
Laurinčikas, A., Matsumoto, K. and Steuding, J.
Osaka J. Math.
50 (2013), 1021–1037

UNIVERSALITY OF SOME FUNCTIONS RELATED TO
ZETA-FUNCTIONS OF CERTAIN CUSP FORMS
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Abstract
It is well-known that the zeta-function� (s, F) attached to a normalized Hecke-

eigen cusp formF of weight � is universal in the sense that their shifts� (sC i � , F)
with appropriate� 2 R approximate any analytic function uniformly on compact sub-
sets of the strip{sD � C i t 2 C W �=2 < � < (� C 1)=2} with any prescribed accu-
racy. In this paper we consider some classes of operators8 such that the function
8(� (s, F)) is universal in the above sense. In particular, this implies the universality
of the functions, for example,� (s, F)N (N-th power) and� (N)(s, F) (N-th derivative)
with N 2 N, e� (s,F), sin� (s, F), and cos� (s, F).

1. Introduction and statement of results

Approximation theory of analytic functions has a long and rich history. One fun-
damental result in this field is Mergelyan’s theorem [21], seealso [29]. It asserts that
every continuous functionf (s) on a compact setK � C with connected complement
which is analytic in the interior ofK can be approximated to any accuracy uniformly
on K by polynomials insD � C i t . That is, for every" > 0, there exists a polynomial
p(s) such that

sup
s2K
j f (s) � p(s)j < ".

Examples show that the requirements onf (s) and K cannot be weakened. Thus,
Mergelyan’s theorem gives a necessary and sufficient condition for approximation of
analytic functions by polynomials. It turned out that not only polynomials, but also
some other type of functions come into play in the above approximation problem:
there exists a functiong(s) whose shiftsg(s C i � ), � 2 R, approximate every ana-
lytic target function uniformly on compact subsets of a certain region. The first ex-
plicit example of such a function is the Riemann zeta-function � (s); its approximation
property is called universality and was discovered by Voronin [28]. The modern ver-
sion of Voronin’s theorem is the following statement (and can be found, for example,
in [12]):
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Theorem 1. Let K be a compact subset of the strip{s D � C i t 2 C W 1=2 <
� < 1} with connected complement, and let f(s) be a continuous non-vanishing func-
tion on K which is analytic in the interior of K . Then, for every" > 0,

lim inf
T!1

1

T
meas

�

� 2 [0, T ] W sup
s2K
j� (sC i � ) � f (s)j < "

�

> 0.

Here we denote by meas{A} the Lebesgue measure of a measurable setA � R.
This universality theorem of Voronin has immediate consequences. For instance, a

straightforward application yields many results concerning the distribution of values of
� (s) due to the school of Harald Bohr in the first half of the twentieth century, though
their approach had been limited on approximation of constants rather than functions
(e.g., [7]). Another corollary is the hypertranscendence of the zeta-function, meaning
that there is no non-trivial algebraic differential equation having� (s) as a solution; this
was already known by Hilbert (as follows from his famous address at the ICM in Paris
in 1900), however, the first published proof seems to date back to Stadigh (cf. [25]).
Actually, with functional independence a much stronger property can be deduced from
universality: Given continuous functionsF0,F1,:::,FN , all defined onCnC1 and suppose
that not all identically zero, then

N
X

kD0

sk Fk(� (s), � (s)0, : : : , � (n)(s)) ¤ 0

for some s 2 C (for a proof we refer to [28, 27]). Andersson [1] applied the uni-
versality theorem to disprove certain conjectures of Ramachandra. There is even an
application of the universality theorem to mathematical physics (see [6]).

Voronin himself and others like Bagchi, Gonek, Reich, have extended and general-
ized Theorem 1 in various ways. In the meantime universalitytheorems like the above,
or variations thereof, are known for many different zeta- orL-functions; e.g., Dedekind
zeta-functions, Lerch zeta-functions, DirichletL-functions, to mention only a few; for
results, problems and references we refer to [2], [3], [10],[12], [16], [27] as well as
to the survey papers [13], [19], and [20].

The universality of zeta-functions without Euler products(such as Lerch zeta-
functions) has interesting applications to the distribution of zeros of those zeta-functions
(see [16]). The connection between the universality and thedistribution of zeros of cer-
tain multiple zeta-functions has recently been studied by Nakamura ([23], [24]). An
application of the universality to the class number problemcan be found in a paper of
Mishou and Nagoshi ([22]).

