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Abstract
We consider spherically symmetric motions of a polytropic gas under the self-

gravitation governed by the Euler–Poisson equations. The adiabatic exponent (D the
ratio of the specific heats) is assumed to satisfy 6=5<  � 2. Then there are equi-
libria touching the vacuum with finite radii, and the linearized equation around one
of the equilibria has time-periodic solutions. To justify the linearization, we should
construct true solutions for which this time-periodic solution plus the equilibrium is
the first approximation. We solve this problem by the Nash–Moser theorem. The
result will realize the so-called physical vacuum boundary. But the present study re-
stricts  to the case in which =( � 1) is an integer. Other cases are reserved to
the future as an open problem. The time-local existence of smooth solutions to the
Cauchy problems is also discussed.

1. Introduction

We consider spherically symmetric motions of a gaseous stargoverned by the Euler–
Poisson equations:
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Here� is the density,u the velocity, P the pressure,8 the gravitational potential, and
g0 is the gravitational constant. In this work we assume

(2) P D A� ,

where A and  are positive constants, and we assume 1<  � 2.
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Introducing the mass

m WD 4�
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0
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we can write the equations as
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On the other hand, equilibria for the equations (1) are governed by the ordinary
differential equation
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In order to normalize this equation, we put

� D �c�
1=(�1)

and

r D �(�2)=2
c K�1=2

� with K WD
4�g0( � 1)

A
,

where �c is an arbitrary positive number, say, the central density. Then the equation
for equilibria turns out to be
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which is called the ‘Lane–Emden equation’. The solution�(� ) of the equation such that

� j

�D0 D 1,
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is called the ‘Lane–Emden function of polytropic index 1=( � 1)’. It is known that if
and only if 6=5<  there is a finite�1 such that�(� )> 0 for 0� � < �1 and�(�1)D 0,
and the radiusR and the total mass

M WD 4�
Z R

0
�(r )r 2 dr

of the equilibrium�(r ) are given by

RD �(�2)=2
c K�1=2

�1, and M D 4��(3�4)=2
c K�3=2
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A numerical table of�1, (��2 d�=d� )
�D�1 for various can be found in [2, p. 96].

Anyway we have

Lemma 1. Assume6=5 <  � 2. For any positive number�c given, there is an
equilibrium � D N�(r ) with positive numbers R,�1 such that N�(r ) is positive and analytic
in 0< r < R and

N�(r ) D �c(1C [r 2]1) as r! 0,

N�(r ) D �1(R� r )1=(�1)(1C [R� r, (R� r ) =(�1)]1) as r! R� 0.

NOTATIONAL REMARK . Here and hereafter [X]q denotes a power series of the
form

P

j�q a j X j with positive radius of convergence, and [X, Y]q a convergent power

series of the form
P

jCk�q a jk X j Yk.

For a proof of Lemma 1, see, e.g., [10], and [13, Chapter V] or [24, Chapter IX]
and Appendix A.

REMARK . In the expansion ofN�(r ) as r ! R, the terms including (R� r ) =(�1)

actually appear if =( �1) is not an integer. Let us prove it. Otherwise we would have

N�(r ) D �1(R� r )1=(�1)(1C [R� r ]1)

and the function

U (r ) WD N�(r )�1
D �

�1
1 (R� r )(1C [R� r ]1)

would be analytic atr D R. Now U satisfies
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A
.

SinceU is analytic, the left-hand side is analytic, and so, the right-hand side

K�1(R� r )1=(�1)(1C [R� r ]1)

would be analytic atr D R. Then 1=( � 1) should be an integer. This contradicts to
that  =( � 1)D 1=( � 1)C 1 is not an integer.

In fact we can find that, if =( � 1) � N, then

N�

�1
D U D C(R� r )

�

1C
1

R
(R� r ) �

( � 1)2KC(2� )=(�1)

 (2 � 1)
(R� r ) =(�1)

C [R� r, (R� r ) =(�1)]2

�
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and
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(R� r ) =(�1)

C [R� r, (R� r ) =(�1)]2

�

,

whereC D ��1
1 and NP(r ) D A N�(r ) .

In the following discussion we assume that 6=5<  � 2 and we fix an equilibrium
N�(r ) with the properties in the above lemma.

We are going to construct solutions around this fixed equilibrium.
Here let us glance at the history of researches of this problem.
Of course there were a lot of works on the Cauchy problem to thecompressible

Euler equations. But there were gaps if we consider density distributions which contain
vacuum regions.

As for local-in-time existence of smooth density with compact support, [17] treated
the problem under the assumption that the initial density isnon-negative and the initial
value of

! WD

2
p

A

 � 1
�

(�1)=2

is smooth, too. By the variables (!, u) the equations are symmetrizable continuously
including the region of vacuum. Hence the theory of quasi-linear symmetric hyperbolic
systems can be applied. However, since

! /

�

1

r
�

1

R

�1=2

� Const.(R� r )1=2 as r ! R� 0

for equilibria, ! is not smooth at the boundaryr D R with the vacuum. Hence the
class of solutions considered in [17] cannot cover equilibria. (See [18] for the discus-
sion on non-isentropic cases. The situation is similar.)

On the other hand, possibly discontinuous weak solutions with compactly supported
density can be constructed. The article [20] gave local-in-time existence of bounded
weak solutions under the assumption that the initial density is bounded and non-negative,
provided that the gas is confined to the domain outside a solidball. The proof by the
compensated compactness method is due to [19], and [5]. Of course the class of weak
solutions can cover equilibria, but the concrete structures of solutions were not so clear.

Therefore we wish to construct solutions whose regularities are weaker than solutions
with smooth! and stronger than possibly discontinuous weak solutions. The present
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result is an answer to this wish. More concretely speaking, the solution (�(t, r ), u(t, r ))
constructed in this article should be continuous on 0� t � T , 0 � r < 1 and there
should be found a continuous curver D RF (t), 0� t � T , such thatjRF (t) � Rj � 1,
�(t, r ) > 0 for 0� t � T , 0� r < RF (t) and�(t, r ) D 0 for 0� t � T , RF (t) � r <1.
The curver D RF (t) is the free boundary at which the density touches the vacuum. It
will be shown that the solution satisfies

�(t, r ) D C(t)(RF (t) � r )1=(�1)(1C O(RF (t) � r ))

as r ! RF (t) � 0. HereC(t) is positive and smooth int . This situation is “physical
vacuum boundary” so-called by [9] and [4]. This concept can be traced back to [15],
[16], [25]. Of course this singularity is just that of equilibria.

Since the major difficulty comes from the free boundary touching the vacuum,
which moves along time. So, we take the Lagrangian mass coordinate m as the in-
dependent variable instead ofr . Then we can write the equations as
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1
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,

the equations are reduced to the single second order equation

(4) r t t C 4�r 2Pm D �g0
m

r 2
,
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�m

�

�

.

Now we derive the equation for the perturbationy defined by

(5) r (t, m) D Nr (m)(1C y(t, Nr (m))).

Here m 7! Nr (m) is the function of the Lagrangian mass variablem associated with the
fixed equilibrium. In other words, it is the inverse functionof

Nr 7! mD 4�
Z

Nr

0
N�(r 0)r 02 dr 0.
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Keeping in mind
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Here G(y, v) D 3 yC  v C [y, v]2 is defined by

(1C y)�2 (1C yC v)� D 1� G(y, v).

Then the equation is reduced to
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We note that the equilibrium satisfies

1
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�
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� Nr
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m

Nr 2
D 0.

Let us introduceH (y) D 4yC [y]2 by

H (y) D (1C y)2
�

1

(1C y)2
.

Then the equation can be written as

(6)
�
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�t2
�

1
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(1C y)2 �

�r

�

PG

�

y, r
�y
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C

1

�r

d P

dr
H (y) D 0.

