surface F  with the same boundary and with lesser area.
As ordinary this definition can be substituted with the condition about the 
second variation:

• If 52S  >  0, then we call F 2 a stable minimal surface.
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• If S2S  <  0 for some variation, then F 2 is unstable.
Because K d S  — dw is the element of the spherical image on the unit sphere, 
Schwarz presents 82S  in the following form

S2S  — — J (Vg w +  2w)w doj,
i ’(.G)

where f :  F 2 —>■ S 2 is the spherical map. Here is the Laplace-Beltrami 
operator of the unit sphere.
So, we can reformulate the problem of stability in terms of the spectral problem

V2 w  +  2 A w =  0

with the condition
w \ d p ( G )  — 0 .

The classical result of Schwarz is following:
Some region G on the minimal surface F 2 c E 3 is stable if the first proper 
number X1 of V2 in the domain ij)(G) obeys Ax >  1. If Xi <  1, then G is 
unstable.
This theorem has only one defect that its formulation has non-geometric terms. 
By extending Schwarz’ result the Brazilian geometers do Carmo and Barbosa 
[9] obtain a criterion of stability in terms of the area of the spherical image. 
The formulation is very simple:

Theorem 2.1. If the area of the spherical image is less than 2ir, then G is 
stable.

For example, every domain on the minimal surface z — z ( x , y )  is stable.
Do Carmo and Peng have considered the stability of complete minimal surfaces 
[10]. They have called a complete minimal surface stable if any of its compact 
region is stable and have proved the following theorem

Theorem 2.2. If F 2 is a complete stable minimal surface in E 3, then F 2 is a 
plane.

In [11] Pogorelov have obtained a simple proof of this theorem for simple 
connected surface. At first, he have obtained the condition for unstability of 
geodesic disc D{p)  with the radius p on the minimal surface.
Let C{£) is a geodesic circle with radius £ and some center.

Theorem 2.3. (Pogorelov) A simple connected minimal surface is unstable if 
there exists on it a geodesic disc with radius p for which is fulfilled one of the 
following conditions:
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i- K O I >
Kp)

2pln(p/0
2 . S ( p ) >

4:71 p 2 
3

/or yo/ng £ <  p;

where l(p ) /s t/ze length of the circle C{p),  S( p ) zV t/ze area of the disc D(p),  
and to is the integral curvature of D(ff).

Let us consider the proof of do Carmo and Peng of the theorem with the help 
of Pogorelov’s theorem.
Suppose that F 2 is stable and let its Gauss curvature K  is not 0 at all points. 
Construct geodesic discs D{p)  with some center O.  For enough large £ we

have ujiff) 0. Consider the ratio Z(p)/p for p t,  l(p) x „oo. If -----  <  const for

Kp)p —f oo, then for a fixed £ we have
p H p / 0

first condition is true and therefore F 2 is unstable.

Kp)

p

0. For enough large p the

If now
P

oo for p —>■ oo then

P P
S  1 , TV r

0 po

Pi dpi
2  p 2

o o ,

where AT is an arbitrary large number.

Therefore for enough large p the second condition is true and hence the surface 
is unstable. We obtain contradiction assuming that K  f  0. Hence K  is 
identically 0. With the condition H  — 0 we conclude that F 2 is plane.
The article [17] by Kljachin and Miklukov provides a generalization of the 
Pogorelov’s theorem for minimal hypersurfaces in Euclidean space.
Let M n is a minimal hypersurface in E n+1 and B{r)  is geodesic ball with 
radius r and the center at the point m 0 G M,  let l{r) is (n — 1)-dimensional 
Hausdorff measure of the boundary dB{r) ,  and let S  is the scalar curvature of 
M n. If there exist p0 and p such that 0 <  p0 <  p and

J 151 d C >
B(pu )

( n - 2 ) / ( p )  (p /Po)n 2
pn“1 (p/p0)n“2 - l

for n >  2, then M n is unstable.
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3. On the Stability of Minimal Surfaces in the Riemannian Spaces

Between Differential Geometry and Topology there exist interesting and im
portant connections. The first examples of such kind is the Gauss-Bonnet 
formula

