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Abstract
In this paper, we study Diophantine exponents w, and w;, for Laurent series over
a finite field. Especially, we deal with the case n = 2, that is, quadratic approxi-
mation. We first show that the range of the function w, — wj is exactly the closed
interval [0, 1]. Next, we estimate an upper bound of the exponent w, of continued
fractions with low complexity partial quotients.
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1. Introduction

Let p be a prime and g be a power of p. We denote by F, the finite field of elements
q, Fy[T] the ring of polynomials over F,, F,(T) the field of rational functions over F,, and
Fq((T‘l )) the field of Laurent series over IF,. For & € Fq((T‘l)) \ {0}, we can write

f = i anT_na
n=N

where N € Z, a, € F,, and ay # 0. We define the absolute value on Fq((T‘l)) by |0] := 0
and |£] := g7. The absolute value can uniquely extend on the algebraic closure of Fq((T‘l))
and we continue to write | - | for the extended absolute value.

Throughout this paper, we regard elements of (F,[7])[X] as polynomials in X. For
P(X) € (F,[TDI[X], the height of P(X), denoted by H(P), is defined to be the maximal
of absolute values of the coeflicients of P(X). We denote by (IF,[T])[X]min the set of non-
constant irreducible primitive polynomials P(X) € (IF,[T])[X] whose the leading coefficient
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is monic in 7. For a € W—T), there exists a unique polynomial P(X) € (IF,[T1)[X]min such
that P(a) = 0. We call P(X) the minimal polynomial of @. The height (resp. the degree, the
inseparable degree) of «, denoted by H(a) (resp. deg a, insep @), is defined to be the height
of P(X) (resp. the degree of P(X), the inseparable degree of P(X)). For £ € Fq((T")) and
integers n, H > 1, let w,(¢, H) and w;,(¢, H) be given by

wy(&, H) = min{|P(&)| | P(X) € (F,[TDIX], H(P) < H,degy P < n, P(§) # 0},
w,(&, H) =min{|é —a| | @ e F(T), H(a) < H,dega < n,a # &).

The Diophantine exponents w, and w; are defined by

-1 H —log Huw} (¢, H
wa(€) = limsup “BLEH) ey — i sup OB E )
H=eo log H H—oo log H

In other words, w,(&) (resp. w;(£)) is the supremum of a real number w (resp. w*) which is
satisfied that

0<[P@| <HP)™ (resp.0 < | ~al <H@™ ")

for infinitely many P(X) € (F,[T])[X] of degree at most n (resp. a € F,(T) of degree at most
n).

As in classical continued fraction theory of real numbers, if & € Fq((T‘l)), then we can
write

f=ap+ ——,

a) +

1
a) + —

where ag,a, € F,[T], dega, > 1 for n > 1. For simplicity of notation, we write & =
lag, a1, az,...]. The ayg and a,, are called the partial quotients of £&. We define p, and g, by

p-1 =1, po=ao, pn = Aupu-1 + pp2, n > 1,
q-1=0, g0 =1, g, = angn-1 + qu—2, n > 1.

We call (p,,/gn)ns0 convergent sequence of & and have p,/q, = lag,ay,...,a,] forn > 0 by
induction on n.

In this paper, we study the difference of the Diophantine exponents w» and w} using
continued fractions. We denote by | x| the integer part and [x] the upper integer part of a
real number x. We construct explicitly continued fractions & € IFq((T‘l)) for which w,(¢) —
w(€) = 0 for each 0 < 6 < 1 as follows:

Theorem 1.1. Let w be a real number which is greater than (5 + V17)/2 when p # 2,
and that of (9 + V65)/2 when p = 2. Let b,c € F,[T] be distinct polynomials of degree at
least one. We define a sequence (ay ,)n>1 by

c ifn=|w]for some integeri > 0,
py =
b otherwise.
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Set &y := [0, a1, a2,w, - . .J. Then we have w;(&y) = w — 1 and wy(€y) = w.

Theorem 1.2. Let w > 25 be a real number and b, c,d € F,[T] be distinct polynomials
of degree at least one. Let 0 < n < \Jw/4 be a positive number and put

. \‘I_LUH—IJ _ Lwi _ IJJ
. Lipw]

foralli> 1. We define a sequence (G, )nz1 by

c ifn = |w'] for some integeri > 0,

ifn # |w]forallintegeri > Oandn = |uw/] +

Anwn = d i . .
m|nuw’ | for some integer 1 <m <mj, j > 1,

b otherwise.

Set &y = [0,a1,uy, a2y, - . .1. Then we have

. 2w-2-7 2w—n
wz(fw,n) = TT]’ wz(fw,n) = 2+ 7 .

Hence, we have

2

w2(§w,n) - w;(fw,n) = m

Theorems 1.1 and 1.2 are analogues of Theorems 4.1 and 4.2 in [8] and Theorems 1 and
2 in [9]. Theorems 1.1 and 1.2 are proved in a similar method of the proof of these analogue
theorems.

In Section 5, we prove

0 < wn(é) - wi(®) < 1

for all ¢ € Fq((T‘l)) (Proposition 5.6). We also prove w,(¢) = w;(¢) = O foralln > 1 and
& € Fy(T) (Theorem 5.2). Consequently, we determine the range of the function w, — w}
from Theorems 1.1 and 1.2.

Corollary 1.3. The range of the function wy — wj is exactly the closed interval [0, 1].
For ¢ € F,((T™")), we set

w(&) = lim sup w,,_(f), w*(€) := lim sup wf;(f)‘

n—o00 n n—00 n

We say that £ is an

A-number if w(¢) = 0;
S-number if 0 < w(¢) < +o0;
T-number if w(€) = +oc0 and w,(£) < +oo for all n;

U-number if w(¢) = +oo and w,(¢) = +oo for some n.

This classification of Fq((T‘l)) was first introduced by Bundschuh [10] and is called
Mahler’s classification. Replacing w, and w with w; and w*, we define A*-, $*-, T"-, and
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U*-numbers as above. This classification of E,((T‘l)) was first introduced by Bugeaud [7,
Section 9] and is called Koksma’s classification. Let n > 1 be an integer, & € IF},((T")) be a
U-number, and { € Fq((T‘l)) be a U*-number. The number ¢ (resp. the number () is called
a U,-number (resp. U, -number) if w,(¢) is infinite and w,,(¢) is finite (resp. w; () is infinite
and wy,({) is finite) forall 1 <m < n.

Let A be a finite set. Let A*, A*, and A" denote the set of finite words over A, the set of
nonempty finite words over .4, and the set of infinite words over .A. We denote by |W| the
length of a finite word W over .A. For an integer n > 0, let W* = WW - - - W (n times repeated
concatenation of the word W) and W = WW --- W - - - (infinitely many concatenation of the
word W). Note that W is equal to the empty word. More generally, for a real number w > 0,
let W = WIW’, where W’ is the prefix of W of length [(w — Lw])|W[]. Let a = (a,,),0 be a
sequence over .A. We identify a with the infinite word apa; - - - a, - - - . Let p be a real number.
We say that a satisfies Condition (%), if there exist sequences of finite words (U,),z1, (Vi)n=1
and a sequence of nonnegative real numbers (wy,),>; such that

(i) the word U,V," is the prefix of a for all n > 1,
(i) |U,V,"|/|U,V,| = p foralln > 1,
(iii) the sequence (|V,"|),>1 is strictly increasing.

The Diophantine exponent of a, first introduced in [2], denoted by Dio(a), and is defined to
be the supremum of a real number p such that a satisfy Condition (x),. It is obvious that

1 < Dio(a) < +oo.