Here we have used the abbreviationsr , �, P, d P=dr instead of Nr , N�, NP, d NP=d Nr .
We consider this nonlinear wave equation.

It is easy to verify by a scale transformation of variables that we can assume that
AD 1= so that P D � = without loss of generality. Hence we assume so.

Here let us propose the main goal of this study roughly. Let usfix an arbitrar-
ily large positive numberT . Then, under the condition that =( � 1) is an integer,
we have
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Main Goal. For sufficiently small" > 0 there is a solution yD y(t, r I ") of (6)
in C2([0, T ] � [0, R]) such that

y(t, r I ") D "y1(t, r )C O("2).

The same estimates O("2) hold between the higher order derivatives of y and"y1.

Here y1(t,r ) is a time-periodic function specified in Section 2, which isof the form

y1(t, r ) D sin(
p

�t C �0) �8(r ),

where� is a positive number,�0 a constant, and8(r ) is an analytic function of 0�
r � R.

Once the solutiony(t, r I") is given, then the corresponding motion of gas particles
can be expressed by the Lagrangian coordinate as

r (t, m) D Nr (m)(1C y(t, Nr (m)I "))

D Nr (m)(1C "y1(t, Nr (m))C O("2)).

The curver D RF (t) of the free vacuum boundary is given by

RF (t) D r (t, M) D R(1C " sin(
p

�t C �0)8(R)C O("2)).

The free boundary RF (t) oscillates around R with time-period2�=
p

� approximately.
The solution (�, u) of the original problem (1) (2) is given by

� D N�(Nr )

�

(1C y)2

�

1C yC Nr
�y

� Nr

��

�1

, u D Nr
�y

�t

implicitly by

Nr D Nr (m), y D y(t, Nr (m)I "),

�y

� Nr
D �r y(t, Nr (m)I "),

�y

�t
D �t y(t, Nr (m)I "),

where m D m(t, r ) for 0 � r � RF (t). Here r 7! m D m(t, r ) is given as the inverse
function of the function

m 7! r D r (t, m) D Nr (m)(1C y(t, Nr (m)I ")).

We note that

RF (t) � r (t, m) D R(1C y(t, RI ")) � Nr (m)(1C y(t, Nr (m)I "))

implies

1

�

(R� Nr ) � RF (t) � r � �(R� Nr )
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with 0< � � 1� 1, sincejyj C j�r yj � "C. Therefore

y(t, Nr (m)I ") D y(t, RI ")C O(RF (t) � r (t, m)),

and so on. Hence we get the “physical vacuum boundary”, that is, the corresponding
density distribution� D �(t, r ), wherer denotes the original Euler coordinate, satisfies

�(t, r ) > 0 for 0� r < RF (t), �(t, r ) D 0 for RF (t) � r,

and, sincey(t, r ) is smooth on 0� r � R, we have

�(t, r ) D C(t)(RF (t) � r )1=(�1)(1C O(RF (t) � r ))

as r ! RF (t) � 0. HereC(t) is positive and smooth int .

2. Analysis of the linearized equation

The linearized equation is

�

2y

�t2
C Ly D 0,(7)

Ly WD �
1

�r

�

�r
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P

�

3 yC  r
�y

�r
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C

1

�r

d P

dr
� (4y)

D �

1

�r 4

�

�r

�

 r 4P
�y

�r

�

C

1

�r
(4� 3 )

d P

dr
y,

(8)

and the associated eigenvalue problem isLy D �y.
This eigenvalue problem was first wrote down in [6, p. 10, (12)] (1918). But the

spectral property of the operator, whose coefficients are singular, had been long be-
lieved as a Sturm–Liouville type without proof. A mathematically rigorous discussion
was first done by [1] (1995). The essential point is as follows.

Let us use the Liouville transformation:

� WD

Z r

0

r

�

 P
dr , � WD r 2( P�)1=4y.

Through this transformation the equation

Ly D �yC f

turns out to be the standard form

�

d2
�

d�2
C q� D ��C Of ,
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where

q D
 P

�
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r 2
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�

7� 3

2
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4

rmr

m

�

1

r�

d�

dr
C

( C 1)(3�  )

16

�

1

�

d�
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�2�

,

Of D r 2( P�)1=4 f .

The variable� runs on the interval (0,�
C

), where

�

C

WD

Z R

0

r

�

 P
dr <1.

Since

� �

r

�c

 Pc
r as r ! 0,

we see

q �
 Pc

�c

2

r 2
�

2

�

2
as � ! 0.

Since

1

�

d�

dr
� �

1

 � 1
(R� r )�1,

 P

�

� �

�1
1 (R� r ) as r ! R,

and

R� r �
1

4
�

�1
1 (�

C

� � )2 as � ! �

C

,

we see

q �
 P

�

( C 1)(3�  )

16

�

1

�

d�

dr

�2

�

1

4

(1C  )(3�  )

( � 1)2
1

(�
C

� � )2

as � ! �

C

. It follows from 1<  < 2 that

1

4

(1C  )(3�  )

( � 1)2
>

3

4
.

Of courseq is bounded from below, but it is difficult to know whether its mini-
mum is positive or not. Anyway, the both boundary points� D 0, �

C

are of limit point
type, provided that 1<  < 2. See, e.g., [22, p. 159, Theorem X.10]. The exceptional
case D 2 will be discussed later. See the discussion after Lemma 2 below. Hence
we have the following conclusion:

Proposition 1. The operatorT0, D(T0) D C1

0 (0, �
C

), T0� D ���� C q�, in
L2(0,�

C

) has the Friedrichs extensionT, a self-adjoint operator, whose spectrum con-
sists of simple eigenvalues�1 < � � � < �n < �nC1 < � � � ! C1. In other words, the
operator S0, D(S0) D C1

0 (0, R), S0y D Ly in L2((0, R), r 4
� dr ) has the Friedrichs

extensionS, a self-adjoint operator with eigenvalues(�n)n.
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The domainD(T) of the Friedrichs extensionT is, by definition,

D(T) D {� 2 L2(0, �
C

) j 9�n 2 C1

0 (0, �
C

), Q[�m � �n] ! 0

as m, n!1, �n ! � in L2(0, �
C

)

and��
��

C q� 2 L2(0, �
C

) in distribution sense},

where

Q[�] WD
Z

�

C

0

�

�

�

�

�

d�

d�

�

�

�

�

2

C (qC c)j�j2
�

d� ,

and c is a constant> jmin qj. But D(T) is characterized as follows:

D(T) D {� 2 C[0, �
C

] j �(0)D �(�
C

) D 0, � �
��

C q� 2 L2(0, �
C

)}.

Let us prove it, denoting byM the right-hand side. Let� 2 D(T). Then there are
�n 2 C1

0 (0, �
C

) such that�n ! � in L2 and Q[�m � �n] ! 0. Since

j�m(� ) � �n(� )j �
p

�

�

Z

�

0
((�m � �n)

�

)2 d�

�1=2

�

p

� (Q[�m � �n])1=2
! 0,

we have�n ! � uniformly on [0,�
C

]. Hence� 2 C[0, �
C

] and �(0) D 0. Similarly
�(�

C

) D 0. ThusD(T) � M. Let � 2 M. Put f WD ��
��

C q� 2 L2. Then��
��

C

(q C c)� D g WD f C c� 2 L2. Since 0 belongs to the resolvent set ofT C c, we
have v WD (T C c)�1g 2 D(T). Hencew WD � � v 2 C[0, �

C

] and w(0) D w(�
C

) D
0,�w

��

C (qC c)w D 0, for D(T) � M. Using qC c > 0, we can deduce thatw � 0
and � D v 2 D(T), that is, M � D(T). (In fact, if w did not vanish identically, there
would exista 2 (0, �

C

) such thatDw(a) D 0 andw(a) ¤ 0. If w(a) > 0, then

Dw(� ) D
Z

�

a
D2
w(� 0) d� 0 D

Z

�

a
(qC c)w(� 0) d� 0

implies Dw(� ) > 0 for a < � < �
C

and it contradicts tow(�
C

) D 0. If w(a) < 0, then

Dw(� ) D �
Z a

�

(qC c)w(� 0) d� 0

implies Dw(� ) > 0 for 0< � < a and it contradicts tow(0)D 0.)
Although it is not easy to judge the signature of minq, we have

Proposition 2 ([14], 1997). If and only if 4=3 <  � 2, the least eigenvalue�1

is positive.