Maybe the most spectacular statement related to universality is that the Riemann
hypothesis (� (s) ¤ 0 for Res > 1=2) is true if, and only if, the zeta-function can ap-
proximate itself inside the strip 1=2 < Res < 1 (in the sense of Voronin’s theorem).
The analogue for DirichletL-functions to primitive characters of this equivalence was
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already proved by Bohr [8]; Bagchi [2] [4] used the universality in order to extend this
result to the Riemann zeta-function as stated in the previous sentence. Meanwhile, this
phenomenon and further examples of applications of universality have been studied for
numerous generalizations of the Riemann zeta-function andDirichlet L-functions. It
seems that universality is an outstanding and important feature of Dirichlet series.

Let F(z) be a normalized Hecke-eigen cusp form of weight� for the full modular
group with Fourier series expansion

F(z) D
1

X

mD1

c(m)e2� imz, c(1)D 1.

The associated zeta-function� (s, F) is defined by

� (s, F) D
1

X

mD1

c(m)

ms
I

this Dirichlet series converges for� > (� C 1)=2 and � (s, F) can be analytically con-
tinued to an entire function. In [17] it has been shown that� (s, F) is universal; in
this case,K needs to be a compact subset with connected complement of thestrip
D D DF D {s 2 C W �=2< � < (� C 1)=2}.

In [14], it was shown that the derivative� 0(s, F) is also universal. That is, the
operator8 W g! g0 preserves the universality property for� (s, F). This phenomenon
suggests the problem of finding some set of operators8, as large as possible, for which
the function8(� (s, F)) satisfies the universality property. In the case of the Riemann
zeta-function� (s) the problem has been discussed in [15].

A sufficiently wide class of operators8 with the universality property for8(� (s,F))
can be described as follows. For a regionG on the complex plane, denote byH (G) the
space of analytic functions onG endowed with the topology of uniform convergence on
compacta. Let� > 0. We say that the operator8 W H (D)! H (D) belongs to the class
Lip(�) if the following hypotheses are satisfied:
1Æ For each polynomialp D p(s), and every compact subsetK � D with connected
complement, we can find an elementq 2 8�1{p} � H (D) such thatq(s) ¤ 0 on K ;
2Æ For every compact subsetK � D with connected complement, there exist a con-
stantc > 0 and a compact subsetK1 � D with connected complement, for which

sup
s2K
j8(g1(s)) �8(g2(s))j � c sup

s2K1

jg1(s) � g2(s)j�

holds for all g1, g2 2 H (D).

Theorem 2. If 8 2 Lip(�), then the function8(� (s, F)) is universal in the follow-
ing sense: Let K be a compact subset of the strip D with connected complement, and let
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f (s) be a function, continuous on K and analytic in the interior of K . Then, for every
" > 0,

(1) lim inf
T!1

1

T
meas

�

� 2 [0, T ] W sup
s2K
j8(� (sC i � , F)) � f (s)j < "

�

> 0.

Note that it is not necessary to assume thatf (s) is non-vanishing onK . The proof
of this theorem will be given in the next section, where we will also prove that the
aforementioned operator8 W g! g0 is an element of Lip(1).

Now we introduce some other classes of operators8 for which the function
8(� (s, F)) is universal. Let

SF D

�

g 2 H (D) W
1

g(s)
2 H (D) or g(s) � 0

�

.

Denote byUF the class of continuous operators8W H (D)! H (D) such that, for every
open setG � H (D), the set (8�1G) \ SF is non-empty.

Theorem 3. For any 8 2 UF , the function8(� (s, F)) is universal, in the same
sense as in the statement ofTheorem 2.

The next theorem is similar to Theorem 3, but it is more convenient. LetV be an arbi-
trary positive number. DefineDV D DF,V D {s 2 C W �=2< � < (�C1)=2, jt j < V} and

SF,V D

�

g 2 H (DV ) W
1

g(s)
2 H (DV ) or g(s) � 0

�

.

Consider the classUF,V of continuous operators8 W H (DV ) ! H (DV ) such that, for
each polynomialpD p(s), the set (8�1{p})\ SF,V is non-empty. An example of8 2
UF,V will be given in the last section.

