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Abstract
It is well-known that the zeta-function(s, F) attached to a normalized Hecke-
eigen cusp fornF of weight« is universal in the sense that their shifts+ iz, F)
with appropriater € R approximate any analytic function uniformly on compact-sub
sets of the strigfs =0 +it e C: /2 < o < (x + 1)/2} with any prescribed accu-
racy. In this paper we consider some classes of operatossich that the function
®(¢(s, F)) is universal in the above sense. In particular, this ieplhe universality

of the functions, for example;(s, F)N (N-th power) and; N)(s, F) (N-th derivative)
with N € N, e6F) sinz(s, F), and cog (s, F).

1. Introduction and statement of results

Approximation theory of analytic functions has a long anchrhistory. One fun-
damental result in this field is Mergelyan’s theorem [21], sé® [29]. It asserts that
every continuous functiorf (s) on a compact seK C C with connected complement
which is analytic in the interior oK can be approximated to any accuracy uniformly
on K by polynomials ins = o +it. That is, for everye > 0, there exists a polynomial
p(s) such that

sud f(s) — p(s)| < e.
seK

Examples show that the requirements ¢Kfs) and K cannot be weakened. Thus,
Mergelyan’s theorem gives a necessary and sufficient condftor approximation of
analytic functions by polynomials. It turned out that notlyopolynomials, but also
some other type of functions come into play in the above appration problem:
there exists a functiorg(s) whose shiftsg(s + i), T € R, approximate every ana-
lytic target function uniformly on compact subsets of a airtregion. The first ex-
plicit example of such a function is the Riemann zeta-fuorcy (s); its approximation
property is called universality and was discovered by Vord28]. The modern ver-
sion of Voronin’s theorem is the following statement (andh dee found, for example,
in [12]):
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Theorem 1. Let K be a compact subset of the stfp =0 + it € C: 1/2 <
o < 1} with connected complemerand let f(s) be a continuous non-vanishing func-
tion on K which is analytic in the interior of K. Theffor everye > 0,

Iip inf % mea{r € [0, T]: sud¢(s+it)— f(s)] < e} > 0.

seK

Here we denote by meg&} the Lebesgue measure of a measurableAsetR.

This universality theorem of Voronin has immediate conseges. For instance, a
straightforward application yields many results conaggnihe distribution of values of
¢(s) due to the school of Harald Bohr in the first half of the twetiti century, though
their approach had been limited on approximation of constaather than functions
(e.g., [7]). Another corollary is the hypertranscendentghe zeta-function, meaning
that there is no non-trivial algebraic differential eqoatihavingz(s) as a solution; this
was already known by Hilbert (as follows from his famous &ddrat the ICM in Paris
in 1900), however, the first published proof seems to datd bacStadigh (cf. [25]).
Actually, with functional independence a much strongerpprty can be deduced from
universality: Given continuous functior, Fy,...,Fy, all defined onC"** and suppose
that not all identically zero, then

N
D SFRE(9), ¢(9)s -, £W() # 0

k=0

for somes € C (for a proof we refer to [28, 27]). Andersson [1] applied thei-u
versality theorem to disprove certain conjectures of Rdraadra. There is even an
application of the universality theorem to mathematicaygits (see [6]).

Voronin himself and others like Bagchi, Gonek, Reich, haxtereded and general-
ized Theorem 1 in various ways. In the meantime univers#tigorems like the above,
or variations thereof, are known for many different zetaLefunctions; e.g., Dedekind
zeta-functions, Lerch zeta-functions, Dirichletfunctions, to mention only a few; for
results, problems and references we refer to [2], [3], [102], [16], [27] as well as
to the survey papers [13], [19], and [20].

The universality of zeta-functions without Euler produdgtsich as Lerch zeta-
functions) has interesting applications to the distrimutof zeros of those zeta-functions
(see [16]). The connection between the universality andditsgibution of zeros of cer-
tain multiple zeta-functions has recently been studied akawura ([23], [24]). An
application of the universality to the class number problan be found in a paper of
Mishou and Nagoshi ([22]).