2nX =  J K d S ,
F2

where F 2 is a closed oriented surface, and x  is Euler characteristics.
Another classical example is the well-known theorem “about the sphere”. It 
states that n-dimensional orientable complete simple connected Riemannian

manifold with sectional curvature K a and satisfying the condition -  <  K a <

1 is homeomorphic to n-dimensional sphere S n (Rauch, Berger, Toponogov, 
Klingenberg).
Next example is provided by Prelsmann: On the product of 2 Riemannian 
manifolds M  x N  does not exist a metric with a negative sectional curvature . 
Very close to this statement is the hypothesis of Hopf that can be formulated in 
the following way: On the topological product of two 2-dimensional spheres 
S 2 x S 2 does not exist a metric with a positive sectional curvature.
We remark that this is the first one within the line of problems about permissible 
metrics on the topological products.
Many geometers were trying to solve this question. An interesting results were 
obtained by Berger, Bourguignon, Sentenac and others. One can approach this 
problem from different directions. The geodesic curves are playing the most 
important role in the proof of the theorem “about the sphere”.
Because the second homotopic group of S 2 x S 2 is not trivial, I had an intention 
to use the theory of the stability of minimal surfaces to this problem. It was in 
1975 when I have proved the following theorem.

Theorem 3.1. If F 2 is a minimal surface homeomorphic to the sphere S 2 and 
lies in an oriented simple connected Riemannian space M n with a sectional 

1
curvature — <  K a <  1. Then F 2 is unstable.

Here we see that the lower boundary of the curvature of the Riemannian space 

is - .  And this restriction is essential. In 4-dimensional projective space CP2 

with the Fubini-Study metric there exist totally geodesics and stable surfaces. 

Let us remark, that the curvature K a of this metric lies in the interval - ,  1 

Here the boundary numbers of the interval are included. In some cases for
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special classes of M n we can throw away the restrictions on the curvature of
M n.

Theorem 3.2. Let F 2 is a minimal surface homeomorphic to the sphere S 2 and 
situated in an n-dimensional orientable locally conformally fla t space M n of 
positive curvature. Suppose that the normal bundle of F  2 is trivial, then F 2 
is an unstable minimal surface.

The triviality of normal bundle means that we can construct on the whole F 2 
n — 2 normal regular fields.

Theorem 3.3. A complete geodesic surface homeomorphic to a sphere, having 
a regular field of unit normals and situated in a symmetric orientable manifold 
M 4 of positive curvature, is unstable.

The appearance of such kind theorem implies the next step: the existence 
of stable minimal surface as consequence of topological restrictions on M 4. 
Such theorems of existence belong to Schoen and Yau [12] and Sacks and 
Uhlenbeck [13]. The first two authors used this approach in the investigation 
of 3-dimentional compact Riemannian spaces with positive scalar curvature.
Then Micallef and Moore [15] using the same approach have obtained the 
generalization of the theorem “about the sphere”.
Now I want to give a short summary of the proof of Theorem 1.
Let F 2 is a minimal surface in the Riemannian space M n, , £n_ 2 is the
field of orthonormal basis of its normal spaces. Pkp\a are the coefficients of 
torsion of this basis, kj is the j-th principal curvature with respect to the normal 
vector £p. is the curvature of the space M n over the element of area
traced by £ and a vector e, from the orthonormal basis in the tangent space. 
We write the expression for the second variation of the area obtained by varying 
the field w£p as

S2S ( Q
F2

grad re 12 +  Y , d j P\abJP\a 
i

~ w 2 ( - J 2 k?k3 + J 2 k (f ^ p)
 ̂ i¥=j i=1

d S .

Simons wrote the sum of the first two terms in the form (V£V£), where V  is 
the covariant derivative in the normal bundle.
Then I consider two variations V\ — wt; 1, V2 — w ( 2, where w is some regular 
of the class C 1 function on F 2 and £1? are orthogonal between themselves
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unit vector fields that are normal to F 2. We take the sum

02S(V1) +  62S(V2).