Theorem 4. Let K and f(s) be the same as inTheorem 2. Suppose that V> 0
is such that K� DV , and that8 2 UF,V . Then(1) holds for every" > 0.

Next we introduce a certain subset ofH (D), whose elements can be approximated
by the shifts8(� (sC i � , F)). For a1, : : : , ar 2 C, let

H
8(0)Ia1,:::,ar (D) D {g 2 H (D) W (g(s) � a j )

�1
2 H (D), j D 1, : : : , r } [ {8(0)}.

Denote byUF Ia1,:::,ar the class of continuous operators8 W H (D)! H (D) such that

8(SF ) � H
8(0)Ia1,:::,ar (D).(2)
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Theorem 5. Suppose that8 2 UF Ia1,:::,ar .
(i) Let K � D be an arbitrary compact subset, and f(s) 2 H

8(0)Ia1,:::,ar (D). Then (1)
holds for every" > 0.
(ii) When rD 1, let K � D be a compact subset with connected complement, and let
f (s) be a continuous and¤ a1 function on K which is analytic in the interior of K .
Then (1) holds for every" > 0.

The universality of the functions� (s,F)N (N 2N), e� (s,F), sin(� (s,F)), cos(� (s,F))
etc. can be shown as special cases of this theorem. This pointwill be discussed in the
last section.

In general case, we have the following statement.

Theorem 6. Let 8W H (D)! H (D) be a continuous operator, K � D be a com-
pact subset, and f(s) 2 8(SF ). Then(1) holds for every" > 0.

The universality theorem for� (s, F) proved in [17] was extended to the case of
newforms in [18], and further to the case of certain subclassof Selberg class by [26],
[27]. It is plausible that the theorems in the present paper could be generalized to such
situations.

2. Proof of Theorem 2

Let K be a compact subset of the stripD with connected complement, and let
f (s) be a continuous nonvanishing function onK which is analytic in the interior of
K , and " > 0. By the Mergelyan theorem, there exists a polynomialp(s) such that

(3) sup
s2K
j f (s) � p(s)j <

"

2
.

By hypothesis 1Æ of the class Lip(�), there exists an elementq 2 8�1{p} � H (D)
satisfyingq(s) ¤ 0 on K . Let � 2 R satisfy the inequality

(4) sup
s2K1

j� (sC i � , F) � q(s)j < c�1=�

�

"

2

�1=�

,

where c and K1, corresponding to the setK , are those in hypothesis 2Æ of the class
Lip(�). Then, by 2Æ, for � satisfying (4),

(5) sup
s2K
j8(� (sC i � , F)) � p(s)j � c sup

s2K1

j� (sC i � , F) � q(s)j� <
"

2
.
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Sinceq(s) ¤ 0 on K , we can apply the universality theorem for� (s, F) ([17]) to find
that the set of those� satisfying (4) is of positive lower density. Therefore, combining
with (5) we obtain

lim inf
T!1

1

T
meas

�

� 2 [0, T ] W sup
s2K
j8(� (sC i � , F)) � p(s)j <

"

2

�

> 0.

From this and (3), we find that

lim inf
T!1

1

T
meas

�

� 2 [0, T ] W sup
s2K
j8(� (sC i � , F)) � f (s)j < "

�

> 0.

This completes the proof of Theorem 2.
Next we show that the operator8 W g ! g0 is in the class Lip(1). LetK be a

compact subset of the stripD with connected complement. Choose an open setG and
a compact subsetK1 of D with connected complement such thatK � G � K1. We
take a simple closed contourL lying in K1 n G and enclosing the setK . Then, by
Cauchy integral formula

8(g1(s)) �8(g2(s)) D
1

2� i

Z

L

g1(z) � g2(z)

(z� s)2
dz,

we find that, for alls 2 K ,

8(g1(s)) �8(g2(s)) � c sup
s2L
jg1(s) � g2(s)j � c sup

s2K1

jg1(s) � g2(s)j

with somec D c(K , L) > 0. Thus, hypothesis 2Æ is true with � D 1. Obviously, hy-
pothesis 1Æ is also satisfied.