The infinite word a is called ultimately periodic if there exist finite words U € A" and
V € A* such thata = UV. The complexity function of a is defined by

p(a,n) = Card{a;a;; ...aizn-1 | i 20}, for n>1.

We state now the second main results.

Theorem 1.4. Let k > 2,A > g be integers and a = (a,),>1 be a sequence over Fy[T]
with q < |a,| < A for all n > 1. Assume that there exists an integer ng > 1 such that

p(a,n) < kn for all n > ny,
and the Diophantine exponent of a is finite. Set ¢ := [0, ay,as, ...). Then we have

4
(1.1) wy(€) < 1282« + 1)3 Dio(a) (%) .

In particular, if the sequence (Ig,|""),s1 converges, then we have
(1.2) wa(€) < 642« + 1)° Dio(a).

There are special sequences which are satisfied the assumption of Theorem 1.4, for exam-
ple, automatic sequences, primitive morphic sequences, and Strumian sequence with some
condition. The detail will appear in Section 2.
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Theorem 1.5. Let a = (a,),>1 be a non-ultimately periodic sequence over F,[T] with
dega, > 1 for all n > 1. Assume that (|g,|"/"),s1 is bounded. Put

m := liminf|g,|'"", M := limsup|g,|'"".
n—-oo n— o0
Set ¢ :=[0,ay,a,...]. Then we have
1
(1.3) wy(€) > wi(&) > max (2, 8™ hyio(a) — 1).
log M

In particular, if the sequence (1g,|""),1 converges, then we have
wy(€) = w3 (€) > max(2, Dio(a) — 1).

Furthermore, assume that the sequence (|a,|),>1 is bounded. Then we have

(1.4) wy(€) > max (2, 10ﬂ(Dio(a) +1)- 1).
log M

In particular, if the sequence (1g,|'"),=1 converges, then we have
w(€) = max(2, Dio(a)).

Theorems 1.4 and 1.5 are analogues of Theorems 2.2 and 2.3 in [8]. Theorems 1.4 and
1.5 are proved in a similar method of the proof of these analogue theorems.
We state an immediately consequence of Theorems 1.4 and 1.5.

Corollary 1.6. Let a = (a,),>1 be a non-ultimately periodic sequence over F,[T] with
dega, > 1 forn > 1. Assume that (|a,|),>1 is bounded and

a,
lim sup p@a.n) < +00,
n

n—oo
Set & :=[0,ay,a,,...]. Then the Diophantine exponent of a is finite if and only if & is not a
U,-number.

We use the Vinogradov notation A < B (resp. A <, B) if |A| < ¢|B| with some constant
(resp. some constant depending at most on a) ¢ > 0. We write A < B (resp. A <, B) if
A < Band B < A (resp. A <, Band B <, A) hold.

This paper is organized as follows. In Section 2, we define special sequences and apply
Theorem 1.4 to these sequences. In Section 3, we prove Liouville inequalities, that is, a
nontrivial lower bound of the absolute value of difference two algebraic numbers and that
of polynomial at an algebraic point. In Section 4, we prove some lemmas with respect to
continued fractions. In Section 5, we study the Diophantine exponents w, and w;. In Section
6, applying Liouville inequality, we prove lemmas to determine the value of w, and w}. In
Section 7, we prove combinational lemma to show Theorem 1.4. In Section 8, we prove
Theorems 1.1, 1.2, 1.4, and 1.5. In Appendix A, we prove an analogue of Theorems 1.4 and
1.5 for Laurent series over a finite field.
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2. Application of the main results

In this section, we first recall properties of special sequences. For a deeper discussion,
we refer the reader to [6]. Let k > 2 be an integer. We denote by Z; the set {0, 1,...,k — 1}.
A k-automaton is a sextuple

A =(0,%k 0,90, A,7),

where Q is a finite set, § : O XX, — Qisamap, gy € Q, Aisaset,and7: Q - Aisa
map. For g € Q and a finite word W = wyw; - - - w,, over X;, we define recursively 6(g, W) by
(g, W) = 6(6(q, wowy - - - wy—1), wy,). Let n > 0 be an integer and W,, = w,w,_ - - - wy, where
Yo wik! is the k-ary expansion of n. A sequence a = (a,),s0 is said to be k-automatic if
there exists a k-automaton A = (Q, X, 8, qo, A, 7) such that a,, = 7(6(gg, W,,)) for all n > 0.
The k-kernel of a sequence a = (a,),>0 is the set of all sequences (ayinj)n>0, Where i > 0
and 0 < j < k.
It is known about k-automatic sequences as follows:

Theorem 2.1 (Eilenberg [14]). Let k > 2 be an integer. Then a sequence is k-automatic
if and only if its k-kernel is finite.

Lemma 2.2 (Adamczewski and Cassaigne [1]). Let k > 2 be an integer. Let a be a non-
ultimately periodic and k-automatic sequence. Let m be a cardinality of the k-kernel of a.
Then we have

Dio(a) < k™.

Let A and B be finite sets. A map o : A" — B* is a morphism if o(UV) = o(U)a (V)
for all U,V € A. The width of o is defined to be max,c4 |o(a)|. A morphism ¢ is said to be
k-uniform if there exists an integer k > 1 such that |o(a)| = k for all a € A. In particular, we
call a 1-uniform morphism a coding. A morphism o : A* — A" is primitive if there exists
an integer n > 1 such that a occurs in ¢”*(b) for all a,b € A. A morphism o : A* —» A*
is prolongable on a € A if o(a) = aW, where W € A* and o (W) is not an empty word
for all n > 1. A sequence a = (a,),s0 is said to be k-uniform morphic (resp. primitive
morphic) if there exist finite sets A, B3, a k-uniform morphism (resp. a primitive morphism)
o : A* — A* which is prolongable on some a € A, and a coding 7 : A" — B such
that a = lim, . 7(0"*(@)). When a is a k-uniform morphic, we call A the initial alphabet
associated with a.

Theorem 2.3 (Cobham [12]). Let k > 2 be an integer. Then a sequence is k-automatic if
and only if it is k-uniform morphic.

Mossé’s result [20] implies the lemma below.

Lemma 2.4. Let a be a non-ultimately periodic and primitive morphic sequence. Then
the Diophantine exponent of a is finite.

Let 6 and p be real numbers with 0 < 6 < 1 and 6 is irrational. For n > 1, we put
Snop = L(n+1)0+p]—|nb+p] and s;’g’p =[(n+1)0+p]—[nf+p]. Asequencea = (d,)n>1
is called Sturmian if there exist an irrational number 0 < 6 < 1, a real number p, a finite
set A, and a coding 7 : {0, 1} — A" with 7(0) # 7(1) such that (a,),>1 15 (T(Sn6,0))n=1 OF
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(s, p))nzl- Then we call the irrational number 6 slope of a and the real number p intercept
of a.

Lemma 2.5 (Adamczewski and Bugeaud [5]). Ler a be a Strumian sequence. Then the
slope of a has bounded partial quotients if and only if the Diophantine exponent of a is finite.

It is known that automatic sequences, primitive morphic sequences, and Strumian se-
quences have low complexity.

Lemma 2.6. Let k > 2 be an integer and a = (a,),>0 be a k-automatic sequence. Let d
be a cardinality of the internal alphabet associated with a. Then we have

p(a,n) < kd’n, forn > 1.