Proof. The functiony � 1 satisfies

Ly D
1

�r
(4� 3 )

d P

dr
DW f > 0.
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Let us consider the corresponding function

�1 D r 2( P�)1=4

through the Liouville transformation. It is easy to show that �1 and d�1=d� vanish at
� D 0, �

C

and �1 2 D(T). Let �1(� ) be the eigenfunction of�d2
=d�2

C q associated
with the least eigenvalue�1. We can assume�1(� ) > 0 for 0< � < �

C

and �1 and
d�1=d� vanishes at� D 0, �

C

. Then the integration by parts gives

�1

Z

�

C

0
�1�1 d� D

Z

�

C

0
�1(��1,�� C q�1) d� .

Since

��1,�� C q�1 D Of D r ( P)1=4
�

�3=4(4� 3 )
d P

dr

and d P=dr < 0, we have the assertion.

REMARK . Assume that 3=4 <  � 2. Then the least eigenvalue, which is posi-
tive, is given by the variational formula

�1 D min
(Ly j y)X
kyk2

X

,

whereX D L2((0, R), �r 4 dr ) endowed with (ujv)X D
R R

0 uv�r 4 dr . From this we can
deduce the following Ritter–Eddington’s law of the period-density relation:Let us con-
sider equilibria �(r ) with �(0)D �c and the corresponding least eigenvalue�1 or the
“period” 5 WD 2�=

p

�1; then5
p

�c is a constant depending only upon g0, A,  .
In fact we can consider the one parameter family of equilibria

�(r ) D �
�

(r ) WD �2=(�2)
N�(r =�)

which has radiusRD � NR/ � and the central density�c D �
2=(�2)

N�c / �
2=(�2). Here

N� is a fixed equilibrium with radiusNR and central densityN�c. Then it is easy to see that
(Ly j y)X D � (5�6)=(�2)( NLy

�

j y
�

)
NX
, wherey

�

(Nr ) D y(� Nr ) and NX D L2((0, NR), N� Nr 4d Nr ),
andkyk2

X
D �

(5�8)=(�2)
ky

�

k

2
NX
. Hence we have�1 / �

2=(�2)
/ �c. This completes the

proof. (Note that the mean densityM=(4�R3
=3) / �2=(�2)

/ the central density�c.)
This fact was stated in [6, p. 15], as a result that the pulsation theory conforms with
observation of variable stars. As for the priority of A. Ritter (1879), see [23].

Let us introduce the variablex defined by

(9) x WD
tan2

�

1C tan2
�

, � WD

��

2
D

�

2

Z r

0

r

�

 P
dr,
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where� D �=�
C

. Then x runs over the interval [0, 1] whiler runs over [0,R], and

dx

dr
D �

p

x(1� x)
r

�

 P
D �

p

x(1� x)�(�C1)=2.

Since

d

dr
D �

p

x(1� x)�(�C1)=2 d

dx
,

d2

dr2
D �

2x(1� x)��C1 d2

dx2

C

�

1

2
�

2(1� 2x)��C1
C

� C 1

2
�

p

x(1� x)�(��1)=2 d�

dr

�

d

dx
,

we have

�

�2
Ly

D �x(1� x)
d2y

dx2

�

�

1

2
(1� 2x)C

 C 1

2

1

�

p

x(1� x)�(�3)=2 d�

dr
C

4

r

1

�

p

x(1� x)�(�1)=2

�

dy

dx

C

1

�

2

�

�2

r

d�

dr
(4� 3 )y.

As r ! 0 (x! 0) we have

x D
�

2

4
�

�C1
c r 2(1C [r 2]1),

r D
2

�

�

(�1)=2
c

p

x(1C [x]1),

d�

dr
D r [r 2]0,

4

r

1

�

p

x(1� x)�(�1)=2
D 2C [x]1.

Then it follows that

�

�2
Ly D �x(1� x)

d2y

dx2
�

�

5

2
C [x]1

�

dy

dx
C [x]0y.

On the other hand, asr ! R(x! 1), we have

1� x D �2
�

�C1
1 (R� r )(1C [R� r, (R� r ) =(�1)]1),

R� r D
1

�

2
�

�1
1 (1� x)(1C [1 � x, (1� x) =(�1)]1),

d�

dr
D �

�1

 � 1
(R� r )(2� )=(�1)(1C [R� r, (R� r ) =(�1)]1).
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Then it follows that

�

�2
Ly D �x(1� x)

d2y

dx2

C

�



 � 1
C [1 � x, (1� x) =(�1)]1

�

dy

dx
C [1 � x, (1� x) =(�1)]0y.

Changing the scale oft , we can and shall assume that� D 1 without loss of
generality.

Summing up, we have:

Proposition 3. We can write

(10) Ly D �x(1� x)
d2y

dx2
�

�

5

2
(1� x) �

N

2
x

�

dy

dx
C L1(x)

dy

dx
C L0(x)y,

where

L1(x) D

�

[x]1 as x!C0,
[1 � x, (1� x)N=2]1 as x! 1� 0,

L0(x) D

�

[x]0 as x!C0,
[1 � x, (1� x)N=2]0 as x! 1� 0.

Here N is the parameter defined by

(11) N D
2

 � 1
,  D 1C

2

N � 2
.

Now let us fix a positive eigenvalue� D �n and an associated eigenfunction8(r )
of L. Then

y1(t, r ) D sin(
p

�t C �0)8(r )

is a time-periodic solution of the linearized problem.
Moreover we can claim

Proposition 4. We have

8(r ) D C0(1C [r 2]1) as r! 0,

D C0(1C [x]1) as x! 0

and

8(r ) D C1(1C [R� r, (R� r ) =(�1)]1) as r! R,

D C1(1C [1 � x, (1� x)N=2]1) as x! 1.
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Here C0 and C1 are non-zero constants. Other independent solutions ofLy D �y do
not belong to L2(r 4

� dr ) at r � R.

To prove this, we use the following lemma:

Lemma 2. Let us consider the equation

z
d2y

dz2
C b(z, za)

dy

dz
D c(z, za)y,

where

b(z, za) D aC [z, za]1, c(z, za) D [z, za]0,

and let the positive number a satisfy a� 2. Then
1) there is a solution y1 of the form

y1 D 1C [z, za]1,

and
2) there is a solution y2 of the form

y2 D z�aC1(1C [z, za]1)

provided a� N, or

y2 D z�aC1(1C [z, za]1)C hy1 log z

provided a2 N. Here h is a constant which can vanish in some cases.

For a proof, see [3, Chapter 4].
We apply this lemma foraD  =( �1)D N=2 (� 2) andzD 1�x. Even if N D 4

( D 2), y2 � z�N=2C1 does not belong toL2(r 4
� dr ) D L2(x3=2(1� x)N=2�1 dx), and

the boundary pointr D R is of the limit point type.