3. Lemmas

Now we prepare several lemmas necessary for the proof of Theorems 3 to 6.
Voronin’s proof [28] of the universality for the Riemann zeta-function is analytic and
based on the approximation of� (s) in mean by finite Euler products. There exists
another way for the proof of universality theorems due to Bagchi [2] which applies
probabilistic limit theorems in the space of analytic functions to zeta-functions. De-
note byB(X) the class of Borel sets of the spaceX, and let P and Pn, n 2 N, be
probability measures on (X, B(X)). We remind thatPn is said to converge weakly to
P as n!1 if, for every real bounded continuous functionh on X,

lim
n!1

Z

X
h dPn D

Z

X
h dP.

There exist some equivalents of the weak convergence of probability measures. The
following one will be useful for us.
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Lemma 7. Pn converges weakly to P as n!1 if and only if, for every open
set G� X,

lim inf
n!1

Pn(G) � P(G).

This lemma is a part of Theorem 2.1 from [5].
In [17], the universality of the function� (s, F) has been obtained by using the

weak convergence of the probability measure

PT,V (A)
def
D

1

T
meas{� 2 [0, T ] W � (sC i � , F) 2 A}, A 2 B(H (DV )),

as T ! 1. We will also deduce the universality for8(� (s, F)) from the weak con-
vergence of

PT,8(A)
def
D

1

T
meas{� 2 [0, T ] W 8(� (sC i � , F)) 2 A}, A 2 B(H (D)),

as T !1.
Now we remind a simple but useful result from the theory of weak convergence

of probability measures. LetX1 and X2 be two metric spaces, and lethW X1! X2 be
a (B(X1), B(X2))-measurable function, i.e.,

h�1B(X2) � B(X1).

Then every probability measureP on (X1,B(X1)) induces the unique probability meas-
ure Ph�1 on (X2, B(X2)) defined by (Ph�1)(A) D P(h�1A), A 2 B(X2). Note that if
the functionh is continuous, then it is (B(X1), B(X2))-measurable.

Lemma 8. Suppose that P and Pn, n 2 N, are probability measures on(X1,B(X1)),
and that the function hW X1! X2 is continuous. If Pn converges weakly to P as n!1,
then also Pnh�1 converges weakly to Ph�1 as n!1.

This lemma is a corollary of a more general Theorem 5.1 of [5].
Denote by
 the unit circle{s 2 C W jsj D 1}, and define the torus

� D

Y

p


p,

where
p D 
 for each primep. By the Tikhonov theorem, with the product topology
and pointwise multiplication the infinite-dimensional torus � is a compact topological
Abelian group. Thus, the probability Haar measuremH on (�, B(�)) exists, and we
have a probability space (�,B(�),mH ). Let !(p) denote the projection of! 2 � to the
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coordinate space
p. On the probability space (�, B(�), mH ), define theH (D)-valued
random element� (s, !, F) by the Euler product

� (s, !, F) D
Y

p

�

1�
�(p)!(p)

ps

�

�1�

1�
�(p)!(p)

ps

�

�1

,

where�(p) and �(p) are conjugate complex numbers satisfying�(p) C �(p) D c(p).
In view of the Deligne estimates

j�(p)j � p(��1)=2, j�(p)j � p(��1)=2,

the latter infinite product, for almost all! 2 �, converges uniformly on compact sub-
sets of the stripD ([11]), and thus, it defines anH (D)-valued random element. Denote
by P

�

the distribution of� (s, !, F), i.e.,

P
�

(A) D mH (! 2 � W � (s, !, F) 2 A), A 2 B(H (D)).

Lemma 9. The probability measure

PT (A)
def
D

1

T
meas{� 2 [0, T ] W � (sC i � , F) 2 A}, A 2 B(H (D)),

converges weakly to P
�

as T!1.

Proof of the lemma is given in [11].

Lemma 10. Suppose that8 W H (D)! H (D) is a continuous operator. Then the
probability measure PT,8 converges weakly to the distribution P

� ,8 of the random elem-
ent8(� (s, !, F)) as T!1.

