Takeda, M. and Tawara, Y. Osaka J. Math. **50** (2013), 287–307

# A LARGE DEVIATION PRINCIPLE FOR SYMMETRIC MARKOV PROCESSES NORMALIZED BY FEYNMAN-KAC FUNCTIONALS

MASAYOSHI TAKEDA and YOSHIHIRO TAWARA

(Received January 24, 2011, revised July 12, 2011)

#### Abstract

We establish a large deviation principle for the occupation distribution of a symmetric Markov process normalized by Feynman–Kac functional. The obtained theorem means a large deviation from a ground state, not from an invariant measure.

# 1. Introduction

Let  $\mathbf{M} = (\Omega, X_t, \mathbb{P}_x, \zeta)$  be an *m*-symmetric irreducible Markov process on a locally compact separable metric space *X*. Here  $\zeta$  is the lifetime and *m* is a positive Radon measure with full support. Let  $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$  be the Dirichlet form on  $L^2(X; m)$  generated by **M** (for the definition, see (2.1)). We denote by  $\mathcal{P}$  the set of probability measures with the weak topology, and for a positive Green-tight Kato measure  $\mu$  (Definition 2.1) define the function  $I^{\mu}$  on the set  $\mathcal{P}$  by

(1.1) 
$$I^{\mu}(\nu) = \begin{cases} \mathcal{E}^{\mu}(\sqrt{f}, \sqrt{f}) & \text{if } \nu = f \cdot m, \ \sqrt{f} \in \mathcal{D}(\mathcal{E}), \\ \infty & \text{otherwise,} \end{cases}$$

where  $\mathcal{E}^{\mu} = \mathcal{E} - (\cdot, \cdot)_{\mu}$ . Given  $\omega \in \Omega$  with  $0 < t < \zeta(\omega)$ , let  $L_t(\omega) \in \mathcal{P}$  be the normalized occupation distribution: for a Borel set A of X

$$L_t(\omega)(A) = \frac{1}{t} \int_0^t 1_A(X_s(\omega)) \, ds,$$

where  $1_A$  is the indicator function of the set *A*. We denote by  $A_t^{\mu}$  the positive continuous additive functional with Revuz measure  $\mu$ . One of authors proved Donsker–Varadhan type large deviation principle with rate function  $I^{\mu}$ .

**Theorem 1.1** ([24]). Assume that the Markov process **M** possesses the strong Feller property and the tightness property (see (III) in Section 2).

<sup>2010</sup> Mathematics Subject Classification. 60J45, 60J40, 35J10.

(i) For each open set  $G \subset \mathcal{P}$ 

$$\liminf_{t\to\infty}\frac{1}{t}\log\mathbb{E}_x(e^{A^{\mu}_t};\,L_t\in G,\,t<\zeta)\geq-\inf_{\nu\in G}I^{\mu}(\nu).$$

# (ii) For each closed set $K \subset \mathcal{P}$

$$\limsup_{t\to\infty}\frac{1}{t}\log\sup_{x\in X}\mathbb{E}_x(e^{A_t^{\mu}}; L_t\in K, t<\zeta)\leq -\inf_{\nu\in K}I^{\mu}(\nu).$$

Varadhan [29] gave an abstract formulation for the large deviation principle. The statement in Theorem 1.1 is slightly different from his formulation. In fact, the rate function  $I^{\mu}$  is not always non-negative because it is defined by the Schrödinger form  $\mathcal{E}^{\mu}$ , not by the Dirichlet form  $\mathcal{E}$ . Furthermore, Theorem 1.1 does not represent a large deviation from a invariant measure because the Markov process is allowed to be explosive. By this reason, we consider the normalized probability measure  $Q_{x,t}$  on  $\mathcal{P}$  defined by, for a Borel set  $B \subset \mathcal{P}$ ,

$$Q_{x,t}(B) = \frac{\mathbb{E}_x(e^{A_t^{\mu}}; L_t \in B, t < \zeta)}{\mathbb{E}_x(e^{A_t^{\mu}}; t < \zeta)}$$

and prove that the family of probability measures  $\{Q_{x,t}\}_{t>0}$  obeys the large deviation principle as  $t \to \infty$  in the sense of Varadhan's formulation. In other words,  $\{Q_{x,t}\}_{t>0}$ satisfies the *full* large deviation principle with a *good* rate function in the sense of [11, Section 2.1]. This is the main theorem of this paper (Theorem 4.1). The rate function is given by