This sum is reducible to a form which is more convenient for us. Consider 
the expression of S2S(V1). By the well known theorem we can introduce 
always isothermal coordinates on F 2 with d s2 =  A( du\  +  du\)  that satisfy

the condition: A  —► 0 as ——, where z =  u i + \ u 2. We can rewrite (VTA VTA) 

in the form:

( W i  W i )  =  A
- i

( w u i +  r c ^ l 2 | 2 ) 2 +  {w u 2 ~  w ß l 2 \ l  y

n —2

+  U?2[(A1j |i )2 +  Alj|2)2] +  ( w 2 ß l 2 \ l ) u 2 ~  { w 2 ß l 2 \ 2 j
3=3

+  W 2 ( f l  12 2,1 — M l 2 | l , 2  Y

The coefficients of the first and the second quadratic forms and the coefficients 
of torsion satisfy the Gauss-Codazzi-Ricci equations. Now we need only the 
Ricci equations:

ß m l \ 2 , l  ß m l \ l , 2 {terril +  &  m l  +  TmZ )/A,
where

K"ml 9  { L m \ p l L l \ q2 L rn \p2 A ; | g l  ) / A  ,

n  — 2

E  (M f>m |lA p£ |2  9 p m \ 2 ß p l | 1 / A  ,

P=1
=  R ß x ^ & Q y ^ y y k  .

We substitute ^ 1212,1 — ^ 1211,2 with the expression in the right side of Ricci 
equation. Similarly we transform (VTAVTA)- Adding the two expressions we 
find that

2

i = l

1
Ä 2(w v +  w //i2|2)2

n —2

+  2 ( w v  — r u / i i 2 | i ) 2 +  r e 2 ^ ^ [ ( / i i j | i  +  ß 2 j \ 2 ) 2

3=3
+  (Alj|2 — 9 j2 j \ l  )2] +  2 w2[k i2 +  T 12]

2
+  ^  [ ( w 2 9 l 2 \ l ) u 2 —  (w;2/i 12|2)u1] •
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The integral of the last term over any region D  c F 2 is transformed into an 
integral along the boundary, if it exists. If the boundary is empty, then this 
integral is transformed to zero. Later we consider the system of equations

W u i + W ß  12|2 — 0, ß l j \ l  + ß 2 j \ 2  — 0 ,
w u 2 — W ß  12|1 = 0, ß l j \ 2  — ß 2 j \ l  = 0 ,

j  =  3, • • •, n -  2 .

By rotation of the basis of normals, this system can be represented in the form

~ d U k
dz F km.  L ?fernem i

Thus we have proved the existence of non-trivial solution. Further we obtain

2 2

y > 2S (6 )  =  J  w 2[2ki2 -  2 ^  |ire(6 )l +  2 Tu  -  * £  K i e ^ d S .

If the curvature of the Riemannian space satisfies the inequalities ô <  ka <  1, 
where 5 — const, then for the Riemannian tensor in orthogonal coordinates we 
have the inequalities of Berger

1 2
— 2  (-^ 5 —  g  (1 3) •

2
It follows that |T12| <  -  (1 — <5).

O
It is easy to show that, by virtue of the minimality

2 2 

ÿ > 2S(T,) = f  w2l2k12 -  2 ^  |Jf,(0| + 2T12
i=  1 J  i=  1

<  J  œ2[ | ( l - Â ) - 4 < 5 ] d S < 0 ,

since ö >
1
4 ' Therefore, F 2 is an unstable minimal surface.

Recently Pogorelov have obtained some new theorems about instability of min
imal surfaces. He have proved that a minimal homeomorphic to 2-dimensional 
sphere surface F 2 in the product S 2 x S n with n >  2 which has positive 
sectional curvature, is unstable [23].
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4. The Behaviour of the Area of 2-Dimensional Surface in the 
Pseudo-Euclidean Spaces

In this Section I want to present the results of my pupil Victor Goroch from 
his article [16].
In the pseudo-Euclidean space E n,k we introduce coordinates x 1, . . . ,  x n and 
the metric

Let r =  r(u, v)  is the position vector of a surface V 2. The area of V 2 is 
determinated by the following expression

where E,  F, G  are the coefficients of the first fundamental form of V 2 (classical 
notation). The Euclidean space E n with the metric

ds'^ =  dxy T • • • +  d x n

will be called associated with E n,k.