Proof. This lemma is an immediate consequence of Lemmas 9 and8. In fact,
we have thatPT,8 D PT8

�1. Therefore, the continuity of8, and Lemmas 9 and 8
imply the weak convergence ofPT8

�1 to P
�

8

�1 as T !1. On the other hand, by
the definition of P

�

8

�1, we find that, forA 2 B(H (D)),

(P
�

8

�1)(A) D P
�

(8�1A) D mH (! 2 � W � (s, !, F) 2 8�1A)

D mH (! 2 � W 8(� (s, !, F)) 2 A),

and thus,P
�

8

�1 is the distribution of the random element8(� (s, !, F)).

For V > 0, denote byPT,V andP
� ,V the restrictions to the space (H (DV ),B(H (DV )))

of the measuresPT and P
�

, respectively.
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Lemma 11. For every V> 0, the probability measure PT,V converges weakly to
P
� ,V as T!1.

This lemma is proved in [17].
For V > 0, denote byPT,8,V and �V (s,!, F) the restrictions to the space (H (DV ),

B(H (DV ))) of the measurePT,8 and of the random element� (s, !, F), respectively.

Lemma 12. Suppose that8W H (DV )! H (DV ) is a continuous function. Then the
probability measure PT,8,V converges weakly to the distribution of the random element
8(�V (s, !, F)) as T!1.

Proof. This lemma is deduced from Lemmas 11 and 8 in the same way as the
proof of Lemma 10.

The next step of the probabilistic method for the proof of universality is an identifi-
cation of supports of the limit measures in limit theorems inthe space of analytic func-
tions. Let S be a separable metric space, andP be a probability measure on (S,B(S)).
We remind that the minimal closed setSP � S such thatP(SP) D 1 is called the sup-
port of the measureP. The support of the distribution of a random elementX is called
the support of that element and is written asSX .

Lemma 13. The support of the random element�V (s, !, F) is the set SF,V .

This lemma is proved in [17]. It is to be noted that a new method(the positive
density method) was applied for the proof of this lemma.

Lemma 14. The support of the random element� (s, !, F) is the set SF .

Proof. In [17], for the proof of Lemma 13, the spaceH (DV ) (with notation DN

in place of DV ) is used only in the proof of Lemma 6 from [17]. This is appliedfor
the estimate

j�(�iy)j � eV y
Z

C

jd�h�1(s)j, y!1,

where

�(z) D
Z

C

e�sz d�h�1(s), z 2 C,

and�h�1 is a complex measure with compact support contained in{s 2 CW 1=2< � <
1, jt j < V}. Since the support of�h�1 is compact, there exists a finite numberV1 > 0
such that

j�(�iy)j � eV1y
Z

C

jd�h�1(s)j.
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The remaining part of the proof is the same as that in the proofof Lemma 13.

Lemma 15. Suppose that8 2 UF . Then the support of the random element
8(� (s, !, F)) is the whole of H(D).

Proof. Let g be an arbitrary element ofH (D), and G be an open neighbourhood
of g. In view of the continuity of8, we have that the set8�1G is open as well.
The definition of the classUF shows that there exists an elementg1 2 SF which is
an element of8�1G. This means that8�1G is an open neighbourhood of the element
g1. Since the support of the random element� (s,!, F) consists of all elementsg1 such
that, for every open neighbourhoodG of g1, the inequalityP

�

(G) > 0 is satisfied, we
have, by Lemma 14, that

mH (! 2 � W � (s, !, F) 2 8�1G) > 0.

Therefore,

mH (! 2 � W 8(� (s, !, F)) 2 G) D mH (! 2 � W � (s, !, F) 2 8�1G) > 0.

Since g and G are arbitrary, this proves the lemma.

Lemma 16. Suppose that8 2 UF,V . Then the support of the random element
8(�V (s, !, F)) is the whole of H(DV ).

Proof. We argue similarly to the proof of Lemma 15. LetOg be an arbitrary elem-
ent of H (DV ), and G be any open neighbourhood ofOg. Then8�1G is also an open
set. We have to prove that the set (8

�1G) \ SF,V is non-empty.
The spaceH (DV ) is metrisable. It is known (see, for example, [9]) that there

exists a sequence{Kn W n 2 N} of compact subsets ofDV such that

DV D

1

[

nD1

Kn,

Kn � KnC1 for all n 2 N, and if K is a compact subset ofDV , then K � Kn for some
n 2 N. Then we have that