(1.2) 
$$J(\nu) := I^{\mu}(\nu) - \lambda_2(\mu), \quad \nu \in \mathcal{P}.$$

Here  $\lambda_2(\mu)$  is the bottom of the spectrum of the Schrödinger type operator  $\mathcal{L} + \mu$ , where  $\mathcal{L}$  is the generator of the Markov process:

$$\lambda_2(\mu) = \inf\{\mathcal{E}^{\mu}(u, u) \colon u \in \mathcal{D}(\mathcal{E}), \|u\|_2 = 1\}.$$

To obtain the main theorem, we need to show that the rate function J is good, that is, enjoys the properties (i)–(iv) in Lemma 4.1. In particular, we must show that J has a unique zero point, that is, the existence of a ground state  $\phi_0$  of the operator  $\mathcal{L} + \mu$ . In order to show the existence of a ground state, we usually use the  $L^2$ -weak compactness of the set  $\{u \in \mathcal{D}(\mathcal{E}): \mathcal{E}^{\mu}(u,u) \leq l\}$   $(l \in \mathbb{R})$  and the lower semi-continuity of the Schrödinger form  $\mathcal{E}^{\mu}$  with respect to the  $L^2$ -weak topology (e.g. [17]); however we can not derive these properties from our general setting. Hence we here use the following properties instead, the tightness of the level set  $\{v \in \mathcal{P}: I^{\mu}(v) \leq l\}$  and the lower semi-continuity of the function  $I^{\mu}$  with respect to the weak topology. This is a key to the proof of the

goodness of the rate function J. We would like to emphasis that the tightness follows from the condition (III) and the Green-tightness of  $\mu$ , and the lower semi-continuity of  $I^{\mu}$  follows from a variational formula for the Schrödinger form (Proposition 2.1), that is, the identification of the Schrödinger form with the modified *I*-function defined in (2.8). The latter is an extension of a well-known fact due to Donsker and Varadhan that for a symmetric Markov process, the *I*-function is identical with the Dirichlet form. On account of Lemma 4.1, we can regard the main theorem as a large deviation from the ground state of the Schrödinger operator.

In [10], [25], [28],  $L^p$ -independence of growth bounds of non-local Feynman–Kac semigroups have been considered. In this paper we also deal with non-local Feynman–Kac transforms and extended Theorem 1.1 to symmetric Markov processes with non-local Feynman–Kac functional (Theorem 2.1). The existence of ground states implies the existence of a quasi-stationary distribution,  $\eta(B) := \int_B \phi_0(x) dm(x) / \int_X \phi_0(x) dm(x)$ . In [16], they prove that if a Markov semigroup is intrinsically ultracontractive, then the measure  $\eta$  is the so-called Yaglom limit and a unique quasi-stationary distribution. In the last section, we will give an extension of this fact to generalized Feynman–Kac semigroups by employing Fukushima's ergodic theorem.

#### 2. Symmetric Markov processes with non-local Feynman–Kac functionals

Let *X* be a locally compact separable metric space and  $\mathcal{B}(X)$  the Borel  $\sigma$ -field. Adjoining an extra point  $\infty$  to the measurable set  $(X, \mathcal{B}(X))$ , we set  $X_{\infty} = X \cup \{\infty\}$ and  $\mathcal{B}(X_{\infty}) = \mathcal{B}(X) \cup \{B \cup \{\infty\} : B \in \mathcal{B}(X)\}$ . Let  $\mathbf{M} = (\Omega, X_t, \mathbb{P}_x, \zeta)$  be a right Markov process on *X* with lifetime  $\zeta := \inf\{t > 0 : X_t = \infty\}$ . We define the semigroup and the resolvent by

$$p_t f(x) = \mathbb{E}_x(f(X_t); t < \zeta), \quad R_\beta f(x) = \int_0^\infty e^{-\beta t} p_t f(x) dt$$

for a bounded Borel function f on X. We assume that the Markov process **M** is *m*-symmetric,  $(p_t f, g)_m = (f, p_t g)_m$ , where *m* is a positive Radon measure with full support. Let  $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$  be the Dirichlet form on  $L^2(X; m)$  generated by **M**:

(2.1) 
$$\begin{cases} \mathcal{D}(\mathcal{E}) = \left\{ u \in L^2(X; m) \colon \lim_{t \to 0} \frac{1}{t} (u - p_t u, u)_m < \infty \right\},\\ \mathcal{E}(u, v) = \lim_{t \to 0} \frac{1}{t} (u - p_t u, v)_m. \end{cases}$$

For basic materials on right processes and associated Dirichlet forms (quasi-regular Dirichlet forms), we refer to [7], [18].

We impose three assumptions on M.