Theorem 4.1. Let L is a piecewise smooth closed curve in pseudo-Euclidean 
space E n,k, k >  1. Then there exists 2-dimensional piecewise smooth surface 
with boundary L and infinitesimal area.

I want to remark that in the mathematical physics one consider minimal sur
faces and the solutions of other variation problems in pseudo-Euclidean space. 
For example, we can remind the Nambu’s approach to the problem of non 
observability of quarks and the later developments in the theory of strings.

Lemma 4.1. Let A B C  is a triangle in E 3,1. Then there exists piecewise smooth 
surface with boundary A B C  and infinitesimal area.

Let E 2 is a tangent plane of the isotropic cone. If we introduce in E 3,1 a 
coordinate system with coordinates x, y, z, then the equation

(x -  x 0)2 +  (y -  y0 f  =  { z -  z0)2

represents an isotropic cone with a summit at (x0, y 0l z0).
Then, the area of any region of this plane is equal to zero.
Let the point (a, 6, c) lies on the cone and on the plane E 2. The equation of 
the plane E 2 is

d s2 — àx \ +  • • • +  d x 2n_k -  d x 2n_k+1--------- d x 2n .

S ( V 2) =  J \ j\E G  -  F 2\ d ud v
D

z  — c  =
a(x0 -  a) F b(y0 -  b) 

c -  z 0C -  Z o c  —  z 0
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The position vector of E 2 will be presented in the form

We have

Then

r  =
x
y

z (x , y )

0
1

E  =  r i  =  l - z i ,

E G  -  F 2 =  1 -  z l  -  ~2z z  =  ± —

F

1

Zx Zy ,

a — x 0
C -  Z0

g  = 1 -  z ; , 
b - y 0 
c -  z0

= 0

In order to obtain the proof of the lemma we consider different positions of the 
triangle A B C .
1° Let the triangle A B C  lies in the plane parallel to the plane x. y (Fig. 2). 
Inscribe in the triangle a circle and let the point O  is the center of this circle 
and p is its radius. Let O N  is a segment of straight line parallel to the z axis 
and let |OAT| is equal to p. Then all triangles N A C ,  N A B  and N C B  have 
the area equal to zero.

Figure 2

2° Let the triangle A B C  lies in some other plane a  parallel to the z axis 
(Fig. 3). Divide the plane a  in euclidean infinitesimal squares with diagonals 
parallel to the 2 axis. Then every such square can be transformed into two 
conic surfaces built by isotropic straight lines. These surfaces have also areas 
equal to zero. We can inscribe in the triangle A B C  many little squares and
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then construct many conic surfaces. Therefore, we can construct a surface with 
boundary A B C  and with an infinitesimal area.

Figure 3

3° Let A B C  is a triangle in an arbitrary plane a  which is non-parallel to the 
z axis (Fig. 4). Let X  G A B C . Let rx  is a ray with origin X  and parallel to 
the z axis. Let ß  is a plane parallel to the plane x. y  that intersect all rays r x ■ 
We obtain in the plane ß  a projection A 1B 1C 1 of the triangle A B C . Let 4» is 
a surface which is the union of AA-iC^C, C C 1B 1B,  A A 1B 1B  and A 1B 1C1.

Every such region AA-^CiC, . . .  can be replaced by the surface with an infin
itesimal area and with boundary A B C .

The following lemma will be stated without proof.
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Lemma 4.2. Let a  is an 2-dimensional plane in E n,k and A B C  is a triangle in 
the plane a. Then there exists a surface with boundary A B C  and infinitesimal 
area.