�( f, g) D
1

X

nD1

2�n sups2Kn
j f (s) � g(s)j

1C sups2Kn
j f (s) � g(s)j

, f, g 2 H (DV ),

is a metric onH (DV ) which induces the topology of uniform convergence on compacta.
Let " > 0 be an arbitrary fixed number. We fixn0 2 N such that

(6)
X

n>n0

2�n
<

"

2
.
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Now if

sup
s2Kn0

j f (s) � g(s)j <
"

2
,

then, in view of the relationKn � KnC1, n 2 N, we have that

sup
s2Kn

j f (s) � g(s)j <
"

2

for all n D 1, : : : , n0. This and (6) show that

�( f, g) D
n0
X

nD1

2�n sups2Kn
j f (s) � g(s)j

1C sups2Kn
j f (s) � g(s)j

C

X

n>n0

2�n
< ".

Thus, the functiong approximates a functionf with a given accuracy inH (DV ) if
g approximatesf with a suitable accuracy uniformly onKn for sufficiently largen.
Clearly, the setsKn can be chosen so as to be with connected complements. There-
fore, in the spaceH (DV ), we can restrict our consideration only to approximation on
compact subsets with connected complements.

Let K � DV be a compact subset with connected complement. Then, by the
Mergelyan theorem, there exists a polynomialp D p(s) which approximatesOg uni-
formly on K with desired accuracy. Therefore, sinceOg 2 G, we may assume that
p 2 G, too. Since8 2 UF,V , we have that the set (8�1{p}) \ SF,V is non-empty.
Therefore, (8�1G) \ SF,V ¤ ¿. Hence, using Lemma 13, we find that

mH (! 2 � W 8(�V (s, !, F)) 2 G) > 0,

and the lemma is proved.

Lemma 17. Suppose that8 2 UF Ia1,:::,ar . Then the support S
� ,8 of the random

element8(� (s, !, F)) includes the closure of the set H
8(0)Ia1,:::,ar (D).

Proof. The definition (2) of the classUF Ia1,:::,ar shows that, for eachg 2
H
8(0)Ia1,:::,ar (D), there exists an elementg1 2 SF such that8(g1) D g. Hence, for every

open neighbourhoodG of g 2 H
8(0)Ia1,:::,ar (D), in view of Lemma 14,

mH (! 2 � W 8(� (s, !, F)) 2 G) D mH (! 2 � W � (s, !, F) 2 8�1G) > 0.

This implies thatg 2 S
� ,8, so H

8(0)Ia1,:::,ar (D) is, and hence its closure is, a subset
of S

� ,8.

REMARK . If, instead of (2), the stronger condition

8(SF ) D H
8(0)Ia1,:::,ar (D)(7)
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holds, thenS
� ,8 coincides with the closure ofH

8(0)Ia1,:::,ar (D). In fact, by (7) we have
SF � 8

�1(H
8(0)Ia1,:::,ar (D)), and hence

mH (! 2 � W 8(� (s, !, F)) 2 H
8(0)Ia1,:::,ar (D)) � mH (! 2 � W � (s, !, F) 2 SF ),

but the right-hand side is equal to 1 by Lemma 14, hence

mH (! 2 � W 8(� (s, !, F)) 2 H
8(0)Ia1,:::,ar (D)) D 1.

Because of the minimality of the support, this implies thatS
� ,8 is a subset of the clos-

ure of H
8(0)Ia1,:::,ar (D).

4. Proofs of Theorems 3 to 6

Proof of Theorem 3. By the Mergelyan theorem, there exists a polynomial p(s)
such that

(8) sup
s2K
j f (s) � p(s)j <

"

2
.

We take the open subset

G D

�

h 2 H (D) W sup
s2K
jh(s) � p(s)j <

"

2

�

of the spaceH (D). Recall thatP
� ,8 denotes the distribution of the random element

8(� (s, !, F)). We find, by Lemmas 10 and 7, that

(9) lim inf
T!1

1

T
meas{� 2 [0, T ] W 8(� (sC i � , F)) 2 G} D lim inf

T!1

PT,8(G) � P
� ,8(G).

In virtue of Lemma 15, the polynomialp(s) belongs to the support of the random
element8(� (s,!, F)). Therefore, sinceG is an open neighbourhood ofp(s), a property
of the support implies the inequalityP

� ,8(G) > 0. This together with (9) shows that

lim inf
T!1

1

T
meas

�

� 2 [0, T ] W j8(� (sC i � , F)) � p(s)j <
"

2

�

> 0.

