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Abstract
We establish a large deviation principle for the occupationdistribution of a sym-

metric Markov process normalized by Feynman–Kac functional. The obtained the-
orem means a large deviation from a ground state, not from an invariant measure.

1. Introduction

Let M D (�, Xt ,Px,� ) be anm-symmetric irreducible Markov process on a locally
compact separable metric spaceX. Here � is the lifetime andm is a positive Radon
measure with full support. Let (E , D(E)) be the Dirichlet form onL2(XIm) generated
by M (for the definition, see (2.1)). We denote byP the set of probability measures
with the weak topology, and for a positive Green-tight Kato measure� (Definition 2.1)
define the functionI � on the setP by

(1.1) I �(�) D

�

E�(
p

f ,
p

f ) if � D f �m,
p

f 2 D(E),
1 otherwise,

where E� D E � ( � , � )
�

. Given ! 2 � with 0 < t < � (!), let L t (!) 2 P be the
normalized occupation distribution: for a Borel setA of X

L t (!)(A) D
1

t

Z t

0
1A(Xs(!)) ds,

where 1A is the indicator function of the setA. We denote byA�t the positive con-
tinuous additive functional with Revuz measure�. One of authors proved Donsker–
Varadhan type large deviation principle with rate functionI �.

Theorem 1.1 ([24]). Assume that the Markov processM possesses the strong Feller
property and the tightness property(see(III) in Section 2).
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(i) For each open set G� P

lim inf
t!1

1

t
logEx(eA�

t
I L t 2 G, t < � ) � � inf

�2G
I �(�).

(ii) For each closed set K� P

lim sup
t!1

1

t
log sup

x2X
Ex(eA�

t
I L t 2 K , t < � ) � � inf

�2K
I �(�).

Varadhan [29] gave an abstract formulation for the large deviation principle. The
statement in Theorem 1.1 is slightly different from his formulation. In fact, the rate
function I � is not always non-negative because it is defined by the Schrödinger form
E�, not by the Dirichlet formE . Furthermore, Theorem 1.1 does not represent a large
deviation from a invariant measure because the Markov process is allowed to be ex-
plosive. By this reason, we consider the normalized probability measureQx,t on P

defined by, for a Borel setB � P,

Qx,t (B) D
Ex(eA�

t
I L t 2 B, t < � )

Ex(eA�

t
I t < � )

,

and prove that the family of probability measures{Qx,t}t>0 obeys the large deviation
principle ast !1 in the sense of Varadhan’s formulation. In other words,{Qx,t}t>0

satisfies thefull large deviation principle with agood rate function in the sense of [11,
Section 2.1]. This is the main theorem of this paper (Theorem4.1). The rate function
is given by

(1.2) J(�) WD I �(�) � �2(�), � 2 P.

Here �2(�) is the bottom of the spectrum of the Schrödinger type operator L C �,
whereL is the generator of the Markov process:

�2(�) D inf{E�(u, u) W u 2 D(E), kuk2 D 1}.

To obtain the main theorem, we need to show that the rate function J is good, that
is, enjoys the properties (i)–(iv) in Lemma 4.1. In particular, we must show thatJ has a
unique zero point, that is, the existence of a ground state�0 of the operatorLC�. In or-
der to show the existence of a ground state, we usually use theL2-weak compactness of
the set{u 2 D(E)W E�(u,u) � l } (l 2 R) and the lower semi-continuity of the Schrödinger
form E� with respect to theL2-weak topology (e.g. [17]); however we can not derive
these properties from our general setting. Hence we here usethe following properties
instead, the tightness of the level set{� 2 P W I �(�) � l } and the lower semi-continuity
of the function I � with respect to the weak topology. This is a key to the proof ofthe
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goodness of the rate functionJ. We would like to emphasis that the tightness follows
from the condition (III) and the Green-tightness of�, and the lower semi-continuity of
I � follows from a variational formula for the Schrödinger form(Proposition 2.1), that
is, the identification of the Schrödinger form with the modified I -function defined in
(2.8). The latter is an extension of a well-known fact due to Donsker and Varadhan that
for a symmetric Markov process, theI -function is identical with the Dirichlet form. On
account of Lemma 4.1, we can regard the main theorem as a largedeviation from the
ground state of the Schrödinger operator.

In [10], [25], [28], L p-independence of growth bounds of non-local Feynman–Kac
semigroups have been considered. In this paper we also deal with non-local Feynman–
Kac transforms and extended Theorem 1.1 to symmetric Markov processes with non-
local Feynman–Kac functional (Theorem 2.1). The existenceof ground states implies
the existence of a quasi-stationary distribution,�(B) WD

R

B �0(x) dm(x)=
R

X �0(x) dm(x).
In [16], they prove that if a Markov semigroup is intrinsically ultracontractive, then the
measure� is the so-called Yaglom limit and a unique quasi-stationarydistribution. In
the last section, we will give an extension of this fact to generalized Feynman–Kac
semigroups by employing Fukushima’s ergodic theorem.