(I) (*Irreducibility*) If a Borel set A is  $p_t$ -invariant, i.e.,  $p_t(1_A f)(x) = 1_A p_t f(x)$ *m*-a.e. for any  $f \in L^2(X; m) \cap \mathcal{B}_b(X)$  and t > 0, then A satisfies either m(A) = 0or  $m(X \setminus A) = 0$ . Here  $\mathcal{B}_b(X)$  is the space of bounded Borel functions on X. (II) (*Strong Feller property*) For each t,  $p_t(\mathcal{B}_b(X)) \subset C_b(X)$ , where  $C_b(X)$  is the space of bounded continuous functions on X.

(III) (*Tightness*) For any  $\epsilon > 0$ , there exists a compact set K such that

$$\sup_{x\in X} R_1 \mathbf{1}_{K^c}(x) \leq \epsilon$$

Here  $1_{K^c}$  is the indicator function of the complement of the compact set K.

The assumption (II) implies that **M** satisfies the *absolute continuity condition*, that is, its transition probability  $p_t(x, \cdot)$  is absolutely continuous with respect to *m* for each t > 0 and  $x \in X$ . As a result, the resolvent kernel is also absolutely continuous with respect to *m*,  $R_{\beta}(x, dy) = R_{\beta}(x, y)m(dy)$ . By [14, Lemma 4.2.4] the density  $R_{\beta}(x, y)$ is assumed to be a non-negative Borel function such that  $R_{\beta}(x, y)$  is symmetric and  $\beta$ excessive in *x* and in *y*. Under the absolute continuity condition, "quasi everywhere" statements are strengthened to "everywhere" ones. Moreover, we can defined notions without exceptional set, for example, *smooth measures in the strict sense* or *positive continuous additive functional in the strict sense* (cf. [14, Section 5.1]). Here we only treat the notions in the strict sense and omit the phrase "in the strict sense".

We denote  $S_{00}$  the set of positive Borel measures  $\mu$  such that  $\mu(X) < \infty$  and  $R_1\mu(x) (= \int_X R_1(x, y)\mu(dy))$  is uniformly bounded in  $x \in X$ . A positive Borel measure  $\mu$  on X is said to be *smooth* if there exists a sequence  $\{E_n\}_{n=1}^{\infty}$  of Borel sets increasing to X such that  $1_{E_n} \cdot \mu \in S_{00}$  for each n and

$$\mathbb{P}_x\left(\lim_{n\to\infty}\sigma_{X\setminus E_n}\geq\zeta\right)=1,\quad\forall x\in X,$$

where  $\sigma_{X \setminus E_n}$  is the first hitting time of  $X \setminus E_n$ . The totality of smooth measures is denoted by  $S_1$ .

If an additive functional  $\{A_t\}_{t\geq 0}$  is positive and continuous with respect to t for each  $\omega \in \Lambda$ , it is said to be a *positive continuous additive functional* (PCAF in abbreviation). By [14, Theorem 5.1.7], there exists a one-to-one correspondence between positive smooth measures and PCAF's (*Revuz correspondence*): for each smooth measure  $\mu$ , there exists a unique PCAF  $\{A_t\}_{t\geq 0}$  such that for any positive Borel function f on X and  $\gamma$ -excessive function h ( $\gamma \geq 0$ ), that is,  $e^{-\gamma t} p_t h \leq h$ ,

(2.2) 
$$\lim_{t\to 0} \frac{1}{t} \mathbb{E}_{h\cdot m}\left(\int_0^t f(X_s) \, dA_s\right) = \int_X f(x)h(x)\mu(dx).$$

Here  $\mathbb{E}_{h\cdot m}(\cdot) = \int_X \mathbb{E}_x(\cdot)h(x)m(dx)$ . We denote by  $A_t^{\mu}$  the PCAF corresponding to the smooth measure  $\mu$ . For a signed Borel measure  $\mu = \mu^+ - \mu^-$ , let  $|\mu| = \mu^+ + \mu^-$ . When  $|\mu|$  is a smooth measure, we define  $A_t^{\mu} = A_t^{\mu^+} - A_t^{\mu^-}$  and  $A_t^{|\mu|} = A_t^{\mu^+} + A_t^{\mu^-}$ .

Following Chen [4], we introduce classes of potentials.