Maybe the most spectacular statement related to universalithat the Riemann
hypothesis £(s) # 0 for Res > 1/2) is true if, and only if, the zeta-function can ap-
proximate itself inside the strip/2 < Res < 1 (in the sense of Voronin's theorem).
The analogue for Dirichlet-functions to primitive characters of this equivalence was
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already proved by Bohr [8]; Bagchi [2] [4] used the univeityain order to extend this
result to the Riemann zeta-function as stated in the prevémmtence. Meanwhile, this
phenomenon and further examples of applications of uraligyshave been studied for
numerous generalizations of the Riemann zeta-function Rinidhlet L-functions. It
seems that universality is an outstanding and importaritifesof Dirichlet series.

Let F(2) be a normalized Hecke-eigen cusp form of weighfor the full modular
group with Fourier series expansion

F(2) = i c(me?m?  c(1) = 1.

m=1
The associated zeta-functiars, F) is defined by

(s, P =y A,

m=1

this Dirichlet series converges fer > (x + 1)/2 and¢(s, F) can be analytically con-
tinued to an entire function. In [17] it has been shown théd, F) is universal; in
this case,K needs to be a compact subset with connected complement dtripe
D=Dg={seC:«x/2<0 < (k+1)/2}.

In [14], it was shown that the derivative/(s, F) is also universal. That is, the
operator®: g — ¢ preserves the universality property fo(s, F). This phenomenon
suggests the problem of finding some set of operatgras large as possible, for which
the function®(¢(s, F)) satisfies the universality property. In the case of thenRien
zeta-functions (s) the problem has been discussed in [15].

A sufficiently wide class of operatod with the universality property fo® (¢ (s, F))
can be described as follows. For a regi@non the complex plane, denote by(G) the
space of analytic functions 08 endowed with the topology of uniform convergence on
compacta. Letr > 0. We say that the operatdr: H(D) — H(D) belongs to the class
Lip(«) if the following hypotheses are satisfied:
1° For each polynomiap = p(s), and every compact subsit C D with connected
complement, we can find an elemente ®~*{p} c H(D) such thatq(s) # 0 on K;
2° For every compact subsé& C D with connected complement, there exist a con-
stantc > 0 and a compact subsé&t; € D with connected complement, for which

?EUKH@(Ql(S)) — ®(92())| = ¢ sup|gu(s) — G(s)|”

seKy

holds for all g;, g2 € H(D).

Theorem 2. If ® € Lip(«), then the functionb(s (s, F)) is universal in the follow-
ing senselLet K be a compact subset of the strip D with connected congpigand let
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f(s) be a function continuous on K and analytic in the interior of K. Thdor every
e >0,

Q) lim inf % mea{r € [0, T]: sug®(¢(s+it, F))— f(s)] < s} > 0.

T—o0 seK

Note that it is not necessary to assume thég) is non-vanishing orK. The proof
of this theorem will be given in the next section, where wel wlso prove that the
aforementioned operatab: g — g’ is an element of Lip(1).

Now we introduce some other classes of operatdrsfor which the function
®(¢(s, F)) is universal. Let

S = {ge H(D): % € H(D) or g(s)zo}.

Denote byUg the class of continuous operatobs H(D) — H(D) such that, for every
open setG C H(D), the set ¢ 1G) N S is non-empty.

Theorem 3. For any ® € Ug, the function®(z(s, F)) is universa) in the same
sense as in the statement dheorem 2

The next theorem is similar to Theorem 3, but it is more commn LetV be an arbi-
trary positive number. DefinBy = Dgy ={s€C: k/2 <0 < (k +1)/2, |t| <V} and

SF,V = {g € H(Dv)l % € H(Dv) or g(S) = 0}

Consider the clastJg, of continuous operator®: H(Dy) — H(Dy) such that, for

each polynomialp = p(s), the set ©~1{p}) N Szv is non-empty. An example ob €
Ug,v will be given in the last section.

Theorem 4. Let K and f(s) be the same as iftheorem 2 Suppose that \# 0
is such that Kc Dy, and that® € Ugy. Then(1) holds for everys > 0.

Next we introduce a certain subset dfD), whose elements can be approximated
by the shifts®(¢(s+it, F)). Fora,...,a €C, let

Ho)ay,..a (D) = {g € H(D): (9(s) — ;) * € H(D), j =1,...,1} U{®(0)).
Denote byUg.,, 4 the class of continuous operatots: H(D) — H(D) such that

) ®(Sr) D Hooyay,...a (D).
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Theorem 5. Suppose thatb € Ug.g,. 4 -
(i) Let K C D be an arbitrary compact subsetnd f(s) € Hao(o)a,
holds for everys > 0.
(i) Whenr=1,let K C D be a compact subset with connected complepsrd let
f(s) be a continuous ang# a; function on K which is analytic in the interior of K.
Then (1) holds for everys > 0.

a (D). Then(1)

.....