Proof. See [6, Theorem 10.3.1] or [12]. O

Lemma 2.7. Let a = (a,).>0 be a primitive morphic sequence over a finite set of cardi-
nality of b > 2. Let v be the width of o which generates the sequence a. Then we have

p(a,n) < 20*°72b%n, forn > 1.

Proof. See [6, Theorem 10.4.12]. O

Lemma 2.8. Let a be a Sturmian sequence. Then we have
pa,n)=n+1, forn>1.
Proof. See [6, Theorem 10.5.8]. m]

Consequently, by Theorems 1.4 and 1.5, we obtain the upper bound of w, of automatic,
primitive morphic, or Strumian continued fractions as follows:

Theorem 2.9. Let k > 2 be an integer. Let a = (a,),>0 be a non-ultimately periodic and
k-automatic sequence over Fy[T] with dega, > 1 for all n > 0. Let A be an upper bound
of the sequence (|a,|)n=0, m be a cardinality of k-kernel of a, and d be a cardinality of the
initial alphabet associated with a. Set & := [0, ay, ay, ...]. Then we have

2 3,m [logA *
wy(€) < 128(2kd” + 1)°k" | ——| .
logg

Theorem 2.10. Let a = (a,),>0 be a non-ultimately and primitive morphic sequence over
F,[T] with dega, > 1 for all n > 0, which is generated by a primitive morphism o over a
finite set of cardinality b > 2. Let v be the width of o. Set & := [0, a9, ay,...]. Then we have

4h-273 31 log A ’
wy(€) < 128(4v™"“b” + 1)’ Dio(a) [ —— | .
log g
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Theorem 2.11. Let a = (a,)n=0 be a non-ultimately and Strumian sequence over Fy[T]
withdega, > 1 foralln > 0. Set ¢ := [0, ap, ay,...]. Then we have

logA )4

w7 (&) < 16000 Dio(a) (@

if the slope of a has bounded partial quotients, and we have w,(€) = +oo otherwise.

3. Liouville inequalities
The following lemma is well-known and immediately seen.
Lemma 3.1. Let P(X) be in (F,[T])[X]. Assume that P(X) can be factorized as
PX) =A] [X -,
i=1

where A € Fy[T] and a; € Fy(T) for 1 <i < n. Then we have

H(P) = |A] | | max(1, les).
i=1

Furthermore, for P(X), Q(X) € (F,[T)[X], we have
H(PQ) = H(P)H(Q).

The lemma below is an analogue of Theorem A.1 in [7].

Proposition 3.2. Let P(X), Q(X) € (F,[T1[X] be non-constant polynomials of degree
m, n, respectively. Let a be a root of P(X) of order t and 8 be a root of Q(X) of order u.
Assume that P(B) # 0. Then we have

G.1) \P(B)] > max(1, |8))"H(P)™"*' H(Q)™™".
Furthermore, we have
3.2) | — B = max(1, |a|) max(1, |,8|)H(P)_"/WH(Q)_”’/’”,

Proof. Write P(X) = A[];_,(X — ;)" and Q(X) = B[]_,(X — B)", where @ = a1, =
Bi,t = tj,u = uy, and a’s (resp. 8’s) are pairwise distinct. Let Q1(X) = B [, (X — pys
be the minimal polynomial of 3, where 8" = 3, g = insep 3, and 8’ are pairwise distinct.
Since P and Q; do not have common roots, the resultant Res(P, Q) is non-zero and is in
F,[T]. Therefore, by H(Q))"9 < H(Q) and s,u < n, we obtain

—
IA

51
IRes(P, 01l = 1BiI" [ [IP@E)I
i=1

IA

S1
B/" P HPY D9 | | max(1, 87"
i=2
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(s1=1) H(Ql) )m
|P(B)YH(P) -"(—max(l’mg

\P@BIH(P)™*~ D H(Q)™" max(1, |B]) ™.

IA

As aresult, we have (3.1). From Lemma 3.1, it follows that

IP@B) < B~ allAlmax(1, [B)" 1_[ max(1, |a;])"
i=2
= |8 - o' H(P) max(1, |a|)™ max(1, |B))" .
Hence, we have (3.2) by (3.1). O

The lemma below is an analogue of Theorem A.3 in [7] and Lemma 2.3 in [22].

Lemma 3.3. Let P(X) € (F,[T[X] be an irreducible polynomial of degree n > 2. For
any distinct roots a, 8 of P(X), we have

(33) lo — Bl > H(P)™"F+V1

where f is inseparable degree of P(X).

Proof. We can write P(X) = A ], (X — @;), where @ = @, @, = B and a’s are pairwise
distinct. Put Q(X) := A2, (X — oz{ ). Since Q(X) is separable, the discriminant Disc(Q) is
non-zero and is in IF,[T]. Therefore, we obtain

I < [Disc(Q)l <lo/ =p'PIAP" [ ] max(Llaf ) max(L,la])?

(i)#(12)
<l - pPTHQ™.
Hence, we have (3.3) by H(P) = H(Q) and n = mf. m]
The following proposition is an analogue of Corollary A.2 in [7] and Lemma 2.5 in [22],

and is an extension of Theorem 1 in [18].

Proposition 3.4. Let o, € Fy(T) be distinct algebraic numbers of degree m,n and in-
separable degree f, g, respectively. Then we have

(3.4) |l — B > max(1, |e|) max(1, |8))H(a)"/9H(B) ™.

Proof. From (3.2) and (3.3), the above inequality immediately holds. m]

Let a € F,(T) be a quadratic number. Then we denote by o’ the Galois conjugate of «
which is different from « if insepa = 1, and itself if insep @ = 2. The lemma below is an
analogue of Lemma 3.2 in [22].

Lemma 3.5. Let « € Fy(T) be a quadratic number. If a # o', then we have

(3.5) H(@) ' <o -a'| < H(a).
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Proof. Let P,(X) = AX? + BX + C be the minimal polynomial of a. Then we have

|B> — 4AC|'/?

Al < max(|B|,JAC|'"?) < H(a)

la —a’| =

and

—_—

a—a|>—>H@)™".
Y

O

We give a better estimate than Proposition 3.4 in some cases, which is an analogue of
Lemma 7.1 in [8] and Lemma 4 in [9].

Proposition 3.6. Let a, € F,(T) be quadratic numbers. We denote by Po(X) = A(X —
a)(X—a’'), Pg(X) = B(X - B)(X = ') the minimal polynomials of a, 5, respectively. If a # o
and P,(X) # Pg(X), then we have

(3.6) lo — B > max(1, | — o/ HH(@) > H(B)™>.

Proof. By Proposition 3.4, we may assume that | — a’| < 1. Since P,(X) and Pg(X) does
not have common roots, we have

1 < |Res(Py, Pp)l = [BPIPL(B)IIP(B)
< |AB|la - Bll’ - BlH(a) max(1, |B'])*
< la-Blle’ - BlH@)*HPB) .

In the case of |&’ — B8] > |a — B8], we have |@ — @’| = |&’ — B|. Hence, we get (3.6). In other
case, using Lemma 3.5, we obtain

le-BF > le-pla’ —pl=H@ *HP) > 2 le - H@) *HP)™.
Therefore, we have (3.6). m|

4. Continued fractions

We collect fundamental properties of continued fractions for Laurent series over a finite
field. The lemma below is immediate by induction on n.

Lemma 4.1. Consider a continued fraction & = [ay, a1, az,...] € Fq((T’l)). Let
(Pu/ @n)uso be the convergent sequence of &. Then the following hold: for any n > 0,

(1) 4nPn-1 — Pndn-1 = (_1)’1’
(i) (pn,gn) =1,
(ii1) |gal = laillazl- - - laxl,

(iv) & = Sl where & = [ag, ...y, Ena]

V) 1€ = pulgnl = |‘]11|_1|qu+1|_l = |an+1|_1|‘In|_2,
(V1) gn/qn-1 = an, ap-1,...a1].