2. Symmetric Markov processes with non-local Feynman–Kac functionals

Let X be a locally compact separable metric space andB(X) the Borel � -field.
Adjoining an extra point1 to the measurable set (X, B(X)), we setX

1

D X [ {1}

andB(X
1

) D B(X)[{B[{1}W B 2 B(X)}. Let M D (�, Xt ,Px, � ) be a right Markov
process onX with lifetime � WD inf{t > 0W Xt D 1}. We define the semigroup and
the resolvent by

pt f (x) D Ex( f (Xt )I t < � ), R
�

f (x) D
Z

1

0
e��t pt f (x) dt

for a bounded Borel functionf on X. We assume that the Markov processM is m-
symmetric, (pt f, g)m D ( f, pt g)m, wherem is a positive Radon measure with full sup-
port. Let (E , D(E)) be the Dirichlet form onL2(XIm) generated byM :

(2.1)

8

�

�

<

�

�

:

D(E) D

�

u 2 L2(XIm) W lim
t!0

1

t
(u � ptu, u)m <1

�

,

E(u, v) D lim
t!0

1

t
(u � ptu, v)m.

For basic materials on right processes and associated Dirichlet forms (quasi-regular
Dirichlet forms), we refer to [7], [18].

We impose three assumptions onM .
(I) (Irreducibility) If a Borel set A is pt -invariant, i.e., pt (1A f )(x) D 1A pt f (x)
m-a.e. for any f 2 L2(XIm) \ Bb(X) and t > 0, then A satisfies eitherm(A) D 0
or m(X n A) D 0. HereBb(X) is the space of bounded Borel functions onX.
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(II) (Strong Feller property) For eacht , pt (Bb(X)) � Cb(X), whereCb(X) is the space
of bounded continuous functions onX.
(III) ( Tightness) For any� > 0, there exists a compact setK such that

sup
x2X

R11K c(x) � �.

Here 1K c is the indicator function of the complement of the compact set K .
The assumption (II) implies thatM satisfies theabsolute continuity condition, that

is, its transition probabilitypt (x, � ) is absolutely continuous with respect tom for each
t > 0 and x 2 X. As a result, the resolvent kernel is also absolutely continuous with
respect tom, R

�

(x, dy) D R
�

(x, y)m(dy). By [14, Lemma 4.2.4] the densityR
�

(x, y)
is assumed to be a non-negative Borel function such thatR

�

(x, y) is symmetric and�-
excessive inx and in y. Under the absolute continuity condition, “quasi everywhere”
statements are strengthened to “everywhere” ones. Moreover, we can defined notions
without exceptional set, for example,smooth measures in the strict senseor positive
continuous additive functional in the strict sense(cf. [14, Section 5.1]). Here we only
treat the notions in the strict sense and omit the phrase “in the strict sense”.

We denoteS00 the set of positive Borel measures� such that�(X) < 1 and
R1�(x) (D

R

X R1(x, y)�(dy)) is uniformly bounded inx 2 X. A positive Borel measure
� on X is said to besmoothif there exists a sequence{En}

1

nD1 of Borel sets increasing
to X such that 1En � � 2 S00 for eachn and

Px

�

lim
n!1

�XnEn � �

�

D 1, 8x 2 X,

where �XnEn is the first hitting time ofX n En. The totality of smooth measures is
denoted byS1.

If an additive functional{At}t�0 is positive and continuous with respect tot for
each! 2 3, it is said to be apositive continuous additive functional(PCAF in ab-
breviation). By [14, Theorem 5.1.7], there exists a one-to-one correspondence between
positive smooth measures and PCAF’s (Revuz correspondence): for each smooth meas-
ure �, there exists a unique PCAF{At }t�0 such that for any positive Borel functionf
on X and  -excessive functionh ( � 0), that is,e� t pt h � h,

(2.2) lim
t!0

1

t
Eh�m

�

Z t

0
f (Xs) d As

�

D

Z

X
f (x)h(x)�(dx).

HereEh�m( � ) D
R

X Ex( � )h(x)m(dx). We denote byA�t the PCAF corresponding to the
smooth measure�. For a signed Borel measure� D �

C

� �

�, let j�j D �

C

C �

�.

When j�j is a smooth measure, we defineA�t D A�
C

t � A�
�

t and Aj�jt D A�
C

t C A�
�

t .
Following Chen [4], we introduce classes of potentials.
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DEFINITION 2.1. (i) A signed Borel measure� is said to be theKato measure
(in notation,� 2 K), if j�j 2 S1 and

lim
t!0

sup
x2X

Ex(Aj�jt ) D 0.

(ii) A measure� 2 K is said to be in the classK
1

, if for any � > 0 there exist a
compact subsetK and a positive constantÆ > 0 such that for all measurable setB � K
with j�j(B) < Æ,

sup
x2X

Z

K c
[B

R1(x, y)j�j(dy) � �.

(iii) A signed Borel measure� is said to be in the classS
1

, if for any � > 0 there
exist a compact subsetK and a positive constantÆ > 0 such that for all measurable
set B � K with j�j(B) < Æ,

sup
(x,z)2X�Xnd

Z

K c
[B

R1(x, y)R1(y, z)

R1(x, z)
j�j(dy) � �.