Combining this with (8) proves the theorem.

Proof of Theorem 4. We use Lemmas 12, 7, and 16, and repeat the arguments
of the proof of Theorem 3.

Proof of Theorem 5. (i) Put

G1 D

�

g 2 H (D) W sup
s2K
jg(s) � p(s)j < "

�

.
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By the hypotheses of the theorem, the functionf (s) belongs toH
8(0)Ia1,:::,ar (D), thus, by

Lemma 17, it is an element of the support of the measureP
� ,8. Therefore,P

� ,8(G1) > 0,
and Lemmas 10 and 7 show that

lim inf
T!1

1

T
meas

�

� 2 [0, T ] W sup
s2K
j8(� (sC i � , F)) � f (s)j < "

�

� P
� ,8(G1) > 0.

(ii) Now suppose thatr D 1. By the Mergelyan theorem, there exists a poly-
nomial p(s) such that

(10) sup
s2K
j f (s) � p(s)j <

"

4
.

Since f (s) ¤ a1 on K , we have thatp(s) ¤ a1 on K as well if " is small enough.
Therefore, we can define a continuous branch of log(p(s) � a1) which will be an ana-
lytic function in the interior of K . By the Mergelyan theorem again, there exists a
polynomial p1(s) such that

(11) sup
s2K
jp(s) � a1 � ep1(s)

j <

"

4
.

Let

ha1(s) D ep1(s)
C a1.

Then ha1(s) 2 H (D), and ha1(s) ¤ a1. Therefore, by Lemma 17, the functionha1(s) is
an element of the support of the random element8(� (s, !, F)). Moreover, it follows
from (10) and (11) that

(12) sup
s2K
j f (s) � ha1(s)j <

"

2
.

Define

G2 D

�

g 2 H (D) W sup
s2K
jg(s) � ha1(s)j <

"

2

�

.

Then we have thatP
� ,8(G2) > 0, and hence Lemmas 10 and (10) yield

lim inf
T!1

1

T
meas

�

� 2 [0, T ] W j8(� (sC i � , F)) � ha1(s)j <
"

2

�

> 0.

Combining this with (12), we obtain the assertion.

Proof of Theorem 6. It is not difficult to see that the supportS
� ,8 of the measure

P
� ,8 is the closure of8(SF ). In fact, if g is an arbitrary element of8(SF ), and G is
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its any open neighbourhood, then by Lemma 14 we have that

mH (! 2 � W � (s, !, F) 2 8�1G) > 0.

Hence,

mH (! 2 � W 8(� (s, !, F)) 2 G) > 0.

Moreover, by Lemma 14,

mH (! 2 � W 8(� (s, !, F)) 2 8(SF )) D mH (! 2 � W � (s, !, F) 2 SF ) D 1.

Thus the supportS
� ,8 is the closure of the set8(SF ).

The rest of the proof is the same as that of Theorem 5 (i).

5. Examples

We conclude this paper with giving several explicit examples of operators satisfy-
ing the assumptions of our theorems.

(I) First we give an example of8 2 UF,V , hence Theorem 4 can be applied to
this 8.

For g 2 H (DV ), let

8(g) D c1g0 C � � � C cr g(r ), c1, : : : , cr 2 C n {0}.

In virtue of the Cauchy integral formula, the function8 is continuous. Moreover, for
each polynomialpD p(s), there exists a polynomialq D q(s), q 28�1{p}, andq(s)¤
0 for s 2 DV . In fact, let

p(s) D a0C a1sC � � � C aksk, ak ¤ 0.

We take

q(s) D b0C b1sC � � � C bkC1skC1, bkC1 ¤ 0.

Then, in the caser � kC 1,

8

�

�

<

�

�

:

q0(s) D b1C 2b2sC � � � C (kC 1)bkC1sk,
q00(s) D 2b2C � � � C (kC 1)kbkC1sk�1,
� � �

q(r )(s) D r ! br C � � � C (kC 1)k � � � (k � r C 2)bkC1sk�rC1.