3. Statement of the main result

We rewrite the equation (6) by using the linearized operatorL defined by (8) as

(12)
�

2y

�t2
C

�

1C GI

�

y, r
�y

�r

��

LyC GII

�

r, y, r
�y

�r

�

D 0,

where

GI(y, v) D (1C y)2

�

1C
1



�

v

G2(y, v)

�

� 1,

GII (r, y, v) D
P

�r 2
GII0(y, v)C

1

�r

d P

dr
GII1(y, v),
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GII0(y, v) D (1C y)2(3�
v

G2 � �yG2)v

D �2 (1C y)�2C1(1C yC v)��1
v

2,

GII1(y, v) D
(1C y)2



�

v

G2 � ((�4C 3 )yC  v)

C H � 4y(1C y)2
� (1C y)2G2.

Here

G2(y, v) WD G(y, v) � (3 yC  v) D [y, v]2,

�

v

G2 WD
�

�v

G2 D
�G

�v

�  D [y, v]1.

We have fixed a solutiony1 of the linearized equationyt t CLy D 0, and we seek
a solutiony of (6) or (12) of the form

y D "y1C "w,

where" is a small positive parameter. Then the equation whichw should satisfy turns
out to be

(13)

�

2
w

�t2
C

�

1C "a

�

t, r, w, r
�w

�r
, "

��

Lw C "b

�

t, r, w, r
�w

�r
, "

�

D "c(t, r, "),

where

a(t, r, w, �, ") D "�1GI("y1C "w, "v1C "�),

b(t, r, w, �, ") D �(FI C FII )C (FI C FII )jwD�D0

c(t, r, ") D (FI C FI I )j
wD�D0.

Here v1 stands forr �y1=�r and

FI WD �"
�1G I ("y1C "w, "v1C "�)Ly1,

FI I WD �"
�2G I I (r, "y1C "w, "v1C "�).

It follows from Proposition 4 thata,b,c are smooth functions oft , x, (1�x)N=2, w
and �w=�x. Here and hereafterx denotes the variable defined by(9), which is equiva-
lently used instead of r.

Then the main result of this study can be stated as follows:

Theorem 1. Assume that6=5 <  � 2 (, 4 � N < 12) and that  =( � 1)
(D N=2) is an integer, that is,  is either 2, 3=2, 4=3 or 5=4. Then for any given
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T > 0 there is a sufficiently small positive"0 D "0(T) such that, for j"j � "0, there is
a solutionw 2 C1([0, T ] � [0, R]) of (13) such that

sup
jCk�n









�

�

�t

� j�
�

�r

�k

w









L1([0,T ]�[0,R])

� Cn",

or a solution y2 C1([0, T ] � [0, R]) of (6) or (12) of the form

y(t, r ) D "y1(t, r )C O("2),

or a motion which can be expressed by the Lagrangian coordinates as

r (t, m) D Nr (m)(1C "y1(t, Nr (m))C O("2))

for 0� t � T , 0� m� M.

Our task is to find the inverse imageP�1("c) of the nonlinear mappingP de-
fined by

(14) P(w) WD
�

2
w

�t2
C (1C "a)Lw C "b.

Note P(0)D 0. It requires a property of the Fréchet derivative ofP:

(15) DP(w)h D ht t C (1C "a1)LhC "a20hC "a21rhr ,

where

a1(t, r ) D a

�

t, r, w, r
�w

�r
, "

�

,

a20(t, r ) D
�a

�w

Lw C
�b

�w

,

a21(t, r ) D
�a

��

Lw C
�b

��

.

Here� is the dummy ofr �w=�r . We shall use the following observation:

Proposition 5. We have

a21D
 P

�

(1Cy)�2C2(1CyCv)��2

�

(C1)
�

2Y

�r 2
C

4

r

�Y

�r
C

2"( �1)

1Cy

�

�Y

�r

�2�

,

where

Y D y1C w, y D "Y, v D r
�y

�r
D "r

�Y

�r
.
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Proof. Since

�a

��

D

�GI

�v

D

(1C y)2



�

2
v

G2,

�b

��

D

�GI

�v

Ly1C "
�1�GII

�v

,

we have

"a21 D �(�
v

GI)
 P

�

�

�

2y

�r 2
C

4

r

�y

�r

�

C

P

�r 2
�

v

GII0 C
1

�r

d P

dr
[U ],

where

[U ] D �(�
v

G I )((3 � 4)yC  v)C �
v

GII1 .

Since

�

v

GI D
(1C y)2



�

2
v

G2, �

v

GII1 D
(1C y)2



�

2
v

G2((�4C 3 )yC  v),

we have [U ] D 0. Using

�

2
v

G2 D � ( C 1)(1C y)�2 (1C yC v)��2,

�

v

GII0 D �2 (1C y)�2C1(1C yC v)��2
� (2(1C y)C (� C 1)v)v,

we get the result.

Hereafter we use the variablex defined by (9) instead ofr D Nr .
We note that

 P

�

D �

2(�1)
1 (1� x)(1C [1 � x, (1� x)N=2]1).

Hence the functionOa21 defined by

Oa21 WD
r

x(1� x)

dx

dr
a21 D

r
p

x(1� x)
�

(�C1)=2a21

is smooth int , x, (1� x)N=2, w, �w=�x, �2
w=�x2 including x D 0, 1. Therefore

Proposition 6. The derivative DP can be written as

(16) DP(w)h D
�

2h

�t2
C (1C "a1)LhC " Oa21x(1� x)

�h

�x
C "a20h,

where a1, Oa21, a20 are smooth functions of t,x, (1� x)N=2, w, �w=�x and �2
w=�x2.
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4. Proof of the main result

Hereafter we assume thatN=2 is an integer so that (1� x)N=2 is analytic atx D 1.
We are going to apply the Nash–Moser theorem formulated by R. Hamilton ([7,

p. 171, III.1.1.1.]) as [21], that is:

Theorem (Nash–Moser(–Hamilton) theorem). Let E0 and E be tame spaces, U
an open subset ofE0 and P W U ! E a smooth tame map. Suppose that the equa-
tion for the derivative DP(w)h D g has a unique solution hD VP(w)g in E0 for all
w in U and all g in E, and VP W U � E ! E0 is a smooth tame map. ThenP is
locally invertible.

For the definitions of ‘tame spaces’ and ‘tame maps’, see [7] or [21]. We shall
use the discussions of [21] without repeating the details.

We consider the spaces of functions oft and x:

E WD C1([0, T ] � [0, 1]),

E0 WD

�

w 2 E w D

�w

�t
D 0 at t D 0

�

.

Let U be the set of all functionsw in E0 such thatjwj C j�w=�xj < 1. Then, for
w 2 U , y D "y1 C "w and its derivative rer are small, provided thatj"j � "1. Then
we can consider the mapping

P W w 7! �

2
t w C (1C "a)Lw C "b

mapsU into E, since the coefficientsa, b are smooth functions oft , x, w, �w=�x and
the coefficientsL0, L1 of L are analytic on 0� x � 1.

The inverse imageP�1("c) is a desired smooth solution of (13).
We should introduce gradings of norms onE so thatE, E0 become tame spaces

in the Hamilton’s sense. To do so, we use a cut off function! 2 C1([0, 1]) such
that !(x) D 1 for 0� x � 1=3, 0< !(x) < 1 for 1=3 < x < 2=3 and!(x) D 0 for
2=3� x � 1. For a functiony of 0� x � 1, we shall denote

(17) y[0](x) D !(x)y(x), y[1](x) D (1� !(x))y(x).