It is known in [2] that� belongs toK if and only if

(2.3) lim
�!1

sup
x2X

Z

X
R
�

(x, y)j�j(dy) D 0,

and in [4] that

(2.4) S
1

� K
1

� K.

We denote that (N, H ) D (N(x, dy), Ht ) is the Lévy system ofM , that is, N is
a kernel on (X

1

, B(X
1

)) with N(x, {x}) D 0 and H is a positive continuous addi-
tive functional ofM such that for any non-negative measurable functionF on X � X
vanishing on the diagonal set and anyx 2 X,

Ex

 

X

0<s�t

F(Xs�, Xs)I t < �

!

D Ex

�

Z t

0

Z

X
F(Xs, y)N(Xs, dy) d Hs

�

.

We denote by�H be the smooth measure corresponding toHt .

DEFINITION 2.2. Let F be a bounded measurable function onX � X vanishing
on the diagonal set.
(i) F is said to be in the classA

1

, if for any � > 0 there exist a compact subsetK
and a positive constantÆ > 0 such that for all measurable setB � K with j�j(B) < Æ,

sup
(x,z)2X�Xnd

Z

((KnB)�(KnB))c

R1(x, y)jF(y, z)jR1(z, w)

R1(x, w)
N(y, dz)�H (dy) � �.
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(ii) F is said to be in the classA2, if F 2 A
1

and

�

jF j(dx) D

�

Z

X
jF(x, y)jN(x, dy)

�

�

H (dx) 2 S
1

.

For properties and examples ofA
1

andA2, see [4], [5]. In the remainder of this
paper, we assume thatF is symmetric,F(x, y) D F(y, x). We write�C F 2 K

1

CA2

if � 2 K
1

and F 2 A2.
For �C F 2 K

1

CA2 define the AFA�CF
t by

A�CF
t D A�t C

X

0<s�t

F(Xs�, Xs),

and the generalized Feynman–Kac semigroup{p�CF
t }t�0 by

p�CF
t f (x) D Ex

�

eA�CF
t f (Xt )I t < �

�

, f 2 Bb(X).

For F 2 A2, we define the symmetric Dirichlet form (EF , D(E)) as follows: for
u, v 2 D(E)

(2.5)
EF (u, v) D E (c)(u, v)C E (k)(u, v)

C

1

2

Z

X�X
(u(x) � u(y))(v(x) � v(y))eF(x,y)N(x, dy)�H (dx),

whereE (c) andE (k) are the local part and the killing part of the Dirichlet form (E ,D(E))
in Beurling–Deny formula ([14, Theorem 3.2.1]). Fundamental properties of non-local
Feynman–Kac transforms were earlier studied by J. Ying [31], [32]. It is known in [8]
that {p�CF

t }t�0 is the semigroup generated by the Schrödinger form (E�CF , D(E)):

(2.6) E�CF (u, v) D EF (u, v) �
Z

X
u(x)v(x) d�F1(x) �

Z

X
u(x)v(y) d�(x),

where F1 D exp(F) � 1. The formE�CF is also written as

E�CF (u, v) D E(u, v) �
Z

X�X
u(x)v(y)F1(x, y)N(x, dy) d�H (y)

�

Z

X
u(x)v(x)d�(x), u, v 2 D(E).

Let P be the set of probability measures onX equipped with the weak topology. We
define the functionI �CF on P by

I �CF (�) D

�

E�CF (
p

f ,
p

f ) if � D f �m,
p

f 2 D(E),
1 otherwise.
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Let �C F 2 K
1

CA2 and define�(�C F) by

�(�C F) D lim
t!1

1

t
logkp�CF

t k

1,1.

We see from [1] that�(�C F) is finite. If � > �(�C F) and f 2 Bb(X), we define
the resolventR�CF

�

by

R�CF
�

f (x) D Ex

�

Z

1

0
e��tCA�CF

t f (Xt ) dt

�

.

We set

D
C

(H�CF ) D
{

R�CF
�

f W � > �(�C F), f 2 L2(XIm) \ Cb(X), f � 0 and f ¥ 0
}

.

Each function� D R�CF
�

f 2 D
C

(H�CF ) is strictly positive becausePx(�O < � ) > 0 for
any x 2 X by the assumption (I). HereO is a non-empty open set{x 2 X W f (x) > 0}

and �O D inf{t > 0W Xt 2 O}. We define the generatorH�CF by

H�CFu D �u � f , u D R�CF
�

f 2 D
C

(H�CF ).

Let h be the function defined byh(x)D Ex(exp(A�CF
�

)). We may assume that�C
F is gaugeable, that is, supx2X h(x) <1. In fact, it is enough to prove Theorem 2.1

and Theorem 4.1 below for the�-subprocess,P (�)
x D e��t

Px. Moreover, we see that
every � C F 2 K

1

C A2 becomes gaugeable with respect to the�-subprocess ofM
for a large enough�. In fact, we see from [5, Theorem 3.4] that�C F 2 K

1

C A2

is gaugeable with respect to the�-subprocess if and only if

(2.7)

inf

�

EF (u, u)C
Z

X
u(x)2(�� C �F�

1
)(dx)C �

Z

X
u(x)2m(dx) W

Z

X
u(x)2(�C C �FC

1
)(dx) D 1

�

> 1,

where FC

1 and F�

1 is the positive and negative part ofF1. Since by (3.1)

EF (u, u)C
Z

X
u(x)2(�� C �F�

1
)(dx)C �

Z

X
u(x)2m(dx)

� e�kF�

k

1

�

E(u, u)C �
Z

X
u(x)2m(dx)

�

�

e�kF�

k

1

kR
�

(�C C �FC

1
)k
1

,

and the right hand side tends to1 as� !1 because of�CC�FC

1
2 K, (2.7) holds

for a large�.