DEFINITION 2.1. (i) A signed Borel measure  $\mu$  is said to be the *Kato measure* (in notation,  $\mu \in \mathcal{K}$ ), if  $|\mu| \in S_1$  and

$$\lim_{t\to 0}\sup_{x\in X}\mathbb{E}_x(A_t^{|\mu|})=0.$$

(ii) A measure  $\mu \in \mathcal{K}$  is said to be in the class  $\mathcal{K}_{\infty}$ , if for any  $\epsilon > 0$  there exist a compact subset *K* and a positive constant  $\delta > 0$  such that for all measurable set  $B \subset K$  with  $|\mu|(B) < \delta$ ,

$$\sup_{x\in X}\int_{K^c\cup B}R_1(x, y)|\mu|(dy)\leq \epsilon.$$

(iii) A signed Borel measure  $\mu$  is said to be in the class  $S_{\infty}$ , if for any  $\epsilon > 0$  there exist a compact subset *K* and a positive constant  $\delta > 0$  such that for all measurable set  $B \subset K$  with  $|\mu|(B) < \delta$ ,

$$\sup_{(x,z)\in X\times X\setminus d}\int_{K^c\cup B}\frac{R_1(x,y)R_1(y,z)}{R_1(x,z)}|\mu|(dy)\leq\epsilon.$$

It is known in [2] that  $\mu$  belongs to  $\mathcal{K}$  if and only if

(2.3) 
$$\lim_{\beta \to \infty} \sup_{x \in X} \int_X R_\beta(x, y) |\mu| (dy) = 0,$$

and in [4] that

$$(2.4) S_{\infty} \subset \mathcal{K}_{\infty} \subset \mathcal{K}.$$

We denote that  $(N, H) = (N(x, dy), H_t)$  is the Lévy system of **M**, that is, N is a kernel on  $(X_{\infty}, \mathcal{B}(X_{\infty}))$  with  $N(x, \{x\}) = 0$  and H is a positive continuous additive functional of **M** such that for any non-negative measurable function F on  $X \times X$ vanishing on the diagonal set and any  $x \in X$ ,

$$\mathbb{E}_{x}\left(\sum_{0$$

We denote by  $\mu^{H}$  be the smooth measure corresponding to  $H_{t}$ .

DEFINITION 2.2. Let F be a bounded measurable function on  $X \times X$  vanishing on the diagonal set.

(i) *F* is said to be in the class  $\mathcal{A}_{\infty}$ , if for any  $\epsilon > 0$  there exist a compact subset *K* and a positive constant  $\delta > 0$  such that for all measurable set  $B \subset K$  with  $|\mu|(B) < \delta$ ,

$$\sup_{(x,z)\in X\times X\setminus d} \int_{((K\setminus B)\times (K\setminus B))^c} \frac{R_1(x, y)|F(y, z)|R_1(z, w)}{R_1(x, w)} N(y, dz) \mu^H(dy) \le \epsilon.$$

(ii) F is said to be in the class  $A_2$ , if  $F \in A_\infty$  and

$$\mu_{|F|}(dx) = \left(\int_{X} |F(x, y)| N(x, dy)\right) \mu^{H}(dx) \in \mathcal{S}_{\infty}.$$

For properties and examples of  $\mathcal{A}_{\infty}$  and  $\mathcal{A}_2$ , see [4], [5]. In the remainder of this paper, we assume that *F* is symmetric, F(x, y) = F(y, x). We write  $\mu + F \in \mathcal{K}_{\infty} + \mathcal{A}_2$  if  $\mu \in \mathcal{K}_{\infty}$  and  $F \in \mathcal{A}_2$ .

For  $\mu + F \in \mathcal{K}_{\infty} + \mathcal{A}_2$  define the AF  $A_t^{\mu+F}$  by

$$A_t^{\mu+F} = A_t^{\mu} + \sum_{0 < s \le t} F(X_{s-}, X_s),$$

and the generalized Feynman–Kac semigroup  $\{p_t^{\mu+F}\}_{t\geq 0}$  by

$$p_t^{\mu+F}f(x) = \mathbb{E}_x\left(e^{A_t^{\mu+F}}f(X_t); t < \zeta\right), \quad f \in \mathcal{B}_b(X).$$

For  $F \in A_2$ , we define the symmetric Dirichlet form  $(\mathcal{E}_F, \mathcal{D}(\mathcal{E}))$  as follows: for  $u, v \in \mathcal{D}(\mathcal{E})$ 

(2.5) 
$$\mathcal{E}_{F}(u, v) = \mathcal{E}^{(c)}(u, v) + \mathcal{E}^{(k)}(u, v) + \frac{1}{2} \int_{X \times X} (u(x) - u(y))(v(x) - v(y))e^{F(x,y)}N(x, dy)\mu^{H}(dx),$$

where  $\mathcal{E}^{(c)}$  and  $\mathcal{E}^{(k)}$  are the local part and the killing part of the Dirichlet form  $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ in Beurling–Deny formula ([14, Theorem 3.2.1]). Fundamental properties of non-local Feynman–Kac transforms were earlier studied by J. Ying [31], [32]. It is known in [8] that  $\{p_t^{\mu+F}\}_{t\geq 0}$  is the semigroup generated by the Schrödinger form  $(\mathcal{E}^{\mu+F}, \mathcal{D}(\mathcal{E}))$ :