We consider the tame spaces

E[0] D

�

y 2 C1([0, T ] � [0, 1]) y D 0 for
5

6
� x � 1

�

,

E[1] D

�

y 2 C1([0, T ] � [0, 1]) y D 0 for 0� x �
1

6

�

,
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endowed with the equivalent gradings of norms (k � k(1)
[�]n)n, (k � k(2)

[�]n)n, � D 0, 1, by the
same manner as in [21], that is, denoting

4[0] D x
d2

dx2
C

5

2

d

dx
, 4[1] D z

d2

dz2
C

N

2

d

dz
, (zD 1� x),

we put

kyk(1)
[�]n D sup

jCk�n









�

�

�

2

�t2

� j

(�4[�])
ky









L1
,

kyk(2)
[�]n D

X

jCk�n

�

Z T

0









�

�

�

2

�t2

� j

(�4[�])
ky









2

[�]

dt

�1=2

,

where

kyk[0] D

�

Z 1

0
y2x3=2 dx

�1=2

,

kyk[1] D

�

Z 1

0
y2(1� x)N=2�1 dx

�1=2

.

On the other hand, onE we introduce the gradings of norms (k�k(1)
n )n and (k�k(2)

n )n by

kyk(1)
n WD sup

jCk�n,�D0,1









�

�

�

2

�t2

� j

(�4[�])
ky[�]









L1
,

kyk(2)
n WD

 

X

jCk�n,�D0,1

Z T

0









�

�

�

2

�t2

� j

(�4[�])
k y[�]









2

[�]

dt

!1=2

.

Then it is easy to see thatE is a tame space as a tame direct summand of the
cartesian productE[0] � E[1] , which is a tame space. (See [7, p. 136, 1.3.3 and 1.3.4])
In fact we consider the linear mappingsLW E! E[0]�E[1]W h 7! (h[0] ,h[1]) and MW E[0]�

E[1] W (h0, h1) 7! h0C h1. It is clear thatL is tame andM L D IdE. To verify that M
is tame, we use the following.

Proposition 7. If the support of y(x) is included in[1=6, 5=6], then

k4

m
[�] ykL1 � C

X

0�k�m

k4

k
[1��] ykL1 .

A proof can be found in Appendix B. Now ifh
�

2 E[�] , then h D M(h0, h1) D
h0C h1, and

h[0]
D (h0C h1)[0]

D !h0C !h1.
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Then by [21, Proposition 4] we have

k4

m
[0]h

[0]
kL1 � C

X

k�m

k4

k
[0]h0kL1 C k4

m
[0](!h1)kL1 .

Proposition 7 can be applied, since supp[!h1] � [1=6, 2=3], so that

the second term� C
X

k�m

k4

k
[1](!h1)kL1

� C0

X

k�m

k4

k
[1]h1kL1 .

Therefore we have

k4

m
[0]h

[0]
kL1 � C

X

k�m

(k4k
[0]h0kL1 C k4

k
[1]h1kL1).

The same argument gives the estimate ofk4m
[1]h

[1]
kL1 . This implies the tameness of

M. ThereforeE is tame with respect to the grading (k � k(1)
n )n.

By the discussion of [21] it is clear that the mappingP is tame. In fact we have

kP(w)k(1)
n � Ckwk(1)

nC1.

Therefore we can concentrate ourselves to the analysis of the linear equation

(18) DP(w)h D g

whenw is chosen fromU and g is given inE. By Proposition 3 and 6 we can write

(19) DP(w)h D
�

2h

�t2
� b23hC b1x(1� x)

�h

�x
C b0h,

where

(20) 3 D x(1� x)
�

2

�x2
C

�

5

2
(1� x) �

N

2
x

�

�

�x

and

b2 D 1C "a1, b1 D (1C "a1)
L1

x(1� x)
C " Oa21,

b0 D (1C "a1)L0C "a20

are smooth functions oft , x, w, Dw, D2
w, where D D �=�x.
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In order to establish the existence and uniqueness of the solution of (18), we intro-
duce the following spaces of functions of 0� x � 1:

X D X0
WD

�

y kykX WD

�

Z 1

0
y2x3=2(1� x)N=2�1 dx

�1=2

<1

�

,

X1
WD

�

y 2 X PDy WD
p

x(1� x)
dy

dx
2 X

�

,

X2
WD {y 2 X1

j �3y 2 X}.

Then we have

Proposition 8. Let a be a function in C1[0, 1]. If y 2 X2 and v 2 X1, then

(�a3y j v)X D (a PDy j PDv)X C ((Da) LDy j v)X,

where LD D x(1� x) d=dx. Here, of course,

(u j v)X D
Z 1

0
uvx3=2(1� x)N=2�1 dx.

Proof. If v 2 X1, then

v(x) D v

�

1

2

�

C

Z x

1=2

PDv(x0)
p

x0(1� x0)
dx0

implies

jv(x)j � Cx�3=4(1� x)�N=4C1=2,

and if y 2 X2, then

x5=2(1� x)N=2 dy

dx
D x5=2(1� x)N=2 dy

dx

�

�

�

�

xD1=2

�

Z x

1=2
3y(x0)x03=2(1� x0)N=2�1 dx0

implies
�

�

�

�

x5=2(1� x)N=2 dy

dx

�

�

�

�

� Cx5=4(1� x)N=4.

(Note that the finite constant

x5=2(1� x)N=2 dy

dx

�

�

�

�

xD1=2

C

Z 1=2

0
3y(x0)x03=2(1� x0)N=2�1 dx0

should vanish in order toPDy 2 X, and so on.) Therefore the boundary terms in the
integration by parts vanish asx! 0, 1 and we get the desired equality.
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Using Proposition 8, we can prove the following energy estimate in the same man-
ner as [21, Lemma 3]:

Proposition 9. Let g2 C([0,T ],X). If h 2
T

kD0,1,2C2�k([0,T ],Xk) satisfies(18),
then we have, for 0� t � T ,

k�t hkX C khkX1
� C

�

k�t hjtD0kX C khjtD0kX1
C

Z t

0
kg(t 0)kX dt0

�

.

Here

khk2
X

1 D khk2X C k PDhk2
X

,

and the constant C depends only upon N, T , k�tb2kL1 , kDb2kL1 , kb1kL1 , kb0kL1 ,
provided thatj1� b2j � 1=2.

We are considering the initial boundary value problem (IBP):

�

2h

�t2
CAh D g(t, x), h(t, � ) 2 X1,

h D
�h

�t
D 0 at t D 0.

Here

A D �b23C b1 LD C b0, LD D x(1� x)
d

dx
.

Note that “h(t, � ) 2 X1” is a Dirichlet boundary condition in some sense. In fact it can
be shown thatC1

0 (0, 1) is dense inX1.
Anyway, applying Kato’s theory developed in [11], we have

Proposition 10. If g 2 C([0, T ], X1) [ C1([0, T ], X), then there exists a unique
solution h of(IBP) in

T

kD0,1,2C2�k([0, T ], Xk).

Proof. We write (IBP) as

d

dt

�

h
Ph

�

C

�

0 �1
A 0

��

h
Ph

�

D

�

0
g

�

.

Applying the semi-group theory in the spaceH D X1
� X to the family of generators

D(A(t)) D X2
� X1,

A(t) D

�

0 �1
A 0

�

,
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we get the result. The proof is same as in the Appendix C of [21]. Note that

(Ay j v)X D (b2 PDy j PDv)X C (((b1C Db2) LD C b0)y j v)X

for y 2 X2 and v 2 X1 thanks to Proposition 8.

We are going to prove the smoothness of the solution and to getits tame estimates.
In order to do it, we use the cut off function! to separate the singularities atx D 0
and x D 1, since, although the singularities are of the same type, the calculus structure
of 3m, m 2 N, is little bit complicated.