294 M. TAKEDA AND Y. TAWARA

We define the functionIh on P by

(2.8) Ih(�) D � inf
�2D

C

(H�CF )
�>0

Z

X

H�CF
�

� C �h
d�.

The gauge functionh(x) satisfies 0< c � h(x) � C < 1. Indeed, it follows from

Proposition 2.2 in [4] and (2.4) that for� 2 K
1

and F 2A2, supx2XEx(Aj�jCjF j
�

) <1.
Hence, by Jensen’s inequality,

inf
x2X

Ex(exp(A�CF
�

)) � exp

�

� sup
x2X

Ex(Aj�jCjF j
�

)

�

> 0.

Let us define the functionI
�

on P by

I
�

(�) D � inf
u2BC

b (X)
�>0

Z

X
log

�

�R�CF
�

uC �h

uC �h

�

d�

Lemma 2.1. It holds that

I
�

(�) �
Ih(�)

�

, � 2 P.

Proof. Foru D R�CF
�

f 2 D
C

(H�CF ) and � > 0, set

�(�) D �
Z

X
log

�

�R�CF
�

uC �h

uC �h

�

d�.

Then, noting that (d=d�)(R�CF
�

u) D �R�CF
�

(R�CF
�

u) D �(R�CF
�

)2u, we have

d�

d�
(�) D �

Z

X

R�CF
�

u � �(R�CF
�

)2u

�R�CF
�

uC �h
d� D

Z

X

H�CF (R�CF
�

)2u

�R�CF
�

uC �h
d�.

Since

(�(R�CF
�

)2u � R�CF
�

u)(�2(R�CF
�

)2uC �h)

� (�(R�CF
�

)2u � R�CF
�

u)(�R�CF
�

uC �h)

equals�(�(R�CF
�

)2u � R�CF
�

u)2
� 0, we have

�(R�CF
�

)2u � R�CF
�

u

�R�CF
�

uC �h
�

�(R�CF
�

)2u � R�CF
�

u

�

2(R�CF
�

)2uC �h
,
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and thus
Z

X

H�CF (R�CF
�

)2u

�R�CF
�

uC �h
d� �

Z

X

H�CF (R�CF
�

)2u

�

2(R�CF
�

)2uC �h
d�

D �

1

�

2

�

�

Z

X

H�CF (R�CF
�

)2u

(R�CF
�

)2uC �h=�2
d�

�

� �

1

�

2
Ih(�).

Therefore

�(1) � �(�) D
Z

X
log

�

�R�CF
�

uC �h

uC �h

�

d� � �
Ih(�)

�

,

which implies

� inf
u2D

C

(H�CF )
�>0

Z

X
log

�

�R�CF
�

uC �h

uC �h

�

d� �
Ih(�)

�

.

Sincek�R�CF
�

f k
1

� Ck f k
1

, � > 0, and�R�CF
�

f (x)! f (x) as � !1,

(2.9)
Z

X
log

�

�R�CF
�

(�R�CF
�

f )C �h

�R�CF
�

f C �h

�

d�
�!1

���!

Z

X
log

�

�R�CF
�

f C �h

f C �h

�

d�.

Define the measure�
�

by

�

�

(A) D
Z

X
�R�CF

�

(x, A) d�(x), A 2 B(X).

Given v 2 BCb (X), take a sequence{gn}
1

nD1 � CC

b (X) \ L2(XIm) such that

Z

X
jv � gnj d(�

�

C �)! 0 as n!1.

We then have

Z

X
j�R�CF

�

v � �R�CF
�

gnj d� �
Z

X
�R�CF

�

(jv � gnj) d� D
Z

X
jv � gnj d�� ! 0

as n!1, and so

(2.10)
Z

X
log

�

�R�CF
�

gn C �h

gn C �h

�

d�
n!1

���!

Z

X
log

�

�R�CF
�

v C �h

v C �h

�

d�.
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Hence, combining (2.9) and (2.10)

inf
u2D

C

(H�CF )

Z

X
log

�

�R�CF
�

uC �h

uC �h

�

d� D inf
u2BC

b (X)

Z

X
log

�

�R�CF
�

uC �h

uC �h

�

d�,

which implies the lemma.

Lemma 2.2. If I h(�) <1, then � is absolutely continuous with respect to m.

Proof. By a similar argument in the proof of [12, Lemma 4.1], we obtain this
lemma. Indeed, fora > 0 and A 2 B(X), set u(x) D a1A(x)C 1 2 BCb (X). Then

Z

X
log

�

�R�CF
�

uC �h

uC �h

�

d� D
Z

X
log

�

a�R�CF
�

(x, A)C �R�CF
�

(x, X)C �h

a1A(x)C 1C �h

�

d�.