(2.6) 
$$\mathcal{E}^{\mu+F}(u,v) = \mathcal{E}_F(u,v) - \int_X u(x)v(x) \, d\mu_{F_1}(x) - \int_X u(x)v(y) \, d\mu(x),$$

where  $F_1 = \exp(F) - 1$ . The form  $\mathcal{E}^{\mu+F}$  is also written as

$$\mathcal{E}^{\mu+F}(u, v) = \mathcal{E}(u, v) - \int_{X \times X} u(x)v(y)F_1(x, y)N(x, dy) d\mu^H(y)$$
$$- \int_X u(x)v(x)d\mu(x), \quad u, v \in \mathcal{D}(\mathcal{E}).$$

Let  $\mathcal{P}$  be the set of probability measures on X equipped with the weak topology. We define the function  $I^{\mu+F}$  on  $\mathcal{P}$  by

$$I^{\mu+F}(\nu) = \begin{cases} \mathcal{E}^{\mu+F}(\sqrt{f}, \sqrt{f}) & \text{if } \nu = f \cdot m, \ \sqrt{f} \in \mathcal{D}(\mathcal{E}), \\ \infty & \text{otherwise.} \end{cases}$$

Let  $\mu + F \in \mathcal{K}_{\infty} + \mathcal{A}_2$  and define  $\kappa(\mu + F)$  by

$$\kappa(\mu+F) = \lim_{t\to\infty} \frac{1}{t} \log \|p_t^{\mu+F}\|_{\infty,\infty}.$$

We see from [1] that  $\kappa(\mu + F)$  is finite. If  $\alpha > \kappa(\mu + F)$  and  $f \in \mathcal{B}_b(X)$ , we define the resolvent  $R_{\alpha}^{\mu+F}$  by

$$R_{\alpha}^{\mu+F}f(x) = \mathbb{E}_x\left(\int_0^{\infty} e^{-\alpha t + A_t^{\mu+F}}f(X_t) \, dt\right).$$

We set

$$\mathcal{D}_{+}(\mathcal{H}^{\mu+F}) = \left\{ R_{\alpha}^{\mu+F} f \colon \alpha > \kappa(\mu+F), \ f \in L^{2}(X;m) \cap C_{b}(X), \ f \ge 0 \text{ and } f \neq 0 \right\}.$$

Each function  $\phi = R_{\alpha}^{\mu+F} f \in \mathcal{D}_{+}(\mathcal{H}^{\mu+F})$  is strictly positive because  $\mathbb{P}_{x}(\sigma_{O} < \zeta) > 0$  for any  $x \in X$  by the assumption (I). Here *O* is a non-empty open set  $\{x \in X : f(x) > 0\}$ and  $\sigma_{O} = \inf\{t > 0 : X_{t} \in O\}$ . We define the generator  $\mathcal{H}^{\mu+F}$  by

$$\mathcal{H}^{\mu+F}u = \alpha u - f, \quad u = R^{\mu+F}_{\alpha}f \in \mathcal{D}_+(\mathcal{H}^{\mu+F}).$$

Let *h* be the function defined by  $h(x) = \mathbb{E}_x(\exp(A_{\zeta}^{\mu+F}))$ . We may assume that  $\mu + F$  is gaugeable, that is,  $\sup_{x \in X} h(x) < \infty$ . In fact, it is enough to prove Theorem 2.1 and Theorem 4.1 below for the  $\beta$ -subprocess,  $\mathbb{P}_x^{(\beta)} = e^{-\beta t} \mathbb{P}_x$ . Moreover, we see that every  $\mu + F \in \mathcal{K}_{\infty} + \mathcal{A}_2$  becomes gaugeable with respect to the  $\beta$ -subprocess of **M** for a large enough  $\beta$ . In fact, we see from [5, Theorem 3.4] that  $\mu + F \in \mathcal{K}_{\infty} + \mathcal{A}_2$  is gaugeable with respect to the  $\beta$ -subprocess if and only if

(2.7) 
$$\inf \left\{ \mathcal{E}_F(u,u) + \int_X u(x)^2 (\mu^- + \mu_{F_1^-}) (dx) + \beta \int_X u(x)^2 m(dx) + \beta \int_X u(x)^2 (\mu^+ + \mu_{F_1^+}) (dx) = 1 \right\} > 1,$$

where  $F_1^+$  and  $F_1^-$  is the positive and negative part of  $F_1$ . Since by (3.1)

$$\mathcal{E}_{F}(u, u) + \int_{X} u(x)^{2} (\mu^{-} + \mu_{F_{1}^{-}})(dx) + \beta \int_{X} u(x)^{2} m(dx)$$
  

$$\geq e^{-\|F^{-}\|_{\infty}} \left( \mathcal{E}(u, u) + \beta \int_{X} u(x)^{2} m(dx) \right) \geq \frac{e^{-\|F^{-}\|_{\infty}}}{\|R_{\beta}(\mu^{+} + \mu_{F_{1}^{+}})\|_{\infty}},$$

and the right hand side tends to  $\infty$  as  $\beta \to \infty$  because of  $\mu^+ + \mu_{F_1^+} \in \mathcal{K}$ , (2.7) holds for a large  $\beta$ .