The universality of the functions(s, F)N (N € N), e&F)| sin( (s, F)), cos¢(s,F))
etc. can be shown as special cases of this theorem. This pwdirie discussed in the
last section.

In general case, we have the following statement.

Theorem 6. Let ®: H(D) — H(D) be a continuous operatoK ¢ D be a com-
pact subsetand f(s) € ®(S¢). Then(1) holds for everyes > 0.

The universality theorem fot (s, F) proved in [17] was extended to the case of
newforms in [18], and further to the case of certain subctH#sSelberg class by [26],
[27]. It is plausible that the theorems in the present papeidcbe generalized to such
situations.

2. Proof of Theorem 2

Let K be a compact subset of the strip with connected complement, and let
f(s) be a continuous nonvanishing function #&h which is analytic in the interior of
K, ande > 0. By the Mergelyan theorem, there exists a polynonpigd) such that

@3) supf(s) - p(s)| < .
seK

By hypothesis 1 of the class Lipg), there exists an element € ®{p} c H(D)
satisfyingq(s) # 0 on K. Let t € R satisfy the inequality

1/
(4) supz(s+it, F)—q(s)| < c‘l/"‘(f) ,

seKq 2

where ¢ and K3, corresponding to the sé€, are those in hypothesis® 2f the class
Lip(a). Then, by 2, for t satisfying (4),

(5) SUR®(¢(s+it, F))— p(s)| < c suplc(s+it, F) —q(e)* < <.

seK seKq 2
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Sinceq(s) # 0 on K, we can apply the universality theorem fo¢s, F) ([17]) to find
that the set of those satisfying (4) is of positive lower density. Therefore, damng
with (5) we obtain

1
liminf = mea{r e [0, T]: sug®(¢(s+it, F))— p(s)| < E} > 0.
Tooo T seK 2
From this and (3), we find that
o1 .
liminf — mea{r € [0, T]: sug®(¢(s+it, F))— f(s)] < s} > 0.
T—oo T seK

This completes the proof of Theorem 2.

Next we show that the operatab: g — ¢ is in the class Lip(1). Letk be a
compact subset of the strip with connected complement. Choose an openGetnd
a compact subse; of D with connected complement such thétc G C K;. We
take a simple closed contour lying in K; \ G and enclosing the sdf. Then, by
Cauchy integral formula

1 [9(-%2

dl
7 ) z=s2 ¥

@(g1(s)) — P(02(9)) =
we find that, for alls € K,

®(01(s)) — P(g2(s)) = ¢ SuLngl(S) —®(E)=c Sl}iplgl(s) — G2(9)|
se SeKy
with somec = ¢(K, L) > 0. Thus, hypothesis©2is true with«o = 1. Obviously, hy-
pothesis 1 is also satisfied.

3. Lemmas

Now we prepare several lemmas necessary for the proof of réhen 3 to 6.
Voronin’s proof [28] of the universality for the Riemann adtunction is analytic and
based on the approximation @f(s) in mean by finite Euler products. There exists
another way for the proof of universality theorems due to d@d2] which applies
probabilistic limit theorems in the space of analytic fuons to zeta-functions. De-
note by B(X) the class of Borel sets of the spaxe and letP and P,, n € N, be
probability measures onX( 5(X)). We remind thatP, is said to converge weakly to
P asn — oo if, for every real bounded continuous functitmon X,

Iim/thnthdP.
n—o00 X X

There exist some equivalents of the weak convergence ofapiiily measures. The
following one will be useful for us.
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Lemma 7. P, converges weakly to P as-» oo if and only if for every open
set GC X,

lim inf Py(G) = P(G).

This lemma is a part of Theorem 2.1 from [5].
In [17], the universality of the functiorg(s, F) has been obtained by using the
weak convergence of the probability measure

Prv(A) ":ef% meagr € [0, T]: ¢(s+iz, F) € A}, Ae B(H(Dv)),

as T — oo. We will also deduce the universality fab(z(s, F)) from the weak con-
vergence of

Pr.o(A) dze‘% measr € [0, T]: ®(c(s+it, F)) € Al, Ae B(H(D)),

asT — oo.