We recall an analogue of Lagrange’s theorem for Laurent series over a finite field.
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Theorem 4.2. Let & be in F,(T™")). Then ¢ is quadratic if and only if its continued
fraction expansion is ultimately periodic.

Proof. See e.g. [11, Theorems 3 and 4]. m]

The lemma below is immediate by Lemma 4.1.

Lemma 4.3. Consider an ultimately periodic continued fraction
f = [09 al7 ce ar7 ar+1a MR ar+s] € IFlq((T'_l))

forr > 0,5 > 1. Let (pu/qu)ns0 be the convergent sequence of &. Then & is a root of the
following equation:
(Qr—IQrﬂ‘ - QrQr+s—1)X2 - (Qr—lprﬂ' —qrPr+s-1 t Pr-1qr+s — prQr+s—1)X
tPr-1Pr+s = PrPr+s—1 = 0,

and we have H(&) < 1qyqr+s|- In particular, if ¢ = [0,ay,...,ay), then & is a root of the
following equation:

QS71X2 - (Ps—l - QS)X —Ps= 0,
and we have H(¢) < |qsl.

Lemma 4.4. Let M > q be an integer and ¢ = [0,a;,az,...],{ = [0,b1,by,...] €
Fq((T’l)) be continued fractions with |a,|,|b,| < M for all n > 1. Assume that there ex-

ists an integer ny > 1 such that a, = b, for all 1 < n < ng and any+1 # byye1. Then we
have

& =4l 2 ——75.
M2|Qno|2

Proof. See [3, Lemma 3]. O

Lemma 4.5. For n > 0, consider an ultimately periodic continued fraction
¢ =lag,ai,...,a,) € Fq((T‘l)) with degay > 1. Then we have

Proof. See the proof of Lemma 2 in [13]. O

The following lemma is an analogue of Lemma 6.1 in [8].

Lemma 4.6. Forr,s > 1, consider an ultimately periodic continued fraction
E=10,a1,...,a5,qr41,-.-,0r15] € ]Fq((T_l)) with a, # ayys. Let (pn/qn)us0 be the conver-
gent sequence of €. Then we have
min(|a,|, |a,]) laya .l

e =T

4.1)
g,

Proof. Put 7 := [a,11, - .-, dr+s]- By Lemma 4.5, we have 7" = —[0, a4y, - - -, d,+1]. Since
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f — DT + Pr-1 ’_ prT/ + Pr-1
GT+ G @7+ g
we obtain
|t — 7|
€ - &= |

47+ qr-1llg- T + g1

by Lemma 4.1 (i). We see |t —7'| = |a,+1| and |q, 7+ ¢q,—1| = |g.,||ar+1]. It follows from Lemma
4.1 (vi) that

’ ’ qr-1 |qr”[ar+s,---’ar+l] - [ar,...,al]l
lg: 7" + gl = gl |7 + =
r I[ar+S’""ar+1]”[ar9---7al]|
|Qr||ar+s - arl
|arar+s|
Since 1 < |a,4+5 — a,| < max(|la,,4l, |a,|), we obtain (4.1). m]

The lemma below is an analogue of Lemma 6.3 in [8].

Lemma 4.7. Let b,c,d € F,[T] be distinct polynomials of degree at least one, n > 1 be
an integer, and ay, . . . , a1 € Fy[T] be polynomials of degree at least one. Put

é: = [Oaal’ st aan—19caz]'
Then ¢ is quadratic and

H() =pc lgal’,
where (pi/qi)is0 is the convergent sequence of £&. Let m > 2 be an integer. Set
{:=1[0,a1,...,dp1,¢,b,...,b,d],
where the length of period part of { is m. Then { is quadratic and

H(f) =b,c.d |gn5n+m|7
where (Pr./qr)iso is the convergent sequence of {.

Proof. It follows from Theorem 4.2 that ¢ and { are quadratic. By Lemma 4.3, we
have H(§) <p e |q,l|2 and H({) <pcd |GnGniml- Let Pe(X) = A(X = )(X — ') be the minimal
polynomial of £&. Since P¢(p,/q,) is non-zero, we obtain |P¢(p,/q,)| > 1/ |g,|>. From Lemma
4.1 (v) and 4.6, it follows that

g0

n

=
qn

<<h,c

bl

|gnl®

Therefore, we obtain |g,|* <. |A| <, H(£). We denote by P;(X) the minimal polynomial
of {. Since P; and P do not have a common root, we have

1 <|Res(Py, Pe)l < HQ)PHEPE - LIE = 2Ié - LNE - ).
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Note that g, = g,. By Lemma 4.5, we obtain

& = &l <ped Gniml 2 1E = LLIE=CLIE =) <pea |Gal ™

Therefore, it follows that 1 < g H({)*H(€)?|Gn|®|Gnsm|~>. Hence, we have the inequality
|glngln+m| <Lp,cd H(g) O

The next lemma is a well-known result.

Lemma 4.8. Consider a continued fraction ¢ = lag,ai,az,...] € Fq((T‘l)).
Let (p,/qn)ns0 be the convergent sequence of ¢&. Then we have

. deg gns1
w1(€) = lim sup .
degq,

n—oo n

The lemma below is an analogue of Lemma 5.6 in [4].

Lemma 4.9. Consider a continued fraction ¢ = lagp,ai,as,...] € Fq((T‘l)).
Let (pu/qn)ns0 be the convergent sequence of €. If the sequence (Iq,|""")ns1 is bounded,
then & is not a Uy-number.

Proof. By the assumption, there exists an integer A such that ¢" < |g,| < A" for alln > 1.
Thus, for all n > 1, we have

n

deg g1 _(;, 1)logA
degg, ~ logg

By Lemma 4.8, we obtain w(¢) < log A/ log q. |

5. Properties of w, and w,

Theorem 5.1. Let n > 1 be an integer and & € F,(T™")) be not algebraic of degree at
most n. Then we have

n+1

wy(&) =n, w, (&)= >

Furthermore, if n = 2, then w3(§) > 2.

Proof. The former estimate follows from an analogue of Minkowski’s theorem for Lau-
rent series over a finite field [17] and the later estimates are Satz.1 and Satz.2 of [16]. m]

We give an immediate consequence of Propositions 3.2 and 3.4.

Theorem 5.2. Let n > 1 be an integer and & € IF‘“q((T_l)) be an algebraic number of
degree d. Then we have

wy(&), w,(§) <d - 1.

Note that if £ € ]Fq((T‘l)) be an algebraic number, then insep & = 1.
We next show that we can replace the definition of w, by a weak definition of w,. Let
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n > 1 be an integer and ¢ be in F,((T™')). We define a Diophantine exponent @, at ¢ by the
supremum of a real number w for which there exist infinitely many P(X) € (IF,[T])[X]min of
degree at most n such that

0 <|POI<HP)™.

The lemma below is a slight improvement of a result in [24, Section 3.4].

Lemma 5.3. Let n > 1 be an integer and & be in Fq((T_l)). Then we have

wn(&) = Wp(&).

Proof. It is immediate that @,(¢) < w,(¢) and @,(£) > 0. Therefore, we may assume
that w,(¢) > 0 and @, (¢) is finite. For 0 < w < w,(¢), there exist infinitely many P(X) €
(Fy[TDIX] of degree at most n such that

6.1 0 <[P <HP)™.