Define the measure�
�

as in the proof of Lemma 2.1. Put

c
�

D

Z

X
�R�CF

�

(x, X) d�(x) (D �
�

(X)).

We see from Lemma 2.1 and Jensen’s inequality that

log(a�
�

(A)C c
�

C �h) � �(A) log(aC 1C �h)C �(Ac)(1C �h) �
Ih(�)

�

,

and by letting� ! 0

log(a�
�

(A)C c
�

) � �(A) log(aC 1)�
Ih(�)

�

.

Since logx � x � 1 for x > 0, we have

a�
�

(A)C c
�

� 1� �(A) log(aC 1)�
Ih(�)

�

,

and so

�

�

(A) � �(A) �
�Ih(�)=� C �(A)(log(aC 1)� a)C 1� c

�

a
.

Noting that log(aC 1)� a < 0, we have

�

�

(A) � �(A) �
�Ih(�)=� C (log(aC 1)� a)C 1� c

�

a

for all A 2 B(X) and

�(A) � �
�

(A) D 1� c
�

C (�
�

(Ac) � �(Ac))

�

�Ih(�)=� C (log(aC 1)� a)C (1� c
�

)(aC 1)

a
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for all A 2 B(X). Therefore we can conclude that

sup
A2B(X)

j�(A) � �
�

(A)j �
a� log(aC 1)C Ih(�)=� C (1� c

�

)(aC 1)

a
.

Note thatc
�

! 1 as� !1. Then since

lim sup
�!1

sup
A2B(X)

j�(A) � �
�

(A)j �
a� log(aC 1)

a

and the right-hand side converges to 0 asa! 0, the lemma follows.

Proposition 2.1. It holds that for� 2 P

Ih(�) D I �CF (�).

Proof. We follow the argument of the proof of [12, Theorem 5].Suppose that
Ih(�) D l <1. By Lemma 2.2,� is absolutely continuous with respect tom. Let us
denote by f its density and letf n

D

p

f ^ n. Since log(1� x) � �x for �1 < x <
1 and

�1 <

f n
� �R�CF

�

f n

f n
C �h

< 1,

we have
Z

X
log

�

�R�CF
�

f n
C �h

f n
C �h

�

f dmD
Z

X
log

�

1�
f n
� �R�CF

�

f n

f n
C �h

�

f dm

� �

Z

X

f n
� �R�CF

�

f n

f n
C �h

f dm,

and then
Z

X

f n
� �R�CF

�

f n

f n
C �h

f dm� I
�

( f �m).

By letting n!1 and � ! 0, we have

Z

X

p

f (
p

f � �R�CF
�

p

f ) dm� I
�

( f �m) �
Ih( f �m)

�

,

which implies that
p

f 2 D(E) and E�CF (
p

f ,
p

f ) � Ih( f �m).
Let � 2 D

C

(H�CF ) and define the semigroupP�

t by

P�

t f (x) D Ex

�

eA�CF
t

(� C �h)(Xt )

(� C �h)(X0)
exp

�

�

Z t

0

H�CF
�

� C �h
(Xs)ds

�

f (Xt )

�

.
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Then, P�

t is (� C �h)2m-symmetric and satisfiesP�

t 1 � 1. Given � D f �m 2 P with
p

f 2 D(E), set

S�t
p

f (x) D Ex

�

eA�CF
t exp

�

�

Z t

0

H�CF
�

� C �h
(Xs) ds

�

p

f (Xt )

�

.

Then
Z

X
(S�t

p

f )2 dmD
Z

X
(� C �h)2

�

P�

t

�

p

f

� C �h

��2

dm

�

Z

X
(� C �h)2P�

t

 

�

p

f

� C �h

�2
!

dm

�

Z

X
(� C �h)2

�

p

f

� C �h

�2

dm

D

Z

X
f dm.

Hence

0� lim
t!0

1

t
(
p

f � S�t
p

f ,
p

f )m D E�CF (
p

f ,
p

f )C
Z

X

H�CF
�

� C �h
f dm,

and thusE�CF (
p

f ,
p

f ) � Ih( f �m).

We now obtain a generalization of Theorem 1.1 in exactly the same way as the
proof of it (cf. [10], [28]):

Theorem 2.1 ([24]). Assume(I), (II) and (III) . Suppose that�C F 2 K
1

CA2.
(i) For each open set G� P

lim inf
t!1

1

t
logEx(eA�CF

t
I L t 2 G,t < � ) � � inf

�2G
I �CF (�).

(ii) For each closed set K� P

lim sup
t!1

1

t
log sup

x2X
Ex(eA�CF

t
I L t 2 K , t < � ) � � inf

�2K
I �CF (�).

3. The existence of ground states

We first recall an inequality ([19]): for� 2 K,

(3.1)
Z

X
Qu2 d� � kR

�

�k

1

(E(u, u)C �(u, u)m), u 2 D(E).
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Let �2(�C F) be the bottom of the spectrum ofH�CF :

(3.2) �2(�C F) D inf{E�CF (u, u) W u 2 D(E), kuk2 D 1}.