Now we remind a simple but useful result from the theory of kveanvergence
of probability measures. LeX; and X, be two metric spaces, and lbt X; — X, be
a (B(X1), B(X3))-measurable function, i.e.,

h™*B(X2) C B(Xy).

Then every probability measur@ on (X1, 5(X1)) induces the unique probability meas-
ure Ph™t on (X», B(Xy)) defined by Ph1)(A) = P(h~tA), A € B(X;). Note that if
the functionh is continuous, then it is(X1), B(Xy))-measurable.

Lemma 8. Suppose that P and,Pn € N, are probability measures ofX1,B8(X1)),
and that the function hX; — X is continuous. If P converges weakly to P as-+# oo,
then also Rh~! converges weakly to P as n— oo.

This lemma is a corollary of a more general Theorem 5.1 of [5].
Denote byy the unit circle{s € C: |s| = 1}, and define the torus

an)’pa
p

where y, = y for each primep. By the Tikhonov theorem, with the product topology
and pointwise multiplication the infinite-dimensional uer2 is a compact topological
Abelian group. Thus, the probability Haar measung on (2, 5(2)) exists, and we
have a probability space(B3(2),my). Let w(p) denote the projection ab € 2 to the
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coordinate spacgp. On the probability space), B(R2), my), define theH (D)-valued
random element (s, w, F) by the Euler product

£(s o, F):l‘[(y%) (1_/3(P)pcso(p)) |
p

where a(p) and B(p) are conjugate complex numbers satisfyagp) + B(p) = c(p).
In view of the Deligne estimates

le(p)| < p“ /2, 1B(p)| < ptTIV2,

the latter infinite product, for almost alb € 2, converges uniformly on compact sub-
sets of the stripD ([11]), and thus, it defines ahl(D)-valued random element. Denote
by P, the distribution ofz (s, w, F), i.e.,

P(A) =my(w e Q:¢(s, 0, F) € A), Ae B(H(D)).
Lemma 9. The probability measure

Pr(A) “:ef% measr € [0, T]: ¢(s+it, F) e A}, Ae B(H(D)),

converges weakly toPas T — oo.
Proof of the lemma is given in [11].

Lemma 10. Suppose thatb: H(D) — H(D) is a continuous operator. Then the
probability measure Py converges weakly to the distribution & of the random elem-
ent®(¢(s, w, F)) as T— oo.

Proof. This lemma is an immediate consequence of Lemmas 93anad fact,
we have thatPr 4 = Pr®~1. Therefore, the continuity of, and Lemmas 9 and 8
imply the weak convergence d¥® ! to P,® ! as T — oco. On the other hand, by
the definition of P.®~1, we find that, forA € B(H(D)),
(P, 1) (A) = P(®7IA) = my(w € Q: ¢(s, 0, F) € 71A)
=My(w € Q: D(4(s, w, F)) € A),

and thus,P, @~ is the distribution of the random eleme®(¢ (s, w, F)). ]

ForV > 0, denote byPry andP; vy the restrictions to the spackl (Dy),5(H(Dv)))
of the measure®r and P, respectively.
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Lemma 11. For every V> 0, the probability measure R, converges weakly to
P;-’V as T — oo.

This lemma is proved in [17].
For V > 0, denote byPr o v andiy(s, o, F) the restrictions to the spacél(Dy),
B(H(Dy))) of the measurePr o and of the random elemeagt(s, w, F), respectively.

Lemma 12. Suppose tha®: H(Dy) — H(Dy) is a continuous function. Then the
probability measure Py converges weakly to the distribution of the random element
D(ey(s, o, F)) as T — oco.

Proof. This lemma is deduced from Lemmas 11 and 8 in the sanyeawahe
proof of Lemma 10. ]

The next step of the probabilistic method for the proof ofvensality is an identifi-
cation of supports of the limit measures in limit theoremshea space of analytic func-
tions. LetS be a separable metric space, dade a probability measure or5,(B(9)).
We remind that the minimal closed s& C S such thatP(Sp) = 1 is called the sup-
port of the measur®. The support of the distribution of a random elem&nis called
the support of that element and is written $s.

Lemma 13. The support of the random elemeni(s, w, F) is the set 8y.

This lemma is proved in [17]. It is to be noted that a new metftb@ positive
density method) was applied for the proof of this lemma.

Lemma 14. The support of the random elemer(s, w, F) is the set §.