The equation�2h=�t2
C Ah D g is split into the following simultaneous system

of equations:

(21)

�

�

2

�t2
CA[0]

�

h[0]
D g[0]

� (c1 LD C c0)h[1] ,

�

�

2

�t2
CA[1]

�

h[1]
D g[1]

C (c1 LD C c0)h[0] ,

where

c1 D (2b2 � b1)D!, c0 D b2(3!),

A[0] D �b23C (b1C c1) LD C b0C c0,

A[1] D �b23C (b1 � c1) LD C b0 � c0.

We can rewrite them as:

A[0] D �b[0]24[0] C b[0]1x
d

dx
C b[0]0,

A[1] D �b[1]24[1] C b[1]1z
d

dz
C b[1]0, (zD 1� x),

where

b[0]2 D b2(1� x), b[1]2 D b2x,

b[0]1 D
N

2
b2C (b1C c1)(1� x), b[1]1 D

5

2
b2 � (b1 � c1)x,

b[0]0 D b0C c0, b[1]0 D b0 � c0.

We may assume thatjb[�]2 � 1j � � on x 2 I [�] , � D 0, 1, with a constant� such that
2=3< � < 1, e.g.,� D 5=6. Here I [0] D [0, 2=3], I [1] D [1=3, 1].

We note that the regularity of the solutionh established by Proposition 10 can be
reduced to that ofh[0] , h[1] . In fact, if we know h[0]

2 C1([0, T ] � [0, 2=3]), then
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h(t, x) D h[0](t, x)=!(x) is smooth on 0� x < 2=3, and the smoothness ofh[1] implies
that of h(t, x) D h[1]

=(1� !(x)) on 1=3< x � 1.
But the regularity of the solution of the simultaneous system (21) can be proved

by Kato’s theory developed in [12], as in Appendix C of [21]. Namely, we consider
in the space

OH D H[0] � H[1] � R

D X1
[0]0 � X[0] � X1

[1]0 � X[1] � R

the family of generators

D( OA(t)) D OG D G[0] �G[1] � R

D X2
[0](0) � X1

[0]0 � X2
[1](0) � X1

[1]0 � R,

OA(t) D A[0](t)
 A[1](t)
 0C B(t),

B(t) D

0

B

B

B

B

B

�

0 0 0 0 0
0 0 �(c1 LD C c0) 0 �g[0]

0 0 0 0 0
c1 LD C c0 0 0 0 �g[1]

0 0 0 0 0

1

C

C

C

C

C

A

,

where

A[�](t) D

�

0 �1
A[�] 0

�

.

Here we set

X[0] D

�

y kykX[0] WD

�

Z 2=3

0
y(x)2x3=2 dx

�1=2

<1

�

,

X1
[0] D

�

y 2 X[0] PD[0] y D
p

x
dy

dx
2 X[0]

�

,

X1
[0]0 D {y 2 X1

[0] j yjxD2=3 D 0},

X2
[0] D {y 2 X1

[0] j 4[0] y 2 X[0]},

X2
[0](0) D X2

[0] \ X1
[0]0I

X[1] D

�

y kykX[1] WD

�

Z 1

1=3
y(x)2(1� x)N=2�1 dx

�1=2

<1

�

,

X1
[1] D

�

y 2 X[1] PD[1] y D �
p

1� x
dy

dx
2 X[1]

�

,

X1
[1]0 D {y 2 X1

[1] j yjxD1=3 D 0},

X2
[1] D {y 2 X1

[1] j 4[1] y 2 X[1]},

X2
[1](0) D X2

[1] \ X1
[1]0.
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REMARK . 1) It may be difficult to verify that, given a solution (h0, h1) of the
system (21) such thath

�

2

T

kD0,1,2C2�k([0, T ], Xk
[�]), the functionh which should be

defined by

h(t, x) D

8

<

:

h0(x) (0� x � 1=3),
h0(x)C h1(x) (1=3< x < 2=3),
h1(x) (2=3 � x � 1)

belongs toC([0, T ], X2). Therefore we first established the existence of the solution h
by Proposition 10. Then, by the uniqueness, we can claim thath[�]

D h
�

, the solutions
of (21).

2) We used

kyk[0] D

�

Z 1

0
y(x)2x3=2 dx

�1=2

in the definition of the gradings onE[0] . But kykX[0] D kyk[0] for y D h[0] , since

supp[h[0] ] � [0, 2=3]. So, we can considerh(t, � )[�]
2 X2

[�](0) for the solutionh es-
tablished in Proposition 10.

Then B(t) 2 C([0,T ], B( OH)) is a smooth bounded perturbation from the stable fam-
ily (A[0](t)
 A[1](t)
 0)t . Hence (OA(t))t is stable.

In order to consider ‘smoothness’, ‘ellipticity’ and compatibility conditions, we
introduce the scales of Hilbert spaces

OH j D X
jC1
[0](0) � X

j
[0] � X

jC1
[1](0) � X

j
[1] � R,

OG j D
OG \ OH j D X

jC1
[0](0) � X

j
[0](0) � X

jC1
[1](0) � X

j
[1](0) � R,

as in Appendix C of [21], where

X2mC1
[�] D {y 2 X2m

[�] j
PD[�]4

m
[�] y 2 X[�]},

X2mC2
[�] D {y 2 X2mC1

[�] j 4

mC1
[�] y 2 X[�]},

X
j
[�](0) D X

j
[�] \ X1

[�]0.

The definition ofk � k
X

j
[�]

follows that of k � k j in [21], that is:

kyk
X

j
[�]
D

 

X

l� j

(hyi[�]l )
2

!1=2

,

hyi[�]l D

�

k4

m
[�] ykX[�] as l D 2m,

k

PD[�]4
m
[�] ykX[�] as l D 2mC 1.
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In order check the ‘smoothness’, we note thatc1 D c0 D 0 for 0 � x � 1=3 or
2=3� x � 1. This implies that

k(c1 LD C c0)y[1]
k

X
j
[0]
� Ck(c1 LD C c0)y[1]

k

X
j
[1]
� C0

ky[1]
k

X
jC1
[1]

,

k(c1 LD C c0)y[0]
k

X
j
[1]
� Ck(c1 LD C c0)y[0]

k

X
j
[0]
� C0

ky[0]
k

X
jC1
[0]

.

(See [21, Proposition 6].) Here we have used the following

Proposition 11. If the support of y2 C1(0, 1) is included in[1=3, 2=3], then

kyk
X

j
[�]
� Ckyk

X
j
[1��]

,

where� D 0, 1.

A proof can be found in Appendix B.
Then, using this observation, we can reduce the ‘ellipticity’ of OA(t) to that of

A[�](t), � D 0, 1.
The compatibility conditions are guaranteed as follows.
We are considering the Cauchy problem

du

dt
C

OA(t)u D 0, ujtD0 D �0,

where

OA(t) D

0

B

B

B

B

B

�

0 �1 0 0 0
A[0] 0 �C 0 �g[0]

0 0 0 �1 0
C 0 A[1] 0 �g[1]

0 0 0 0 0

1

C

C

C

C

C

A

,

C WD c1 LD C c0,

�0 D

0

B

B

B

B

B

�

0
0
0
0
1

1

C

C

C

C

C

A

.

As in [11, Section 2], we consider

S0
D I ,

SjC1
� D �

j
X

kD0

�

j

k

��

d

dt

� j�k
OA(0)Sk

�,
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D0 D OH D X1
[0]0 � X[0] � X1

[1]0 � X[1] � R,

D jC1 D {� 2 D j j Sk
� 2

OG jC1�k, 0� k � j }.

We should show that�0 2 Dn for any n. But g[0] , g[1] can be considered as func-
tions in C1([0, T ] � [0, 1]) such that, for all positive integerl , � l

t g
[0](0, x) D 0 for

2=3� x � 1 and� l
t g

[1](0, x) D 0 for 0� x � 1=3. We denote

�k WD Sk
�0 D

0

B

B

B

B

B

B

�

�

k
[0]0

�

k
[0]1

�

k
[1]0

�

k
[1]1

0

1

C

C

C

C

C

C

A

.