We can write P(X) = A Hé‘:l Pi(X), where A € F,[T] and P;(X) € (Fy[TD[X]min for 1 <
i < k. By the definition, for @ > @,(£), there exists a positive number C such that for all
O(X) € (F4[TD[X]min of degree at most n,

10(6)| = CH(Q)™.
Therefore, by Lemma 3.1, we obtain
|P(¢)| > min(1,C")H(P)™",

which implies min(1, C")H(P)" < H(P)”. Since there exist infinitely many such polynomi-
als P(X), we have w < @. This completes the proof. |

The lemma below is an analogue of Lemma A.8 in [7] and Lemma 2.4 in [22].

Lemma 5.4. Let P(X) € (F,[TD[X] be a non-constant irreducible polynomial of degree
n and of inseparable degree f. Let & be in IFq((T_1 )) and a be a root of P(X) such that |¢ — |
is minimal. If n > 2 f, then we have

(5.2) € — al < |P@)"H@PY" T

Proof. We may assume that ¢ and « are distinct. We first consider the case of f =1 .
Write P(X) = A[],(X—a;), where @ = @) and [—a | < [é—ar] < ... < |-yl Put Q(X) :=
AT, (X —a;) and A := ], @ — @;|. Then we have | Disc(P)|'? = AJA|| Disc(Q)|'/%. By
the definition of discriminant, we obtain

|Disc(Q)|'* = |AI"*| det(@))r<icn 0 jen2]

IA

A2 | | max(1, lai"
i=2

H(P)"? max(1, |a])™*>.
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Since the polynomial P is separable, we get

—_
IA

| Dise(P)'? < H(PY" max(1, ) " Al | | £ - o
j=2

H(P)"> max(1, |a])"*?|¢ — o ' |P(&)].

Therefore, we have (5.2).
We next consider the case of f > 1. We can write P(X) = R(X'), where a separable
polynomial R(X) € (IF,[T])[X]. Thus, in the same way, it follows that

& — of| < IREHIHRY" 2.

Since H(P) = H(R) and f is a power of p, we have (5.2). ]

Lemma 5.5. Let & be in Fq((T‘l)) and n > 1 be an integer. Then we have

wi(€) = wi(€").

Proof. By Theorem 5.2, we may assume that ¢ is not in F,(7T"). Therefore, we can write
& = [ag,ai, ...]. Then we have &' = [agn, a’l7 n, ...] by the Frobenius endmorphism. Hence,
it follows from Lemma 4.1 (iii) and 4.8 that

k+1 "
0 i) dega; " d
wl(é‘p ) — llm Sup % = llm Sup % =w (é:),
koo Yy degal k- Pdegq
where (pi/qi)is0 1S the convergent sequence of &. |

Proposition 5.6. Let n > 1 be an integer and & be in F,(T™")). Let k > 0 be an integer
such that p* < n < p**'. Then we have

n 2 *
wp(k§) A= 1 < w;,(€) < wa(d).

(5.3)

Furthermore, if 1 < n < 2p, then we have

5.4) Wa(€) —n+ 1 < wy(é) < wy(é).

RemARrk 5.7. We are able to define analogues of Diophantine exponents w, and wj, for
real numbers and p-adic numbers (see [7, Sections 3.1, 3.3, and 9.3] for the definition of w,
and w;). It is known that for all n, analogues of (5.4) for real numbers and p-adic numbers
hold (see [25, 19]). However, in our framework, we are not able to prove (5.4) for all n.
The main difficulty is the existence of inseparable irreducible polynomials in (F,[T])[X].
Therefore, it seems that Proposition 5.6 describes the difference between approximation
properties of characteristic zero and that of positive characteristic. On the other hand, when
n is sufficiently small, we prove (5.4) using continued fraction theory and the Frobenius
endomorphism.

Proof. It is immediate that w,(£), w;(¢) > 0. We first show that w;,(§) < w,(£). We may
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assume that wj,(€) > 0. For 0 < w* < wj, (&), there exist infinitely many a € F,(T') of degree
at most n such that

0<|é—al <H@) ™
Let P, (X) = Zflzo a;X' be the minimal polynomial of «, where d = deg a. Put

0,(X) := adXd_l + (aqa + ad_l)Xd_Z + (aarcy2 +ayja + ad_z)Xd_3
oot (aga™ v a0+ -+ ay).
Then we have P,(X) = (X — @)Q,(X). Since max(1, |a|) = max(1,|£]), we obtain |Q,(£)| <
H(P,)max(1,|¢])*". Hence, it follows that

|Po(&)] < H(a)™" max(1, €)™,

which gives w* < w,(€). Consequently, we have w; (£) < w,(£).

Our next claim is that w,(£)/p* —n +2/p* = 1 < w;(£). We may assume that w,(£) > 0.
For 0 < w < w,(§), there exist infinitely many P(X) € (F,[T])[X]mi, of degree at most n
such that

0 <Pl <HP)™

by Lemma 5.3. Let m denote the degree of P and f denote the inseparable degree of P. We
first consider the case of m > 2f. By Lemma 5.4, there exists « of root of P such that

|§ — (l| < H(a,)_w/f+m/fz—2/f < H(a)—w/pk+n—2/pk‘

Now, assume that m < 2f. Then we have m = f by f|m. Therefore, we can write P(X) =
A(X™ — a™), where A € F,[T] and @ € F,(T). Thus, we get |€ — o] < |A|"Y/H(a) /. Since
max(1,|£]) = max(1, |a]), we have

€ — ] < max(1, |E)H (@)™ < max(1, ¢ H(a) /P 20"

by Lemma 3.1. This is our claim.
Finally, we assume 1 < n < 2p and show (5.4). Let 0 < w < w,(&). If there exist infinitely
many separable polynomials P(X) € (IF,[T])[X]min of degree at most n such that

0 <[P <HP)™,

then we have w —n + 1 < w)(€) as in the same line of the above proof. Therefore, we may
assume that there exist infinitely many inseparable polynomials P(X) € (F,[TD[X]min of
degree at most n such that

0 <Pl <HP)™.

Then we can write such polynomials P(X) = AX” + B, where A, B € F,[T]. By Lemma 5.5
and the definition of w,, we have w < w;(§). Therefore, we obtain w —n + 1 < w;(£) by
wi(€) = wi(€). Hence, we have (5.4). ]

It follows from Proposition 5.6 that for an integer n > 1 and & € Fq((T‘l))
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o w,(£) is finite if and only if w} (€) is finite,
e if w(¢) is finite, then w*(&) is finite.

Consequently, we obtain

e ¢is a U,-number if and only if it is a U,-number,
e if £1is an S -number, then it is an S *-number.

We address the following questions in the last of this section.
Problem 5.8. Does (5.4) hold for alln > 1 and ¢ € Fq((T‘l))?
Problem 5.9. Does Mahler’s classification coincide Koksma’s classification?

Note that an analogue of Problem 5.9 for real numbers and p-adic numbers holds. The
detail is found in [7, Sections 3.4 and 9.3], [22, Chapter 6], and [23].

6. Applications of Liouville inequalities
The following proposition is an analogue of Lemma 7.3 in [8] and Lemma 5 in [9].