Proof. In [17], for the proof of Lemma 13, the spaegDy) (with notation Dy
in place of Dy) is used only in the proof of Lemma 6 from [17]. This is applifed
the estimate

oiy) = e [ dan i@y
C

where

0(2) = /«: eSZduh™i(s), zecC,

and uh~! is a complex measure with compact support containegsiaC: 1/2 < o <
1, |t| < V}. Since the support ofth~ is compact, there exists a finite numbér > 0
such that

o(xiy)] < e / duh™4(9).
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The remaining part of the proof is the same as that in the podbdfemma 13. [

Lemma 15. Suppose thatd € Ug. Then the support of the random element
®(¢(s, w, F)) is the whole of HD).

Proof. Letg be an arbitrary element dfi (D), and G be an open neighbourhood
of g. In view of the continuity of®, we have that the seb—'G is open as well.
The definition of the clas®Jg shows that there exists an elemante S which is
an element ofb~1G. This means tha® G is an open neighbourhood of the element
01 Since the support of the random elemefd, », F) consists of all elementg; such
that, for every open neighbourhodsl of g;, the inequalityP,(G) > 0 is satisfied, we
have, by Lemma 14, that

Mu(w € Q: (s, w, F) € 1G) > 0.
Therefore,

My (w € Q: ®(S, w, F) € G) =my(w € Q: (S, w, F) € d71G) > 0.
Sinceg and G are arbitrary, this proves the lemma. ]

Lemma 16. Suppose thatb € Ugy. Then the support of the random element
®(¢v(s, w, F)) is the whole of HDy).

Proof. We argue similarly to the proof of Lemma 15. Ilgbe an arbitrary elem-
ent of H(Dy), and G be any open neighbourhood ¢f Then ®~1G is also an open
set. We have to prove that the s@(¢G) N Sty is non-empty.

The spaceH(Dy) is metrisable. It is known (see, for example, [9]) that ¢her
exists a sequencg,: n € N} of compact subsets dDy such that

o0
Dv = [J Kn,
n=1

Knh C Knyp for all n e N, and if K is a compact subset dy, thenK c K, for some
n € N. Then we have that

o0

L& supa |9 g(o)
9= T fe—g@ 9OV

n=1

is a metric onH (Dy) which induces the topology of uniform convergence on cortgpa
Let ¢ > 0 be an arbitrary fixed number. We fiy € N such that

n €
(6) Y2 <3

n>ng
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Now if

sup| f(s) — g(s)] < g

se l<nO

then, in view of the relatiorK,, C K1, n € N, we have that

supl £ (s) — 9(9)] <

seKp

foralln=1,...,n This and (6) show that

No

L SUR ) - ) )
f, g) = 2" n + 2" )
9= 2 e —ae T2 <

Thus, the functiong approximates a functiorf with a given accuracy irH(Dy) if

g approximatesf with a suitable accuracy uniformly oK, for sufficiently largen.
Clearly, the setK, can be chosen so as to be with connected complements. There-
fore, in the spaceH(Dy), we can restrict our consideration only to approximation o
compact subsets with connected complements.

Let K ¢ Dy be a compact subset with connected complement. Then, by the
Mergelyan theorem, there exists a polynomjal= p(s) which approximatesj uni-
formly on K with desired accuracy. Therefore, singec G, we may assume that
p € G, too. Since® € Ugy, we have that the set®('{p}) N Sty is non-empty.
Therefore, ¢1G) N Srv # @. Hence, using Lemma 13, we find that

My (w € 2: ®(¢v (s, o, F)) € G) > 0,
and the lemma is proved. O

Lemma 17. Suppose thatb € Ug.,,, 5. Then the support & of the random
element®(¢ (s, w, F)) includes the closure of the seteld)a,,....a (D).

Proof. The definition (2) of the clas®)g.,,,. .5 shows that, for eachy e
Ho0)a....a (D), there exists an elemeni € S such that®(g;) = g. Hence, for every
open neighbourhoo® of g € Ho)a,,...a (D), in view of Lemma 14,

My (w € Q: D((S, w, F)) € G) =my(w € Q: (S, @, F) € d1G) > 0.