We define the function  $I_h$  on  $\mathcal{P}$  by

(2.8) 
$$I_h(v) = -\inf_{\substack{\phi \in \mathcal{D}_+(\mathcal{H}^{n+F})\\\epsilon > 0}} \int_X \frac{\mathcal{H}^{\mu+F}\phi}{\phi + \epsilon h} dv.$$

The gauge function h(x) satisfies  $0 < c \le h(x) \le C < \infty$ . Indeed, it follows from Proposition 2.2 in [4] and (2.4) that for  $\mu \in \mathcal{K}_{\infty}$  and  $F \in \mathcal{A}_2$ ,  $\sup_{x \in X} \mathbb{E}_x(A_{\zeta}^{|\mu|+|F|}) < \infty$ . Hence, by Jensen's inequality,

$$\inf_{x \in X} \mathbb{E}_x(\exp(A_{\zeta}^{\mu+F})) \ge \exp\left(-\sup_{x \in X} \mathbb{E}_x(A_{\zeta}^{|\mu|+|F|})\right) > 0.$$

Let us define the function  $I_{\alpha}$  on  $\mathcal{P}$  by

$$I_{\alpha}(v) = -\inf_{\substack{u \in \mathcal{B}_{b}^{+}(X)\\\epsilon > 0}} \int_{X} \log\left(\frac{\alpha R_{\alpha}^{\mu+F}u + \epsilon h}{u + \epsilon h}\right) dv$$

Lemma 2.1. It holds that

$$I_{\alpha}(\nu) \leq \frac{I_{h}(\nu)}{\alpha}, \quad \nu \in \mathcal{P}.$$

Proof. For  $u = R_{\alpha}^{\mu+F} f \in \mathcal{D}_{+}(\mathcal{H}^{\mu+F})$  and  $\epsilon > 0$ , set

$$\phi(\alpha) = -\int_X \log\left(\frac{\alpha R_{\alpha}^{\mu+F} u + \epsilon h}{u + \epsilon h}\right) d\nu.$$

Then, noting that  $(d/d\alpha)(R_{\alpha}^{\mu+F}u) = -R_{\alpha}^{\mu+F}(R_{\alpha}^{\mu+F}u) = -(R_{\alpha}^{\mu+F})^2 u$ , we have

$$\frac{d\phi}{d\alpha}(\alpha) = -\int_X \frac{R_\alpha^{\mu+F}u - \alpha(R_\alpha^{\mu+F})^2 u}{\alpha R_\alpha^{\mu+F}u + \epsilon h} \, d\nu = \int_X \frac{\mathcal{H}^{\mu+F}(R_\alpha^{\mu+F})^2 u}{\alpha R_\alpha^{\mu+F}u + \epsilon h} \, d\nu.$$

Since

$$(\alpha (R_{\alpha}^{\mu+F})^{2}u - R_{\alpha}^{\mu+F}u)(\alpha^{2}(R_{\alpha}^{\mu+F})^{2}u + \epsilon h)$$
$$-(\alpha (R_{\alpha}^{\mu+F})^{2}u - R_{\alpha}^{\mu+F}u)(\alpha R_{\alpha}^{\mu+F}u + \epsilon h)$$

equals  $\alpha(\alpha(R_{\alpha}^{\mu+F})^2u - R_{\alpha}^{\mu+F}u)^2 \ge 0$ , we have

$$\frac{\alpha(R_{\alpha}^{\mu+F})^2u-R_{\alpha}^{\mu+F}u}{\alpha R_{\alpha}^{\mu+F}u+\epsilon h}\geq \frac{\alpha(R_{\alpha}^{\mu+F})^2u-R_{\alpha}^{\mu+F}u}{\alpha^2(R_{\alpha}^{\mu+F})^2u+\epsilon h},$$

and thus

$$\int_{X} \frac{\mathcal{H}^{\mu+F}(R^{\mu+F}_{\alpha})^{2}u}{\alpha R^{\mu+F}_{\alpha}u+\epsilon h} dv \geq \int_{X} \frac{\mathcal{H}^{\mu+F}(R^{\mu+F}_{\alpha})^{2}u}{\alpha^{2}(R^{\mu+F}_{\alpha})^{2}u+\epsilon h} dv$$
$$= -\frac{1}{\alpha^{2}} \left( -\int_{X} \frac{\mathcal{H}^{\mu+F}(R^{\mu+F}_{\alpha})^{2}u}{(R^{\mu+F}_{\alpha})^{2}u+\epsilon h/\alpha^{2}} dv \right)$$
$$\geq -\frac{1}{\alpha^{2}} I_{h}(v).$$