Thus, the equation8(q) D p implies

c1b1C 2c1b2sC � � � C (kC 1)c1bkC1sk

C 2c2b2C � � � C (kC 1)kc2bkC1sk�1
C � � �

C r ! cr br C � � � C (kC 1)k � � � (k � r C 2)cr bkC1sk�rC1

D a0C a1sC � � � C aksk.
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Hence,

8

�

�

<

�

�

:

(kC 1)c1bkC1 D ak,
kc1bk C (kC 1)kc2bkC1 D ak�1,
� � �

c1b1C 2c2b2C � � � C r ! cr br D a0.

The caser > kC1 is considered similarly. So, in any case, we may determine the co-
efficientsb1, : : : ,bkC1. After this procedure, we may chooseb0 to be jb0j large enough,
so thatq(s) ¤ 0 for s 2 DV .

(II) Next we give several explicit examples of Theorems 5 and6. First, consider
the operator8 W g! gN (N 2 N). Then8(0)D 0. If f 2 H (D) is non-vanishing on
D, then we can find a solutiong 2 SF such that8(g) D f , that is, g D N

p

f . There-
fore 8 2 UF I0. Applying Theorem 5 withr D 1, a1 D 0, we obtain the universality
of � (s, F)N .

The second example is8 W g ! gg0. In this case we have to solve the equation
(g2(s))0 D f (s) ( f 2 H (D)) in g 2 SF . Thus, g2(s) D f1(s), where f1(s) 2 H (D) is a
primitive function of f (s). If f1(s) ¤ 0 on D, we can solve this equation asg(s) D
p

f1(s). Therefore f 2 8(SF ) and Theorem 6 can be applied to obtain the universality
of � (s, F)� 0(s, F).

Thirdly consider8 W g! eg. Then8(0) D 1. We apply Theorem 5 withr D 2,
a1 D 0, a2 D 1. If f 2 H (D) does not take the values 0, 1 onD, then8(g) D f
has the solutiong D log f (where we may choose an arbitrary branch of the loga-
rithm, but we require that it is continuous onD), andg is non-vanishing onD. Hence
g 2 SF , and so8 2 UF I0,1. Therefore Theorem 5 gives the universality ofe� (s,F) for
f 2 H1I0,1(D).

Finally we discuss trigonometric functions. Consider8W g! cosgD (eig
Ce�ig)=2.

Then8(0)D 1. We apply Theorem 5 withr D 2, a1 D 1, a2 D �1. If f 2 H1I1,�1(D),
we can choose the solution

g D
1

i
log( f C ( f 2

� 1)1=2)

for 8(g) D f . In fact, since f does not take the values�1, the term (f 2
� 1)1=2 is

well-defined. Also f C ( f 2
�1)1=2 ¤ 0 (because ifD 0, then (f 2

�1)1=2 D � f , so f 2
�

1D f 2, a contradiction). Thereforeg is well-defined. Sinceeig
D f C ( f 2

� 1)1=2 and

e�ig
D

1

f C ( f 2
� 1)1=2

D f � ( f 2
� 1)1=2,

we find cosgD f . Moreover f C( f 2
�1)1=2¤ 1 (because ifD 1, then (f 2

�1)1=2D 1�
f , hence f D 1, which contradicts the assumption), sog 2 SF . Therefore8 2 UF I1,�1,
and cos(� (s, F)) has the universality property forf 2 H1I1,�1(D). Similarly we can
prove the universality of sin(� (s, F)), and also of sinh(� (s, F)) and cosh(� (s, F)).
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REMARK . (i) In the case8 W g! gN , the stronger condition (7) holds (see the
remark at the end of Section 3).
(ii) In the case8 W g! eg, to apply Theorem 5 we assume in the above thatf (s) ¤
0, 1 on D. However, if we restrict our consideration to the case of compact K with
connected complement, it is possible to remove the latter assumption f (s)¤ 1. In fact,
instead ofgD log f we can choosegD log f C2� ik (k 2 N) as a solution of8(g)D
f . For any compactK , it is possible to findk D k(K ) for which log f C2� ik ¤ 0 on
K . SinceK is with connected complement, by the universality theorem ([17]) we find
� for which j� (sC i � , F)� (log f (s)C 2� ik)j is small onK , henceje� (sCi � ,F)

� f (s)j
is also small onK .
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