Proposition 6.1. Let & be in Fq((T_l)) and cy, 2, 3, ¢4, 0, p, 0 be positive numbers. Let &
be a non-negative number. Assume that there exists a sequence of distinct terms (@) j»1 with
a; € Fy(T) is quadratic for j > 1 such that for all j > 1

C1 €2
——— <|f-a < ——,
H(O/j)] +p 3 f| H(a/j)”5

H(a)) < H(ej+1) < c3H(a))’,

C4

If(a’j)"3 '

’

If (o—1)(6—1+¢) = 20(2—¢), then we have 6 < wy(§) < p. Furthermore, if (6—1)(6—1+¢&) >
20(2 — &), then we have

S<uwy© <p wid)>wi@)+e.

Finally, assume that there exists a non-negative number y such that

, —logla; - o
limsup —

<x.
Pl logHG@)

IfFO-2+x)0—-1+&)>2202—-e)whenp #2and(6—4+x)0—1+¢g)>40(2 — &) when
p = 2, then we have

S<wié) <p, &< wé)—wié) <x.

Proof. Assume that (o — 1)(6 — 1 + &) > 20(2 — £). By the assumption, we have 6 >
L,p>1,and 6 + & > 1. Let @ € Fy(T) be an algebraic number of degree at most two with
sufficiently large height and @ ¢ {a; | j > 1}. We define an integer jo > 1 by H(a;,) <

C3{(CzC4)%H (a)}ai_zl < H(aj,+1). Then, by the assumption, we have

-l _1 o+e=1 _1 Ste-l
H(a) <cy * (c2ca) 2H(jp41) @ < (c2cq4) 2H(aj,) 2
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Hence, it follows from Propositions 3.4, 3.6, and Lemma 3.5 that

-1 -2 -2
la — ajol z |aj0 - (I}O| H(a'j()) H(a)

-6—1
> CzH((l/jO) > |§: - Oljol.

Therefore, we obtain

lE—al = la—ajl> c;]H(ajo)_ZJ“"’H(a)_2
) _1-_26C=¢) 2002-¢)
©6.1) L - (e

By the assumption, we have

0 <wi(é) < max(p,l + M) =

o0+e—1

We next assume that (6 — 1)(6 — 1 + &) > 26(2 — €). By (6.1), it follows that

0(2—¢) 20(2—¢)

=== _ -1-= _5—
If—al > ¢, b+e—lc32+€c4 Sre—1 H((l) 9 1.

Therefore, the sequence (), is the best algebraic approximation to ¢ of degree at most
two, that is,

. —log|¢ -«
w5 (&) = limsup ——— —
2&) = ISP e Har)

We denote by P;(X) = Aj(X—a;)(X - a}) the minimal polynomial of «;. By the assumption,
we have

|P(&)] < max(ca, ca)H(a;) ™ — ajl.

Therefore, we obtain

. —log|P (&)l
w5(€) + & < limsup ————— < wn(é).
2 ol H(P)) 2
Finally, assume that
) logla; - a/;.l
limsup ——— = —y.

joeo logH(aj)

We also assume that (0 —2+y)(0—1+¢) =2 202—&)whenp #2and (6 —4+x)0—1+¢&) >
460(2 — &) when p = 2. Since |£ — @] < ¢; and |o; — oz;.l < ¢4, we have

max(1, e;]), max(1, @) < max(1, ¢z, ca, [€]),

which implies H(P;) < |Aj|max(1, c3, c4, |€])2. By the assumption, we get ;- a’].l < |- a;l
for sufficiently large j. Therefore, we obtain for sufficiently large j

[P (&)l > max(1, c2, s, Ifl)_zH(Pj)If —ajlla; - a/;.l.
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Taking a logarithm and a limit superior, we have

. —log|P;(&)l
limsup —————— < w5 (&) + x.
Pl TogH(P) 2
Let P(X) € (Fy[TD[X]nin be a polynomial of degree at most two with sufficiently large
height such that P(a;) # O for all j > 1. When degy P = 1, we can write P(X) = A(X — a)
and have

02—¢) 20(2—¢)

IP@)] = |AllE - al > ¢, ¢52*c, T H(P)

by (6.1). When degy P = 2, we can write P(X) = A(X — @)(X — ') and assume that
|€ — a] < |€ — a’|. we first consider the case of p # 2. Then we obtain

|A(a — )|l — a| = | Disc(P)|'?|¢ - a
0(2—¢) 20(2—¢)

_ _1-20C=o)
Sre—1 —2+€ S+e—1 —-5—x
5 e, H(P)

1463]
(6.2) > ¢

[\

by (6.1). We next consider the case of p = 2. If @ # o', then we have (6.2) and if otherwise,
then we have

_200-¢) _o_ 402 ¢
|P(§)| > |A”§ _ CY|2 > cz Sre—1 C;4+28C42 Sre—1 H(P)_4_4;$*])
_Wee) |, d0e s
> 02 o+e—1 Cg + 86'4 o+e—1 H(P)— X
by (6.1). Thus, it follows that w»(£) < w3(§) + x by Lemma 5.3. m]

The following proposition is an analogue of Lemma 7.2 in [8].

Proposition 6.2. Let & be in IF,,((T_l)). Let ¢y, c1,¢2,3,0,0,0 be positive numbers and
(Bj)j=1 be a sequence of positive integers such that §; < Bj.1 < coﬂ‘? forall j > 1. Assume

that there exists a sequence of distinct terms («;) j>1 with a; € F,(T) is quadratic for j > 1
such that for all j > 1

1 ¢y max(l, |a; —a;.l")
<lE-aj <
J B2+6
J

H(CYj)SCy,,Bj, CYj?f(I}.

’

2+p
J

Then we have

20
I+o<wy@<Q+p - L.

Proof. Let @ € F,(T) be an algebraic number of degree at most two with sufficiently large

[
height. We define an integer jo > 1 by B, < coc; (C3H(CY))¥ < Bjo+1. We first consider the
case of @ = «},. By the assumption, we have

H(a) %,

_ —2—p -2-p —(2‘*’,0)% —(2"’,0)%
|& alchﬂjo >c, "cic, Cy
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We next consider the other case. Then, by the assumption, we have

1 1 )
—2 ~l,.-1 2 ~2 ~1p3
H(a) < 62263 (co Bjp+1)? < 62263 '8120

Hence, it follows from Propositions 3.4, 3.6, and Lemma 3.5 that

o —aj| > max(l, e, - [THH(j,) *H(@)™

—1\p—2-6
> C21’1’l3.X(1,|C¥j0 _a;0| )'Bjo 2 |§_a]'0|‘

Therefore, we obtain

& = o

la — ajy| = max(1, |aj, — & |T)H(a;,) H(a) ™

20
o

\%

252 I P 4
> B H@ ™ 2¢c,’ ¢y "H(a) 0.

By the assumption, we have

46 20 20
l+5£w§(§)§max(l+g,(2+p)?—1 =Q+p)5 - L.

7. Combinational lemma

The lemma below is a slight improvement of [8, Lemma 9.1].

Lemma 7.1. Let a = (a,),>1 be a sequence on a finite set A. Assume that there exist
integers k > 2 and nog > 1 such that for all n > ny,

p(a,n) < kn.

Then, for each n > ny, there exist finite words U,, V,, and a positive rational number w,, such
that the following hold:
(i) U,Vy" is a prefix of a,
(11) IUnl < 2K|Vn|:
(iii) n/2 <|V,| < «n,
@iv) if U, is not an empty word, then the last letters of U,, and V,, are different,
W) UV NGV 2 1+ 1/ 4k + 2),
i) |[UpVul € (k+ Dn—1,
(vii) |U2V,| < 2k + n - 2.