Then it is easy to verify by induction that, fork � 1, the extensionQ�k D
�

Q

�

k
[0]0, Q�k

[0]1,

Q

�

k
[1]0, Q�k

[1]1, 0
�T

of �k defined by

Q

�

k
[0]0(x) D

�

�

k
[0]0(x) (0� x � 2=3),

0 (2=3< x � 1),

Q

�

k
[0]1(x) D

�

�

k
[0]1(x) (0� x � 2=3),

0 (2=3< x � 1),

Q

�

k
[1]0(x) D

�

0 (0� x < 1=3),
�

k
[1]0(x) (1=3� x � 1),

Q

�

k
[1]1(x) D

�

0 (0� x < 1=3),
�

k
[1]1(x) (1=3� x � 1)

belongs toC1([0, 1]I R5). In other words, the components of�k satisfy the boundary
conditions atx D 1=3 and x D 2=3 and�k D Sk

�0 remains in OGkC1. It implies that
�0 2 Dn for all n.

Summing up, we can claim thath[0]
2 C1([0, T ]� [0, 2=3]) and h[1]

2 C1([0, T ]�
[1=3, 1]) provided thatg 2 C1([0, T ] � [0, 1]).

Finally, we must deduce the tame estimate of (w,g) 7! h. We are going to show that

khkhTinC2 � C(1C kgkhTinC1C jwj
hTi
nC7).

Here

kykhTin WD

 

X

jCk�n,�D0,1

Z T

0
k�

j
t y[�]
k

X
k
[�]

dt

!1=2

,

jyjhTin WD max
jCk�n,�D0,1

k�

j
t
PDk
[�] y

[�]
kL1([0,T ]�[0,1]).
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Let us follow the discussion of [21, Section 5.4]. To do so, weshould reconsider
the discussion about the single equation, say, we consider asolution H of the boundary
value problem

�

2H

�t2
CA(Eb)H D G(t, x), H jxD1 D 0

on 0� t � T . Here Eb stands for the vector (b0, b1, b2). The energy estimate claimed
in Proposition 9 should read

k�t Hk C kHk1 � C

�

k�t H jtD0k C kH jtD0k1C

Z t

0
kG(t 0)k dt0

�

.

Even if we consider theH D h which satisfy the initial conditionhjtD0 D �t hjtD0 D

0, the higher derivatives�nC2
t h may not vanish att D 0. Therefore the estimate of

k�

nC1
t hk1 in the proof of [21, Proposition 10] should be replaced by

k�

nC1
t hk1 � C

�

k�

nC2
t hjtD0k C k�

nC1
t hjtD0k1

C

Z t

0
k�

nC1
t gk dt0 C

Z t

0
k[�nC1

t , A]hk dt0
�

.

We claim the estimate

(22) k�

nC2
t hjtD0k C k�

nC1
t hjtD0k1 � C(1CWn(g)C jEbjh0inC1),

provided thatW0(g), jEbjh0i4 � M0. Here

Wn(g) WD
X

jCk�n

k�

j
t gjtD0kk

and

jyjh0in WD max
jCk�n

k�

j
t
PDk yjtD0kL1([0,1]).

To prove (22) it is sufficient to verify the following estimate by induction onn: for all
k 2 N,

k�

nC2
t hjtD0kk � C(jEbjh0inCkC1W0(g)C jEbjh0ikC3Wn�2(g)CWnCk(g)).

Since the proof of the above inequality by induction onn using the estimate

kA(Eb)ykk � C(kykkC2C jEbjkC3kyk)

applied to the relation

�

nC2
t h D �

n
X

jD0

�

n

j

�

A(�n� j
t
Eb)� j

t hC �n
t g
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is straightforward, we omit it.
Moreover we note that the inequality in the statement of [21, Lemma 4] can be

replaced by the stronger one:

khkhtinC2 � C

�

1C
Z t

0
kgkht

0

i

nC1 dt0 CWn(g)C kgkhTin C j
EbjhTinC3

�

,

for 0� t � T , where

kykh� in WD

 

X

jCk�n

Z

�

0
k�

j
t yk2k dt

!1=2

,

jyjh� in WD max
jCk�n

k�

j
t
PDk ykL1([0,� ]�[0,1]).

This can be verified easily by following the discussion in [21, Section 5.4]. Let us
omit the detail.

Let us go back to the simultaneous system of equations. Applying the above dis-
cussion on a single equation, we have

kh[0]
k

hti
[0]nC2 � C

�

1C
Z t

0
kh[1]
k

ht 0i
[1]nC2 dt0 CWn(g)C kgkhTinC1C j

EbjhTinC3

�

,

kh[1]
k

hti
[1]nC2 � C

�

1C
Z t

0
kh[0]
k

ht 0i
[0]nC2 dt0 CWn(g)C kgkhTinC1C j

EbjhTinC3

�

,

for 0� t � T , since

k(c1 LD C c0)h[�]
k[1��]k � C(1C kh[�]

k[�]kC1C jEbj
hTi
kC3)

for � D 0, 1. Herek � k[�]k stands fork � k
X

k
[�]

. Applying the Gronwall lemma to the

quantity

U (t) WD kh[0]
k

hti
[0]nC2C kh

[1]
k

hti
[1]nC2,

we get

U (t) � C(1CWn(g)C kgkhTinC1C j
EbjhTinC3).

This completes the proof, sinceWn(g) � CkgkhTinC1 by Sobolev’s imbedding.

5. Cauchy problems

We have discussed about the justification of linearized approximations by time-
periodic solutions. In this section we want to give a brief mention on the Cauchy
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problems associated with the equation (6) or (12). We consider the problem (CP):

�

2y

�t2
C

�

1C GI

�

y, r
�y

�r

��

LyC GII

�

r, y, r
�y

�r

�

D 0,

yjtD0 D  0(r ),
�y

�t

�

�

�

�

tD0

D  1(r ),

where the initial data 0,  1 are given functions. We claim

Theorem 2. Assume that6=5 <  � 2 (, 4 � N < 12) and that  =( � 1)
(D N=2) is an integer, that is,  is either 2, 3=2, 4=3 or 5=4. Then for any given
T > 0 there exist a sufficiently small positive numberÆ and a sufficiently large integer
r such that if 0,  1 2 C1([0, R]) satisfy

max
j�2(2rC1)

�









�

d

dr

� j

 0









L1(0,R)

,









�

d

dr

� j

 1









L1(0,R)

�

� Æ,

then there exists a unique solution y(t, r ) of (CP) in C1([0, T ] � [0, R]).

A proof of this theorem can be done as follows.
Let us take the function

y�1 (t, r ) D  0(r )C t 1(r ),

which satisfy the initial conditions. Then we should find a solution w introduced by

y D y�1 C w,

which should obey the initial conditions

wjtD0 D
�w

�t

�

�

�

�

tD0

D 0.

The equation whichw should satisfies is same as (13), in which the time-periodic
function

"y1 D sin(
p

�t C �)8(r )

is replaced by

y�1 D  0(r )C t 1(r ),

and FI C FI I should be replaced by

(1C GI(y
�

1 C w, v�1 C�))Ly�1 C GII (r, y�1 C w, v�1 C�).
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Of course we take" D 1. Then the mappingP(w) and the derivativeDP(w)h are
defined in the same forms as (14) and as (15). Proposition 5 holds valid, since the
concrete structure of the functiony1 or y�1 is not used in the proof; It is sufficient that
"y1 or y�1 is a small smooth function. Hence Proposition 6 holds valid,when "y1 is
replaced byy�1 .