Proposition 3.1. Assume(I), (II) and (III) . There exists a unique ground state
�0 2 D(E): �2(�C F) D E�CF (�0, �0).

Proof. Let {un} be a minimizing sequence of the right-hand side of (3.2), i.e.,
kunk2 D 1 and �2(� C F) D limn!1

E�CF (un, un). Put �0 D j�j C j�F1j. Since
E(un,un) � c �EF (un,un) (cD exp(�kFk

1

)) and
R

X u2
nd�0 � kR

�

�

0

k

1

� (E(un, un)C �),

E�CF (un, un) D EF (u, u) �
Z

X
u2

n d�0

�

1

c
E(un, un) � kR

�

�

0

k

1

(E(un, un)C �

D

�

1

c
� kR

�

�

0

k

1

�

E(un, un) � �kR
�

�

0

k

1

.

Taking � large enough so thatckR
�

�

0

k

1

< 1 on account of (2.3), we have

sup
n

E(un, un) �
c(supn E

�CF (un, un)C �kR
�

�

0

k

1

)

1� ckR
�

�

0

k

1

<1.

We see from the assumption (III) that for any� > 0 there exists a compact setK
such that

sup
n

Z

K c

u2
n dm� kR11K c

k

1

�

�

sup
n

E(un, un)C 1

�

< �.

As a result, the subset{u2
n �m} of P is tight. Hence there exists a subsequenceu2

nk
�m

which converges to a probability measure� weakly. Since the functionI �CF is lower
semi-continuous by Proposition 2.1,

I �CF (�) � lim inf
k!1

I �CF (u2
nk
�m) D lim inf

k!1

E�CF (unk , unk ) <1.

Therefore� can be written as� D �2
0m, �0 2 D(E) by Proposition 2.1 and�2(�CF)D

E�CF (�0,�0), that is,�0 is the ground state. The uniqueness of the ground state follows
from the irreducibility (I) (e.g. [9, Proposition 1.4.3]).

We also know from the proof above that the level set{� 2 P W I �CF (�) � l }
is compact.
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4. Large deviations from ground states

Given ! 2 � with 0 < t < � (!), we define the occupation distributionL t (!) 2
P by

L t (!)(A) D
1

t

Z t

0
1A(Xs(!)) ds

for a Borel setA of X, where 1A is the indicator function of the setA.
Define the probability measureQx,t on P by

(4.1) Qx,t (B) D
Ex(eA�CF

t
I L t 2 B, t < � )

Ex(eA�CF
t
I t < � )

, B 2 B(P).

We define the functionJ on P by

(4.2) J(�) D I �CF (�) � �2(�C F).

We then have the next lemma by Proposition 2.1 and Proposition 3.1.

Lemma 4.1. The function J satisfies:
(i) 0 � J(�) � 1.
(ii) J is lower semicontinuous.
(iii) For each l<1, the set{� 2 P W J(�) � l } is compact.
(iv) J(�2

0 �m) D 0 and J(�) > 0 for � ¤ �2
0 �m.

REMARK 4.1. Let (E�0, D(E�0)) the bilinear form onL2(X I �2
0m) defined by

(

E�0(u, v) D E�CF (u�0, u�0) � �2(�C F)(u�0, u�0)m,

D(E�0) D {u 2 L2(X I �2
0m) W u�0 2 D(E)}.

We then see that (E�0, D(E�0)) is a Dirichlet form andE�0 is expressed by

E�0(u, v) D
Z

X
�

2
0d�c

hu,vi C

Z

X�Xn4
(u(x) � u(y))(v(x) � v(y))�0(x)�0(y)J(dx, dy).

Here�c
hu,vi is the local part of energy measure ([6]). We then see that

J(�) D IE�0 (�),

where IE�0 is defined by

(4.3) IE�0 (�) D

�

E�0(
p

f ,
p

f ) if � D f � �2
0m,
p

f 2 D(E�0),
1 otherwise.
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We then have the main theorem:

Theorem 4.1. Assume(I), (II) and (III) . Let � C F 2 K
1

C A2. Let {Qx,t }t>0

be a family of probability measures defined in(4.1). Then{Qx,t}t>0 obeys a large de-
viation principle with rate function J:
(1) For each open set G� P

lim inf
t!1

1

t
log Qx,t (G) � � inf

�2G
J(�).

(2) For each closed set K� P

lim sup
t!1

1

t
log Qx,t (K ) � � inf

�2K
J(�).

Corollary 4.1. The measure Qx,t converges toÆ
�

2
0 �m

weakly.

Proof. If a closed setK does not contain�2
0 �m, then infx2K J(x)> 0 by Lemma 4.1

(iv). Hence Theorem 4.1 (ii) says that limt!1

Qx,t (K ) D 0 and limt!1

Qx,t (K c) D 1.
For a positive constantÆ and a bounded continuous functionf on the set ofP, define
the closed setK � P by K D {� 2 P W j f (�) � f (�2

0 �m)j � Æ}. Then we have

�

�

�

�

Z

P

f (�)Qx,t (d�) � f (�2
0 �m)

�

�

�

�

�

Z

P

j f (�) � f (�2
0 �m)jQx,t (d�)

D

Z

K
j f (�) � f (�2

0 �m)jQx,t (d�)C
Z

K c

j f (�) � f (�2
0 �m)jQx,t (d�)

� ÆQx,t (K
c)C 2k f k

1

Qx,t (K )! Æ

as t !1. SinceÆ is arbitrary, the weak convergence follows.