Proof. For n > 1, we denote by A(n) the prefix of a of length n. By Pigeonhole principle,
for each n > ny, there exists a finite word W, of length n such that the word appears to
A((k+1)n) at least twice. Therefore, for each n > ny, there exist finite words B,,, D,,, E,, € A*
and C, € A™ such that

A((k + 1)n) = B,W,,D,E, = B,C,W,E,,.

We can take these words in such way that if B, is not empty, then the last letter of B, is
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different from that of C,. Firstly, we consider the case of |C,| > |W,|. Then, there exists
F, € A" such that

A((k + 1)n) = B,W,F,W,E,.

Put U, := B,,V, := W, F,, and w, := |W,F,W,|/|W,F,|. Since U,V,” = B,W,F,W,, the
word U,V, is a prefix of a. It is obvious that |U,| < (k — 1)|V,| and n < |V,| < kn. By the
definition, we have (iv) and (vi). Furthermore, we see that

A7 -1+ = >1+ l

U,V (U, V,l K
| U2V, < UVl + Ul < km+ (k= 1n = 2« = )n.

We next consider the case of |C,,| < |W,]|. Since the two occurrences of W,, do overlap, there
exists a rational number d,, > 1 such that W,, = Cff”. PutU, :=B,,V, = C,r,d"/ 2], and w, :=
(d,+1)/[d,/2]. Obviously, we have (i) and (iv). Since [d,,/2] < d,, and d,,|C,,| < 2[d,,/27|C,|,
we get n/2 < |V,| < n. Using (iii) and |U,| < kn — 1, we can see (ii), (vi), and (vii). It is
immediate that w,, > 3/2. Hence, we obtain

|Unvtl10” = 1+ r(wn - 1)|Vn|_l >1+ wy — 1
U, Vil UVl [Unl/IVal + 1
1/2 1
> 1+ =1+ .
- 2k + 1 4 + 2

8. Proof of the main results

Proof of Theorem 1.1. Put
Epi = 10,a10s . A, b] for j>1.

Since &, and &, ; have the same first (Lw/*!| = 1)-th partial quotients, while |w/*!]-th partial
quotients are different, we have

-2
1€w — fw,jl = |CI|_wf+1J|

by Lemmas 4.1 (v) and 4.4. Let 0 < ¢ < w be a real number such that (w—¢-2)(w—-¢—-1) >
2w+ t)when p #2,and (w — ¢ —4)(w—¢— 1) > 4(w + ) when p = 2. It is obvious that

"™ < lqpuen) < lgul™™
for sufficiently large j by Lemma 4.1 (iii). Thus, we have
H(p )™ < €y = Eujl < H(Ey )™
for sufficiently large j by Lemma 4.7. It follows from Lemmas 4.6 and 4.7 that
= & il = HE )™

For sufficiently large j, we see that
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H(wj) < HEpjr1) < HEp p)"™.

It follows from Proposition 6.1 that w3(&,) € [w —¢— 1,w + ¢ — 1] and wy(&,) — w5 (€) = 1.
Since ¢ is arbitrary, we have w3 (€) = w — 1 and w»(€) = w. ]

Proof of Theorem 1.2. Put
é:wJI,j = [0, Alwps -« - ,aijJ,w,,,, b, ey b, d] for ] > 1,

where the length of period part is [pu’]. Since [w/]| + (m; + Dlgw’] > [w/*'], it follows
that &, and &, ; have the same first (Lw/*!] = 1)-th partial quotients, while |w/*']-th partial
quotients are different. Thus, we have

|§w,77 - fw,n,j| = |('ILwJ'+1J|_2 fOI‘j >1
by Lemmas 4.1 (v) and 4.4. We see that for j > 1

2
i = Eppil =il ™ H(Ewn ) = G101 G107 1+ 1|

by Lemmas 4.6 and 4.7. Let 0 < ¢ < min{w, 2 + 7} be a real number such that

(2(11)—L)_3+ 2 )(2(11)—L)_2+ 2 )

24+n+1t 24n)\2+n+1¢ 240+t
2+n+ 2
> 2w + 1) — ‘(2— )
2+1n—1t 2+n+1

when p # 2, and

(2(w—L)_5+ 2 )(2(11)—L)_2+ 2 )

241+t 2+n/\2+n+1 2+n+1
2 2
> 4w + 1) +'7+‘(2— )
2+n—1t 2+n+1

when p = 2. It is obvious that
|QI_w/J|w7[ < |q|_w/'+lj| < |(/I|_wfj|wﬂ,
14— 1
lgpwi )l < 1w )] < Mgl T

for sufficiently large j. Hence, we obtain

_ 2wty _ 2wy
H(fw,n,j) s <L |€:w,77 - érw,n,j| < H(fw,r],j) BN

_2 __2
H(pp.j) 7 < |wnj— f,’m,/l < H(Eyyj) 7,
247+t

H(yp ) < HEpyji1) < HEpy )07

for sufficiently large j. It follows from Proposition 6.1 that

2w—-2-n-3t 2Zw-2-n+3
2+n+t T 24n-—t

w;(é:w,n) €
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. 2 2
w. - w. € — s~ |-
wy (€ ,r]) wz(f ,n) 21+ 2+77]
Since ¢ is arbitrary, we have
. 2w—-2-7 2w—-n
wz(fw,n) = Tﬂ’ wz(fw,n) = 247 .

0O

Proof of Theorem 1.4. Applying Lemma 7.1, for n > ny, we take finite words U, V,
and a rational number w, satisfying Lemma 7.1 (i)-(v) and (vii). We define a positive integer
sequence (7;)js0 by nj.1 = 2(2« + 1)[log A/log qln; for j > 0. Put r; := |Unl, 55 2= [Vl
and @; := wy, for j > 0. By Lemma 7.1 (iv), we have a,, # a4, for all j > 0. By the
assumption and Lemma 4.1 (iii), we get ¢" < |g,| < A" for all n > 1. Therefore, it follows
from Lemma 7.1 (iii) and (vi) that for j > 0

2[ logA 7logA
4Q2x+1) [logq-|10§q .

(81) |erer+s,~| < |er+1er+|sj+1| S |¢]err,-+sj|
Pute; :=[0,ai,...,a,,ar41,- -, ar5] for j > 1. By Lemma 4.3, we obtain
(8.2) H(a'j) < |qULIrj+s/|

for j > 0. Since & and «; have the same first r; + [;s;]-th partial quotients, we have

= a’jl < max ( - Pri+lw;s;1 ’ ‘a/' _ Pri+lw;s;1 )
qri+w;s;1 qri+[wjs;]
-2 -1 -2 2Tw:s:1-s:)—1
— Iqr.,-+fli)js‘,-'|| q S |qrj+sj| q ([wls]-l SI)

for j > 0 by Lemma 4.1 (iii) and (v). By Lemma 7.1 (v), we have

2([wis;1—s,)+1 Lty __logg
AV > q 2%+ |qrjqrj+sjl(4k+2)logA

q

for j > 0. From Lemma 4.6, we deduce that
|CIr,-|2 < A2 max(laj - a;‘|_17 1)

for j > 0. Hence, we obtain

2 7—1 —p—_logg
(8.3) € — )l < A"max(l; — @7, DIgrqres,| — @20ea
for j > 0. Take a real number 6 which is greater than Dio(a). Then £ and «; have the same
at most [6(r; + s;)]-th partial quotients for sufficiently large j. By Lemma 4.4, we have

(rj+s]-)logA

) ) 405 T yloeq
& - a'jl = A |CI|—5(rj+s_,-ﬂ| > |erer+s_,-| @rjsloed
log A

(8.4) e
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for sufficiently large j. Applying Proposition 6.2 with (8.1), (8.2), (8.3), and (8.4), we obtain
4
log A
wi(€) < 1282k + 1)} Dio(a)(ﬁ) .
logg

Thus, we have (1.1) by (5.4).
Assume that the sequence (anll/”),,zl converges. Let M be a limit of the sequence
(Ign""™),=1. For any & > 0, there exists an integer n; such that for all n > n;,

(M —¢&)" <|qul < (M + &)".