This implies thatg € S ¢, SO Ho@)a,...a (D) is, and hence its closure is, a subset
of qu;. O

REMARK. If, instead of (2), the stronger condition

(7) CD(SF) = H<I>(0):a1 ..... a(D)
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a (D). In fact, by (7) we have

.....

holds, thenS; ¢ coincides with the closure ofie(oya,
S C @ Y(Ho(ya;,..5 (D)), and hence

Mu(w € Q: P(¢(s, @, F)) € HoE)a,..a (D)) = My(w € Q: ¢(S, w, F) € S),

but the right-hand side is equal to 1 by Lemma 14, hence
My (w € Q: P(¢(s, w, F)) € Ho©)ay,...a (D)) = 1.

Because of the minimality of the support, this implies tBat is a subset of the clos-
ure of Ho(oyay,....a (D).

4. Proofs of Theorems 3 to 6

Proof of Theorem 3. By the Mergelyan theorem, there exists lgnpmial p(s)
such that

®) supf(s) - p(S)l < 5.
seK
We take the open subset
G = {h € H(D): sugh(s) — p(s)| < g}
seK

of the spaceH (D). Recall thatP; o denotes the distribution of the random element
(¢ (s, w, F)). We find, by Lemmas 10 and 7, that

9 Iip inf % meagr € [0, T]: ®(¢(s+it, F)) e g} = Iip inf Pr (G) = P:,o(G).
In virtue of Lemma 15, the polynomiap(s) belongs to the support of the random

element®(¢(s,w, F)). Therefore, sincg is an open neighbourhood @i(s), a property
of the support implies the inequality; (G) > 0. This together with (9) shows that

“'Inliorlf % mea{r €[0, T]: |®(¢(s+it, F))— p(s)| < %} > 0.

Combining this with (8) proves the theorem. [l

Proof of Theorem 4. We use Lemmas 12, 7, and 16, and repeatrghenants
of the proof of Theorem 3. O

Proof of Theorem 5. (i) Put

G1= {g € H(D): SUKHQ(S) —pE)| < 6}-
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By the hypotheses of the theorem, the functios) belongs toHs(0).4,,....a (D), thus, by
Lemma 17, it is an element of the support of the mea&ure. Therefore,P; ¢(G1) > 0,
and Lemmas 10 and 7 show that

lim inf 1 mea{r €[0, T]: sup®(¢(s+it, F))— f(s)| < s}
Tooo T seK
> P ¢(G1) > 0.

(i) Now suppose that = 1. By the Mergelyan theorem, there exists a poly-
nomial p(s) such that

(10) supf(s) — ps)| < %.
seK

Since f(s) # a3 on K, we have thatp(s) # a; on K as well if ¢ is small enough.
Therefore, we can define a continuous branch of p¢g)(— a;) which will be an ana-
lytic function in the interior of K. By the Mergelyan theorem again, there exists a
polynomial pi(s) such that

(11) supp(s) — a; — e”®| < %

seK

Let
hal(s) = epl(s) + a1.

Then h,,(s) € H(D), and hy,,(s) # a;. Therefore, by Lemma 17, the functidn, (s) is
an element of the support of the random elem@i (s, w, F)). Moreover, it follows
from (10) and (11) that

(12) supf(s) — ha ()] < =
seK 2

Define
I

G2 = {9 < H(D): supgls) - o) < 5.
seK

Then we have thaP; ¢(G,) > 0, and hence Lemmas 10 and (10) yield
o1 . e
I@ inf T mea{r € [0, T]: [®((s+it, F)) —hg(s)] < E} > 0.

Combining this with (12), we obtain the assertion. [

Proof of Theorem 6. It is not difficult to see that the sup@®rt, of the measure
P: .o is the closure of®(S:). In fact, if g is an arbitrary element ob(Sg), and G is
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its any open neighbourhood, then by Lemma 14 we have that

My (w € Q: (S, w, F) € ®71G) > 0.
Hence,

My (w € 2: ®(L(S, w, F)) € G) > 0.
Moreover, by Lemma 14,

My (w € Q: BC(s, », F)) € &(SE)) = Mu(w € Q: ¢(s, o, F) € S) = 1.

Thus the supporg ¢ is the closure of the seb(Sg).
The rest of the proof is the same as that of Theorem 5 (i). ]

5. Examples

We conclude this paper with giving several explicit exarapdé operators satisfy-
ing the assumptions of our theorems.

(I) First we give an example o € Ugy, hence Theorem 4 can be applied to
this .

For g € H(Dy), let

d@) =cg +---+69", c,..., ¢ eC\{O0.