Therefore

$$\phi(\infty) - \phi(\alpha) = \int_X \log\left(\frac{\alpha R_{\alpha}^{\mu+F} u + \epsilon h}{u + \epsilon h}\right) d\nu \ge -\frac{I_h(\nu)}{\alpha},$$

which implies

$$-\inf_{\substack{u\in\mathcal{D}_+(\mathcal{H}^{\mu+F})\\\epsilon>0}}\int_X\log\left(\frac{\alpha\,R_\alpha^{\mu+F}u+\epsilon h}{u+\epsilon h}\right)d\nu\leq\frac{I_h(\nu)}{\alpha}.$$

Since  $\|\beta R_{\beta}^{\mu+F} f\|_{\infty} \leq C \|f\|_{\infty}, \beta > 0$ , and  $\beta R_{\beta}^{\mu+F} f(x) \to f(x)$  as  $\beta \to \infty$ ,

(2.9) 
$$\int_{X} \log\left(\frac{\alpha R_{\alpha}^{\mu+F}(\beta R_{\beta}^{\mu+F}f) + \epsilon h}{\beta R_{\beta}^{\mu+F}f + \epsilon h}\right) d\nu \xrightarrow{\beta \to \infty} \int_{X} \log\left(\frac{\alpha R_{\alpha}^{\mu+F}f + \epsilon h}{f + \epsilon h}\right) d\nu.$$

Define the measure  $v_{\alpha}$  by

$$\nu_{\alpha}(A) = \int_{X} \alpha R_{\alpha}^{\mu+F}(x, A) \, d\nu(x), \quad A \in \mathcal{B}(X).$$

Given  $v \in \mathcal{B}_b^+(X)$ , take a sequence  $\{g_n\}_{n=1}^{\infty} \subset C_b^+(X) \cap L^2(X; m)$  such that

$$\int_X |v - g_n| \, d(v_\alpha + v) \to 0 \quad \text{as} \quad n \to \infty.$$

We then have

$$\int_{X} |\alpha R_{\alpha}^{\mu+F} v - \alpha R_{\alpha}^{\mu+F} g_{n}| dv \leq \int_{X} \alpha R_{\alpha}^{\mu+F}(|v - g_{n}|) dv = \int_{X} |v - g_{n}| dv_{\alpha} \to 0$$

as  $n \to \infty$ , and so

(2.10) 
$$\int_X \log\left(\frac{\alpha R_{\alpha}^{\mu+F} g_n + \epsilon h}{g_n + \epsilon h}\right) d\nu \xrightarrow{n \to \infty} \int_X \log\left(\frac{\alpha R_{\alpha}^{\mu+F} v + \epsilon h}{v + \epsilon h}\right) d\nu.$$

Hence, combining (2.9) and (2.10)

$$\inf_{u\in\mathcal{D}_+(\mathcal{H}^{\mu+F})}\int_X\log\left(\frac{\alpha\,R_{\alpha}^{\mu+F}u+\epsilon h}{u+\epsilon h}\right)d\nu=\inf_{u\in\mathcal{B}_b^+(X)}\int_X\log\left(\frac{\alpha\,R_{\alpha}^{\mu+F}u+\epsilon h}{u+\epsilon h}\right)d\nu,$$

which implies the lemma.

**Lemma 2.2.** If  $I_h(v) < \infty$ , then v is absolutely continuous with respect to m.

Proof. By a similar argument in the proof of [12, Lemma 4.1], we obtain this lemma. Indeed, for a > 0 and  $A \in \mathcal{B}(X)$ , set  $u(x) = a \mathbf{1}_A(x) + 1 \in \mathcal{B}_b^+(X)$ . Then

$$\int_X \log\left(\frac{\alpha R_{\alpha}^{\mu+F}u + \epsilon h}{u + \epsilon h}\right) d\nu = \int_X \log\left(\frac{a\alpha R_{\alpha}^{\mu+F}(x, A) + \alpha R_{\alpha}^{\mu+F}(x, X) + \epsilon h}{a1_A(x) + 1 + \epsilon h}\right) d\nu.$$