In the same matter as above, we see that

2[ log(M+¢) | log(M+¢)
|4(2K+1) [Tostr-s) | iog=5 ,

|erCIr,+sj| < |C]r,~+1qrj+1Sj+1| < |qrjqrj+5j
_4glottto - o _lostM-5) _
|(]rj51rj+sj| o= < € — | < max(Ja; — a/j| , 1)|er51rj+sj| @) logM+e) |

for sufficiently large j. Applying Proposition 6.2, we have
w;(€) < 642k + 1)* Dio(a) — 1.

Thus, we have (1.2) by (5.4). ]

Proof of Theorem 1.5. From Theorems 4.2, 5.1, and Proposition 5.6, we have w,(§) >
w;(€) = 2. Without loss of generality, we may assume that Dio(a) > 1. Take a real number
o such that 1 < ¢ < Dio(a). For n > 1, there exist finite words U, V,, and a real number
w, such that U,V," is the prefix of a, the sequence (|V,"|),s; is strictly increasing, and
UV, = 6|U,Val. Set ry :=|U,l, s, := |V, and @, := [0,a1,...,d,,, 87,415 --->0r,+5,]- Let
M denote an upper bound of (|g,|'/"),s1. For any & > 0, there exists an integer ng such that
for all n > ny,

(m—-¢e)" <|q, < (M +e).

Since ¢ and «, have the same first (r, + [w, s, ])-th partial quotients, we obtain

log(m—¢)

|§ —a,| < |an+|'wns,,'||_2 < (M + 8)_2(r11+|—wnsn])_lgg(M+£).
Assume that the sequences (7,,),>1 and (s,),>1 are bounded. Then, for all n > 1, we have
H(@y) < 195,145, < M7 < C,

where C is some constant, by Lemma 4.3. Therefore, the set {a, | n > 1} is finite. Take a
positive integer sequence (n;);>; such that n; — oo asi — oo and @,, = @,, = ---. Since
(87)n=1 1s bounded, we have w, — co as n — oo. Hence, we obtain a = U,,I.V_nl., which is a
contradiction.

We next consider the case that (r,,),>; is unbounded. Here, if necessary, taking a sub-
sequence of (r,),>1, we assume that (r,),>; is increasing and r; > ny. Since H(a,) <
(M + &)**s» by Lemma 4.3, we have

rm+[wnsp] log(m—e) log(m—¢)

€ — @l < Hay)™ o W00 < H(y,) ™o
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Hence, we obtain (1.3).

We consider the case that (r,,),> is bounded, (s,),>; is unbounded, and Dio(a) is finite.
Here, if necessary, taking a subsequence of (s,),>1, we assume that (s,),>; is increasing and
s1 > ng. Then, for all n > 1, we have

H(a,) < M"™"(M + &)™ < C{(M + &)™,

where C; is some constant. Therefore, we obtain

log(m—g)

rn+[wnsp] log(m—¢) . _
2 2Dio®) g\ 2kt

|€: - Cynl S (C]H((Yn)_l) rp+sp  log(M+g) S Cl

Hence, we obtain (1.3).

We consider the case that (,,),>1 1s bounded, (s,),>1 is unbounded, and Dio(a) is infinite.
Then, for all n > 1, we have ¢" < |g,| < M", which implies H(a,) < M*"**". Therefore, in
the same matter, we obtain

log g

€ — @yl < Hay) oe,

Hence, we have w3(§) = +o0.

Assume that the sequence (|a,|),>1 is bounded. We denote by A its upper bound. We con-
sider the case that (r,,),> is unbounded. Here, if necessary, taking a subsequence of (7)1,
we assume that (r,),>; is increasing and r; > ng. Let P,(X) be the minimal polynomial of
a,. From Lemma 4.6, we obtain

IA

PO < H@)K - anllé - )l < APH(@)q, 2,105

2rp+[wpsn] logim—¢)

AZH((Z,,)_z 2rn+sn lOg(M+s)+l'

IA

Since

2r, + [w,s,] S rn + 0(r, + 55,) S Fp+ Sp/2 +0(r, + 5,/2) S 1+6
2r, + S, - 2r, + s, 2r, + S, - 27

we obtain (1.4). For the remaining case, we have (1.4) in the same line of proof of (1.3).
|

Appendix A. Rational approximation in Iﬁ‘q((T‘l))

Lemma A.1. Let a = (a,)n=0 be a non-ultimately periodic sequence over F,. Set & :=
Yo anT™". Then we have

(A.1) wi1(£) = max(1, Dio(a) — 1).

Proof. From Theorem 5.1, we have w;(¢) > 1. Without loss of generality, we may assume
that Dio(a) > 1. Take a real number ¢ such that 1 < 6 < Dio(a). For n > 1, there exist finite
words U, V,, and a real number w, such that U, V," is the prefix of a, the sequence (|V,"|);>1
is strictly increasing, and |U,Vy"| > 6|U,V,|. Put g, := T'Y\(T"V:l — 1). Then there exists
Pn € Fy[T] such that

[se]

& — Z b?{n)T—k’
qn i
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where (b,(c"))kzo is the infinite word U, V,, by Lemma 3.4 in [15]. Since ¢ and p,,/g, have the
same first |U,V,"|-th digits, we obtain

Pn
qn
Hence, we have (A.1). m]

-0
< |gal™°.

-

The following theorem is an analogue of Théoréme 2.1 in [5] and Theorem 1.3 in [21],
and is an extension of Theorem 1.2 in [15].

Theorem A.2. Let a = (a,),=0 be a non-ultimately periodic sequence over F,. Set & :=

Yo AnT ™", Assume that there exist integers ng > 1 and « > 2 such that for all n > ny,
p(a,n) < kn.

If the Diophantine exponent of a is finite, then we have
(A2) w1 (&) < 8(k + 1)2(2« + 1) Dio(a) — 1.

Proof. For n > ny, take finite words U,, V, and a rational number w, satisfying Lemma
7.1 (i)-(vi). Put g, := T'%I(TIV+l — 1). Then there exists p, € F,[T] such that

N &
i

where (b,((”))kzo is the infinite word U, V,, by Lemma 3.4 in [15]. Since & and p, /g, have the
same first |U,V,"|-th digits, we obtain

o

n

—1-L
< gal™ =2,

Take a real number ¢ which is greater than Dio(a). Note that 6 > 1. By the definition of
Diophantine exponent, there exists an integer n; > ng such that for all n > n,

Pn
qn

-0
> |qa|™°.

-
We define a positive integer sequence (1) >1 by nj.1 = 2(x + 1)n; for j > 1. It follows from
Lemma 7.1 (iii) and (vi) that for j > 1

4(k+1)?
|Qn,~| < |an+1| S |Qn_,-| (K+ ) .

Thus, by Lemma 3.2 in [15], we obtain (A.2). O

Consequently, the following result holds.

Corollary A.3. Let a = (a,)n=0 be a non-ultimately periodic sequence over F,. Set
& = Y oa,T7". Then the Diophantine exponent of a is finite if and only if £ is not a
Uy-number.
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