Then the proof of Theorem 1 given in Section 4 can be repeated word for word
in the present situation. Note that

cD �

�

1C GI

�

y�1 , r
�y�1
�r

��

Ly�1 � GII

�

r, y�1 , r
�y�1
�r

�

and thatkck(1)
n � C(k 0k

(1)
nC1 C k 1k

(1)
nC1), provided that 0� t � T . In fact, if we

follow the discussion of [7, III.1.], we can show that it is enough to taker such that
2r > 3=2 C max{5, N}=4. (But this r may not be the best possible.) Anyway this
completes the proof of Theorem 2.

REMARK . The corresponding initial data in the Eulerian variables are given by

�jtD0(r ) D N�(Nr )

�

(1C  0(Nr ))2

�

1C  0(Nr )C Nr
d 0(Nr )

d Nr

��

�1

,

ujtD0(r ) D Nr 1(Nr )

implicitly by Nr D Nr (m(r )). Here m 7! Nr (m) is the inverse function of

Nr 7! mD m(Nr ) D 4�
Z

Nr

0
N�(r )r 2 dr

and r 7! m(r ) is the inverse function ofm 7! r D Nr (m)(1C  0(Nr (m)).

6. Concluding remark

In order that the equilibrium satisfy thatN��1 is analytic at the free boundaryr D
R and that the eigenfunctiony1 is analytic in r at r D R, we have assumed thatN
is an even integer. But D 5=3(N D 5) for mono-atomic gas, and D 7=5(N D 7)
for the air. Therefore it is desired that the result will be extended to the case whenN
is an odd integer at least. Moreover for the case whenN is not an integer, we might
try quite other approach. It seems that these are interesting open problems in view of
physical applications.

Appendix A.

Let us consider a solution� D �(r ), r0 � r < R, of the Lane–Emden equation

�

1

r 2

d

dr

�

r 2

�

d P

dr

�

D 4�g0�, P D A� .
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Let [r0, R) be a right maximal interval of existence of� > 0, and we assume that
R< C1, d�=dr jrDr0 < 0. Then there is a positive constantC such that

� D C(R� r )1=(�1)

�

1C

�

R� r

R
, C0

�

R� r

R

�

 =(�1)�

1

�

with

C0

D K R =(�1)C2� , K D
4�g0( � 1)

A
.

Proof. The variable

U WD ��1

satisfies
d2U

dr2
C

2

r

dU

dr
C KUm

D 0,

wheremD 1=( � 1). Then

v WD �

r

U

dU

dr
, w WD Kr 2Um�1

satisfies the plane autonomous system

r
dv

dr
D �v C v

2
C w,

r
dw

dr
D w(2� (m� 1)v).

The interval [r0, R) is right maximal. We assumed thatv(r0) > 0. We claim that
there isr1 2 [r0, R) such thatv(r1) > 1. Otherwise 0< v � 1 and j(r =w) dw=dr j �
mC 1 for r0 � r < R. Then it should beRD C1, a contradiction to the assumption.
Hence we can assume thatv(r0) > 1. Then r dv=dr � v(v � 1) implies v � 1C Æ,
dv=dr > 0 and r dw=dr � 2w. So, it should be thatv(r ) ! C1 as r ! R, since
R<1. We seew � B.

Now we introduce the variables

x1 WD
1

v

, x2 WD
w

v

2
,

t WD exp

�

�

Z r

r0

v(r 0) dr 0

r 0

�

.

Then (x1, x2)! (0, 0), t ! 0 asr ! R and (x1(t), x2(t)), 0< t � 1, satisfies

t
dx1

dt
D (1� x1C x2)x1,

t
dx2

dt
D (mC 1� 4x1C 2x2)x2.
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As well-known, this Briot–Bouquet system can be reduced to

t
dz1

dt
D z1,

t
dz2

dt
D (mC 1)z2

by a transformation of the form

x1 D z1(1C P1(z1, z2)),

x2 D z2(1C P2(z1, z2)).

Here

Pj (z1, z2) D [z1, z2]1

for j D 1, 2. Therefore there are positive constantsC1, C2 such that

x1 D C1t(1C P1(C1t, C2tmC1)),

x2 D C2tmC1(1C P2(C1t, C2tmC1)).

Sincedr=r D �x1 dt=t , we see

log
R

r
D

R� r

R

�

1C

�

R� r

R

�

1

�

D C1t(1C [C1t, C2tmC1]1),

from which

C1t D
R� r

R

�

1C

�

R� r

R
, C0

�

R� r

R

�mC1�

1

�

and

x1 D
R� r

R

�

1C

�

R� r

R
, C0

�

R� r

R

�mC1�

1

�

,

whereC0

D C2=C
mC1
1 . IntegratingdU=U D �dr=r x1, we have

U D C3
R� r

R

�

1C

�

R� r

R
, C0

�

R� r

R

�mC1�

1

�

.

It is easy to seeC0

D K R2Cm�1
3 , and we get the required result.

Appendix B.

Let us prove Proposition 7, that is,

k4

m
[0] ykL1 � C

X

k�m

k4

k
[1] ykL1 ,
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provided that supp[y] � [1=6, 5=6].
Note that

4[0] D �4[1] C � LD[1] ,

where LD[1] D z d=dzD �(1� x) d=dx and

� D

x

1� x
, � D �

1

1� x

�

x

1� x

N

2
C

5

2

�

are smooth function on (0, 1). Therefor our task is to estimate

k(�4[1] C � LD[1])
mykL1 .

On the other hand, it is easy to verify that there are (m)
�k 2 C1(0, 1) such that

(�4[1] C � LD[1])
m
D

X

k�m

( (m)
1k
LD[1]4

k
[1] C 

(m)
0k 4

k
[1])

with 

(m)
1m D 0. Note that

k

LD[1]4
k
[1] ykL1 � kD4

k
[1]kL1 �

2

N
k4

kC1
[1] ykL1 .

(See [21, Proposition 3]). This completes the proof.
Let us prove Proposition 11, that is,

kyk
X

j
[0]
� Ckyk

X
j
[1]

,

provided that supp[y] � [1=3, 2=3].
It is clear that

kykX[0] � CkykX[1] ,

since x3=2
� 3N=2�1(1 � x)N=2�1 for 1=3 � x � 2=3. Let us estimatek4m

[0] ykX[0] and

k

PD[0]4
m
[0] ykX[0] , where PD[0] D

p

xd=dx. As in the above discussion we note that

4[0] D �4[1] C � LD[1] ,

where LD[1] D z d=dzD �(1� x) d=dx and

� D

x

1� x
, � D �

1

1� x

�

x

1� x

N

2
C

5

2

�
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are smooth function on (0, 1). Therefor our task is to estimate

k4

m
[0] ykX[0] � Ck4m

[0] ykX[1] D Ck(�4[1] C � LD[1])
mykX[1]

and

k

PD[0]4
m
[0] ykX[0] � Ck LD[1]4

m
[0] ykX[1] D Ck LD[1](�4[1] C � LD[1])

mykX[1] .

On the other hand, it is easy to verify that there are

(m)
�k , (m)℄

�k 2 C1(0,1) such that

(�4C � LD)m
D

X

k�m

( (m)
1k
LD4k
C 

(m)
0k 4

k),

LD(�4C � LD)m
D

X

k�m

( (m)℄
1k
LD4k
C 

(m)℄
0k 4

k)

with 

(m)
1m D 0. Here4, LD stand for4[1] , LD[1] . Hence we have

k4

m
[0] ykX[0] � Ckyk

X
2m
[1]

,

k

PD[0]4
m
[0] ykX[0] � Ckyk

X
2mC1
[1]

.

This completes the proof.
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