On account of Corollary 4.1, we can regard Theorem 4.1 as a genuine large devi-
ation principle from the ground state.

5. Quasistationary distribution

In this section, we consider the existence of quasi-stationary distributions as an
application of the existence of ground states. We continue with the setting of the pre-
ceding section.

Define the semigroup{p�0
t }t�0 on L2(XI �2

0m) generated by (E�0, D(E�0)), that is

(5.1) p�0
t f (x) D e�2(�CF)t 1

�0(x)
Ex
�

eA�CF
t
�0(Xt ) f (Xt )

�

.
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Let M�0
D (�,Xt ,P

�0
x ) be the�2

0m-symmetric Markov process generated by the Markov

semigroupp�0
t in (5.1).

Set

P0 D

�

� 2 P W

Z

X

q

p�CF
1 (x, x) d�(x) <1,

Z

X
�0(x) d�(x) <1

�

.

We then have

Theorem 5.1. Assume that m(X) <1. Then for� 2 P0 and B2 B(X)

lim
t!1

e�2(�CF)t
E

�

�

eA�CF
t
I Xt 2 B

�

D

Z

X
�0 d�

Z

B
�0 dm.

Proof. Note that

e�2(�CF)t
E

�

�

eA�CF
t
I Xt 2 B

�

D

Z

X
�0(x)E�0

x

�

1B

�0
(Xt )

�

d�(x).

Let {E
�

, 0� � <1} be the spectral family of (E�0, F�0). Then limt!1

p�0
t f D E0 f

in L2(X I �2
0m). SinceE�0(E0 f, E0 f ) D 0, E0 f equals

R

X f �2
0dm, m-a.e. by the irre-

ducibility of (E�0, F�0) (cf. [7, Theorem 5.2.13]). Note thatp�0
t (x, � ) 2 L2(X I �2

0m)

because
R

X p�0
t (x, y)2

�

2
0(y) dm(y) D p�0

2t (x, x) <1. Put cD
R

B �0 dm. We then have

(5.2)

�

�

�

�

Z

X
�0(x)E�0

x

�

1B

�0
(Xt )

�

d�(x) �
Z

X
�0 d�

Z

B
�0 dm

�

�

�

�

D

�

�

�

�

Z

X
�0(x)

�

Z

X
p�0

1=2(x, y)

�

E

�0
y

�

1B

�0
(Xt�1=2)

�

� c

�

�0(y)2 dm(y)

�

d�(x)

�

�

�

�

.

The right-hand side is dominated by

Z

X
�0(x)

s

Z

X
p�0

1=2(x, y)
2
�

2
0(y) dm(y)d�(x)�

s

Z

X

�

E

�0
y

�

1B

�0
(Xt�1=2)

�

�c

�2

�

2
0(y) dm(y).

Since

p�0
t (x, y) D e�2(�CF)t p�CF

t (x, y)

�0(x)�0(y)
,

the first factor is equal to

Z

X
�0(x)

q

p�0
1 (x, x) d�(x) D e(1=2)�2(�CF)

Z

X

q

p�CF
1 (x, x) d�(x)

and is finite by the assumption that� 2 P0. Hence the right-hand side of (5.2) con-
verges to zero ast !1 because 1B=�0 2 L2(X I �2

0m).
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Let � and R
�,t be probability measures onX defined by

(5.3) �(B) D

R

B �0(x) dm(x)
R

X �0(x) dm(x)
, R

�,t (B) D
E

�

�

eA�CF
t
I Xt 2 B

�

E

�

�

eA�CF
t
I t < �

�

for B 2 B(X).

Corollary 5.1. For � 2 P0 and B2 B(X)

(5.4) lim
t!1

R
�,t (B) D �(B).

Note that the Dirac measureÆx belongs toP0 and so the distributionR
Æx ,t converges

to � for all x 2 X. Hence Corollary 5.1 says that the semigroup{p�CF
t }t�0 is condition-

ally ergodicand� is aquasi-stationary distributionof the semigroup{p�CF
t }t�0: for any

t > 0

(5.5) R
�,t D �

(e.g. [16]). If the semigroup{p�CF
t }t�0 is ultracontractive,p�CF

t (x, y) � ct , then
p�CF

t (x, x) and �0(x) are bounded andP0 equalsP. Consequently, for any� 2 P,
the distributionR

�,t converges to�.
When the measurem is not finite, we assume theintrinsic ultracontractivity of

{p�CF
t }t�0, that is,

(5.6) p�CF
t (x, y) � Ct�0(x)�0(y).

In [16], they proved that for a (not necessary symmetric) Markov process, the intrin-
sic ultracontractivity is a sufficient condition for the measure� being a unique quasi-
stationary distribution, and the equation (5.4) holds for any initial distribution. We
would like to give another proof of this fact by using the nexttheorem due to
Fukushima [13].