Let us prove firstly Theorem 4.1.
Divide the curve L  by points A 0, . . .  , A n_ i in n equal arcs in the euclidean 
metric. Let X  is an arbitrary point on the arc A^Ai+1. We take a surface that 
consists of the points of all segments Ai X.  Its boundary is the arc A iA i+1 and 
straight line segment A lA i+ t. Denote this surface by
Let e is an arbitrary positive number. Let l is the euclidean length of the curve

L. Then the euclidean length of A iA i+1 is —. Let is the surface consisting
n

from the points of the surface but viewed as the surface in the associated
space E n. The surface 4>* is a cone in E n, then the area of <b* is less or

12 p  p  212
equal to — . So S(&) <  — , or Let us take n >  — . Then
M 4tt y J ~  4ir y J ~  irn2 4e

S ($ i)  <
£

2n — 2
Consider now the surface which consists of the triangles A t =  A 0A iA i+1, 
i =  1 , . . . ,  n — 2. Its boundary is the closed broken line 4̂0, , . . . ,  A n_1. By
the Lemma 4.2 for every such triangle A,t there exists a surface with the

£
same boundary and area S(Vi) <  --------. Then the union of all surfaces

? ^  n

is a piecewise smooth surface T> with area S(4>) <  £ and with boundary L. 
Theorem 4.1 is proved.
Let p{u) is the position vector of the curve L in the pseudo-Euclidean space 
E 3-1 and f(u)  is a vector field along L.
We call the surface with the position vector r { u , v) =  p{u)+vf {u) ,  —e < v < e  
a regular strip.
Let us ask the question: Does there exist a regular strip through L with area 
equal to zero?

Theorem 4.2. Let L is a closed regular curve in E 3,1. For existence of a 
regular strip with area equal to zero over L it is necessary and sufficient that 
the tangent vector at every point of L is not time-like.

Now I want to consider the question of stability of minimal surfaces in pseudo 
Euclidean space following [17],
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The plane in E 3,1 is called space-like plane if in this plane there exists an 
orthogonal basis e i , e 2 with e\ >  0, el >  0. A surface in E 3,1 will be called 
space-like if its tangent plane is space-like.
We call the surface in E 3,1 with zero mean curvature a minimal surface.

has the largest area among the closed space-like surfaces with the same bound
ary.

We remark that such a representation has any space-like surface.
The surface is time-like if in its tangent plane we can take vectors e \ , e2 with
el >  0 and < 0.

Theorem 4.4. Let V 2 is a time-like minimal surface in E 3,1. Then for any 
region of V 2 there exists a smooth variation in the class of time-like surfaces 
with a fixed boundary which decreases the area and there exists a variation 
which increases the area.

For the proof we use the following lemmas.

Lemma 4.3. Let V 2 is a 2-dimensional smooth time-like surface in pseudo- 
Euclidean space E n>1 n >  3. Then in the neighborhood of an arbitrary point 
o f V 2 it is possible to introduce isothermal coordinates d.s2 =  X( u, v ) ( du2 —

where £(u, v) is an unit normal of E 2 and n(u. v) is a regular function of the 
class C 2.

Lemma 4.4. The second variation of the area of V 2 has the form

Theorem 4.3. Any peace of a space-like minimal surface in E 3,1 represented 
by

z  =  z(x,  y)

We take the variation of V 2 in the form

r(u,  v, e) =  r(u,  v ) +  en(u, v)£(u,  v )

where
r ? ___ E n 2v -  2F n uiiv +  G n2u

lH ~  E G -  E 2

is the first differential parameter o f Beltrami.
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In the plane u, v we take the square to : — ij <  u <  rj, —p <  v <  p. If we put

and for large m  we obtain: S2S <  0.

Theorem 4.5. Let L is a closed curve in the plane y, z. Then there exists a 
surface with boundary L and area larger than an arbitrary given number.

For example, if L is a boundary of the rectangle: —£ <  y <  £, —3e <  z <  3£, 
then we can take the surface in the form x  =  f ( z , y), where

Then the area is equal to the number

_  2 4 e 2 ( 2 m +  1 )
— -----------9--------- •

For an arbitrary given large number N  we can take a large number m  such that 
the area S  will be larger than this number N . The Theorem 4.5 is proved.
In [18] Kljachin and Miklukov have considered the second variation of the min
imal submanifolds in pseudo-Riemannian manifolds. For space-like submani
folds F n they have proved that the variation of F n in the time-like direction £ 
does not increase the area and F n is maximal in the direction
If y  is space-like direction (this case is possible only for codim > 1), then the 
variation in the direction of rj does not decrease the area. The submanifold in 
the direction r/ is locally minimal.
In the article by Shen [19] it is proved that an arbitrary space-like submanifold 
V k with a mean curvature vector equal to zero in a pseudo-Riemannian ma
nifold M n of non-negative sectional curvature is stable. If M n is a complete 
simple connected manifold with constant non-negative curvature and if V n is 
complete, then M  is totally geodesic.
In the article by Kljachin and Miklukov [20] it is proved that an arbitrary 
stable minimal hypersurface of parabolic type in the Riemannian space of non
negative Ricci curvature is totally geodesic.