In virtue of the Cauchy integral formula, the functi@n is continuous. Moreover, for
each polynomialp = p(s), there exists a polynomial = q(s), q € ® *{p}, andq(s) #
0 for s e Dy. In fact, let

p(s) = ap + &S+ + as, a #0.
We take

a(s) = bo + bys + -+ + b 1S, g #O.
Then, in the case <k + 1,

q'(s) = by + 20,8 + - -+ + (K + )by 8%,

q’(s) = 20p + -+ - + (k + 1)kbe 15571,

qO(S) =y 4+ (K4 Dk - (K= + 2oy g8+,

Thus, the equatiord(q) = p implies

ciby + 2cibys + - - - + (k + 1)Clbk+1Sk
+ 2Cobp + - - - 4 (K + Lk 18T + -+
+rich 4o+ K42k (k—r 4+ 2)c b8
=2+ s+ +as
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Hence,

(k + 1cibyr = &,
kcibg + (kK + Lkebyg 1 = ax_1,

ciby +2coby + -+ +rl b = ap.

The case > k41 is considered similarly. So, in any case, we may deternfieeco-
efficientsby,...,bc 1. After this procedure, we may choobg to be |bg| large enough,
so thatq(s) # 0 for s € Dy.

(I) Next we give several explicit examples of Theorems 5 &ndirst, consider
the operatord: g — gN (N € N). Then®(0) = 0. If f € H(D) is non-vanishing on
D, then we can find a solutiog € S such that®(g) = f, that is,g = ¥/ f. There-
fore ® € Ug. Applying Theorem 5 withr = 1, a; = 0, we obtain the universality
of ¢(s, F)N.

The second example i®: g — gg. In this case we have to solve the equation
(9%(s)) = f(s) (f € H(D)) in g € S. Thus,g%(s) = fi(s), where fi(s) € H(D) is a
primitive function of f(s). If fi(s) # 0 on D, we can solve this equation ags) =
/ f1(s). Thereforef € ®(S) and Theorem 6 can be applied to obtain the universality
of ¢(s, F)¢'(s, F).

Thirdly consider®: g — €9. Then ®(0) = 1. We apply Theorem 5 with = 2,
=0 a=1 If feH(D) does not take the values 0, 1 d», then ®(g) = f
has the solutiong = log f (where we may choose an arbitrary branch of the loga-
rithm, but we require that it is continuous d), andg is non-vanishing orD. Hence
ge S, and sod € Ug 1. Therefore Theorem 5 gives the universality ef>") for
f € Hyo,1(D). _ _

Finally we discuss trigonometric functions. Considerg — cosg = (€9+¢e7'9)/2.
Then ®(0) = 1. We apply Theorem 5 with =2, &y =1, ap = —1. If f € Hy.1_1(D),
we can choose the solution

g= % log(f + (f? —1)Y?)

for ®(g) = f. In fact, sincef does not take the valuesl, the term 2 — 1)/? is

well-defined. Alsof +(f2—1)/2+# 0 (because it= 0, then (f?—1)? = —f, so f2—

1 = f2, a contradiction). Thereforg is well-defined. Since&g9 = f + (f?—1)%2 and
1

0= = f—(f2-1)2
e T (e (=17

we find cog = f. Moreover f +(f2—1)Y/2 # 1 (because if= 1, then (f2—1)Y2 = 1—
f, hencef = 1, which contradicts the assumption), ge& S=. Therefore® € Ug.1 4,

and cos{(s, F)) has the universality property fof € Hi1_1(D). Similarly we can
prove the universality of sig(s, F)), and also of sint{((s, F)) and cosh{(s, F)).
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REMARK. (i) In the cased: g — gV, the stronger condition (7) holds (see the

remark at the end of Section 3).

(i) In the cased: g — €9, to apply Theorem 5 we assume in the above thed) #

0, 1 on D. However, if we restrict our consideration to the case of pact K with
connected complement, it is possible to remove the lattsuraption f (s) # 1. In fact,
instead ofg = log f we can choosg = log f +27ik (k € N) as a solution ofd(g) =

f. For any compacK, it is possible to findk = k(K) for which log f + 2zik # 0 on

K. SinceK is with connected complement, by the universality theorgti]{ we find

t for which |¢(s+ iz, F) — (log f(s) + 27ik)| is small onK, hence|eH™F) — f(s)|

is also small onK.
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