Theorem 5.2. Assume that m(X) < 1 and M is conservative, pt1 D 1, t > 0.
Then for f 2 L1(X I m),

lim
t!1

pt f (x) D
1

m(X)

Z

X
f (x) dm(x), m-a.e. and in L1(XIm).

Note thatM�0 satisfies the assumptions in Theorem 5.2.

Theorem 5.3. Assume that{p�CF
t }t�0 is intrinsically ultracontractive. Then for

any � 2 P and any B2 B(X)

lim
t!1

e�2(�CF)t
E

�

�

eA�CF
t
I Xt 2 B

�

D

Z

X
�0 d�

Z

B
�0 dm.
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Consequently, the equation(5.4) follows.

Proof. First note that the upper bound (5.6) implies the lower bound ([9, The-
orem 4.2.5]):

(5.7) ct�0(x)�0(y) � p�CF
t (x, y).

As a result,

sup
x2X

�0(x)
Z

X
�0(y) dm(y) �

1

ct
kp�CF

t 1k
1

<1.

Hence�0 belongs toL1(X I m)\ L1(X I m) and 1B=�0 2 L1(X I �2
0m). Applying The-

orem 5.2 toM�0, we have

E

�0
y

�

1B

�0
(Xt )

�

!

Z

B
�0 dm, m-a.e. y and L1(X I �2

0m)

as t ! 1. Since p�0
1=2(x, � ) is bounded by the ultracontractivity, it follows from the

equation (5.2) that

lim
t!1

Z

X
�0(x)E�0

x

�

1B

�0
(Xt )

�

d�(x) D
Z

X
�0 d�

Z

B
�0 dm.

We finally consider the exponential integrability of hitting times of compact sets.
Let K � X be a compact set andD the complement ofK , D D X n K . We define the
part (or absorbing) processXD on D by

XD
t D

�

Xt t < �D,
1 t � �D,

�D D inf{t � 0W Xt � D}.

Define the regular Dirichlet form (ED, D(ED)) on D by

�

ED
D E ,

D(ED) D {u 2 D(E) W u D 0 q.e. onK }.

By [14, Theorem 4.4.3] the part processXD is regarded as a Hunt process generated
by (ED, D(ED)). We see from [4, Theorem 4.2] thatm is in K

1

. We write K
1

(R1)
for K

1

to show the dependence. LetRD
1 be the 1-resolvent ofXD. The restrictionmD

of m on D is in K
1

(RD
1 ). Indeed, let a compact setQK and a positive constantÆ in

the definition ofK
1

(Definition 2.1). We can supposeK � QK . Let G be a relatively
compact open set such thatK � G � NG � QK and m(G n K ) < Æ. Then QK \ Gc is a
compact subset ofD and

RD
1 1( QK\Gc)c D RD

1 1
QKc
[(GnK ) � R11

QKc C R11GnK � 2�.
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Moreover,RD
1 1B � R11B for any Borel setB � QK \Gc. Hence we havemD

2 K
1

(RD
1 ).

If XD satisfies the irreducibility (I), it follows from [4, Theorem 4.1] that

sup
x2D

Ex(e��D ) <1� � < �

D,

where�D is the bottom of the spectrum of (ED, D(ED)).
Noting that by (3.1)

1� kR11Dk1(�D
C 1),

we see from (III) that

(5.8) �D " 1 as K " X.

We can conclude that if for any compact setK , the part processXD (D D X n K ) is
irreducible, then for any� > 0 there exists a compact setK such that

(5.9) sup
x2X

Ex
�

e��D
�

<1.

If M is conservative,�D equals the first hitting time�K of K , �K D inf{t > 0 W Xt 2

K }. Then the property (5.9) is called theuniform hyper-exponential recurrencein [30].

EXAMPLE 5.1 (One-dimensional diffusion processes). Let us consider a one-
dimensional diffusion processM D (Xt , Px, � ) on an open intervalI D (r1, r2) such
that Px(X

��

D r1 or r2, � < 1) D Px(� < 1), x 2 I , and Pa(�b < 1) > 0 for any
a, b 2 I . The diffusionM is symmetric with respect to its canonical measurem and it
satisfies (I) and (II). The boundary pointr i of I is classified into four classes:regular
boundary, exit boundary, entrance boundary and natural boundary([15, Chapter 5]):
(a) If r2 is a regular or exit boundary, then limx!r2 R11(x) D 0.
(b) If r2 is an entrance boundary, then limr!r2 supx2(r1,r2) R11(r,r2)(x) D 0.
(c) r2 is a natural boundary, then limx!r2R11(r,r2)(x)D1 and thus supx2(r1,r2)R11(r,r2)(x)D1.
Therefore, (III) is satisfied if and only if no natural boundaries are present. As a corol-
lary of the equation (5.8), Ifr2 is entrance, for any� > 0 there existsr1 < r < r2

such that

sup
x>r

Ex(exp(��r )) <1,

where�r is the first hitting time of{r }. The statement above implies a uniqueness of
quasi-stationary distributions ([3]).
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