then for enough large m  we obtain: S2S >  0. 
For
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5. Expression of the Riemann Tensor of a Submanifold Defined 
by a System of Equations

In [21] I have studied the general question of finding an expression for the 
Riemann tensor of m-dimensional regular submanifold F rn of the Euclidean 
space E m+P, where the submanifold is defined by a system of p  equations

=  0 ,

% ( x \ . . . , x m+p) =  0 .

(5.1)

We set

^  OL\l

I- =

<9$q
d x { ’

dx'-dx^

and aaß — (grad <3?« grad <hg). Let (aaß) is the inverse of the matrix (aaß). 
Let X : y , Z  and T  are four vectors tangent to the submanifold at the same 
point. Let [XY]  and [ZT]  are the bivectors constructed from these vectors, 
each of which is regarded as a vector in E m+P, and let [ XY] rl and [ZT]sn are 
their components.

Theorem 5.1. Suppose that a submanifold F m in the Euclidean space is de
fined by the system (5.1). Then the Riemannian tensor R ( X , Y ,  Z , T )  of this 
submanifold has the form

R(X, Y, Z, T) ^ $a|rs $a|£s
4 $/3|rn $/3| ln

aaß[ XY] rl[ZT]sn (5.2)

Lor example, if K  is the Gauss curvature of a surface F 2 c E 3 defined by the 
equation

$ { x u x 2,xf)  =  0 

we obtain the Neumann formula

$11 $12 $13 $1
$21 $22 $23 $2
$31 $32 $33 $3
$1 $2 $3 0

(4-Î +  $^ +  $ 2\23/
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The expression (5.2) is very convenient for computer calculations when the rep
resentation of the submanifold is given by some system of analytical equations. 
Let the system (5.1) consists of only two equations

<f>i(x\ . . .  , x n) =  0 ,

&2{x1,- • • , x n) =  0 .

In the sequel it is convenient to use the following notation

Define the vectors

Alrlsn
1
2

^/3|rs 
<b I^ a\rn

*&ß\ls
I,^ a. in

aaß

Ors =  $l|rs grad $2 -  $2|rs g ^ d  .

Then

A d r ls n  \_(,Or s O ln  { O r n O l s ) \  i

where A  =  [grad T ! grad <f>2] | is the norm of the corresponding bivector.
The formula is further simplified in the case of a 2-dimensional surfaces in E 4. 
We put <!>! =  d>, T>2 =  \P. Let the equations of F 2 c  E 4 have the form

T>(ag,. . . ,  x4) =  0 , ^ ( a g , . . . ,  x 4) =  0 . (5.3)

Let us arrange all pairs of distinct indices i and l in the order

(12). (13). (14), (23). (24), (34).

Thus to each of these pairs we assign number a  indexing the position of this 
pair in the above list. We introduce the symmetric matrix A  with entries 
A aß — 4 A M Ujk, where a  corresponds to the pair il and ß  corresponds to jk.  
Let us take the bivector d — [grad T grad T] and q is the complementary to 
d bivector. We consider these bivectors as vectors in the space E 6. Then we 
have the following theorem

Theorem 5.2. The Gauss curvature K  of the surface F 2 C E 4 given by the 
system of equations (5.3) can be expressed by the formula

K  ( q M )

K =  '

The condition A  f  0 is sufficient for the regularity of F 2. But we remark that 
not all closed surfaces have the representation in the form (5.3). Really, under 
the condition A 0 the vectors grad $  and grad T form a basis in the normal 
space for F 2 G E 4. So, the surface F 2 G E 4 with non-zero Whitney invariant
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has not a representation in the form (5.3). We have constructed such kind of
surfaces in [22],
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