Define the measure  $\nu_{\alpha}$  as in the proof of Lemma 2.1. Put

$$c_{\alpha} = \int_{X} \alpha R_{\alpha}^{\mu+F}(x, X) \, d\nu(x) \quad (= \nu_{\alpha}(X)).$$

We see from Lemma 2.1 and Jensen's inequality that

$$\log(a\nu_{\alpha}(A) + c_{\alpha} + \epsilon h) \ge \nu(A)\log(a + 1 + \epsilon h) + \nu(A^{c})(1 + \epsilon h) - \frac{I_{h}(\nu)}{\alpha},$$

and by letting  $\epsilon \to 0$ 

$$\log(a\nu_{\alpha}(A) + c_{\alpha}) \ge \nu(A)\log(a+1) - \frac{I_{h}(\nu)}{\alpha}$$

Since  $\log x \le x - 1$  for x > 0, we have

$$a\nu_{\alpha}(A) + c_{\alpha} - 1 \ge \nu(A)\log(a+1) - \frac{I_h(\nu)}{\alpha},$$

and so

$$\nu_{\alpha}(A) - \nu(A) \geq \frac{-I_h(\nu)/\alpha + \nu(A)(\log(a+1) - a) + 1 - c_{\alpha}}{a}.$$

Noting that  $\log(a + 1) - a < 0$ , we have

$$\nu_{\alpha}(A) - \nu(A) \ge \frac{-I_h(\nu)/\alpha + (\log(a+1) - a) + 1 - c_{\alpha}}{a}$$

for all  $A \in \mathcal{B}(X)$  and

$$\nu(A) - \nu_{\alpha}(A) = 1 - c_{\alpha} + (\nu_{\alpha}(A^{c}) - \nu(A^{c}))$$

$$\geq \frac{-I_{h}(\nu)/\alpha + (\log(a+1) - a) + (1 - c_{\alpha})(a+1)}{a}$$

for all  $A \in \mathcal{B}(X)$ . Therefore we can conclude that

$$\sup_{A \in \mathcal{B}(X)} |\nu(A) - \nu_{\alpha}(A)| \le \frac{a - \log(a+1) + I_h(\nu)/\alpha + (1 - c_{\alpha})(a+1)}{a}.$$

Note that  $c_{\alpha} \to 1$  as  $\alpha \to \infty$ . Then since

$$\limsup_{\alpha \to \infty} \sup_{A \in \mathcal{B}(X)} |\nu(A) - \nu_{\alpha}(A)| \le \frac{a - \log(a+1)}{a}$$

and the right-hand side converges to 0 as  $a \rightarrow 0$ , the lemma follows.

**Proposition 2.1.** It holds that for  $v \in \mathcal{P}$ 

$$I_h(\nu) = I^{\mu+F}(\nu).$$

Proof. We follow the argument of the proof of [12, Theorem 5]. Suppose that  $I_h(\nu) = l < \infty$ . By Lemma 2.2,  $\nu$  is absolutely continuous with respect to m. Let us denote by f its density and let  $f^n = \sqrt{f} \wedge n$ . Since  $\log(1-x) \leq -x$  for  $-\infty < x < \infty$ 1 and

$$-\infty < \frac{f^n - \alpha R^{\mu+F}_{\alpha} f^n}{f^n + \epsilon h} < 1,$$

we have

$$\int_{X} \log\left(\frac{\alpha R_{\alpha}^{\mu+F} f^{n} + \epsilon h}{f^{n} + \epsilon h}\right) f \, dm = \int_{X} \log\left(1 - \frac{f^{n} - \alpha R_{\alpha}^{\mu+F} f^{n}}{f^{n} + \epsilon h}\right) f \, dm$$
$$\leq -\int_{X} \frac{f^{n} - \alpha R_{\alpha}^{\mu+F} f^{n}}{f^{n} + \epsilon h} f \, dm,$$

and then

$$\int_X \frac{f^n - \alpha R_{\alpha}^{\mu + F} f^n}{f^n + \epsilon h} f \, dm \leq I_{\alpha}(f \cdot m).$$

By letting  $n \to \infty$  and  $\epsilon \to 0$ , we have

$$\int_X \sqrt{f}(\sqrt{f} - \alpha R_{\alpha}^{\mu+F}\sqrt{f}) \, dm \leq I_{\alpha}(f \cdot m) \leq \frac{I_h(f \cdot m)}{\alpha},$$

which implies that  $\sqrt{f} \in \mathcal{D}(\mathcal{E})$  and  $\mathcal{E}^{\mu+F}(\sqrt{f}, \sqrt{f}) \leq I_h(f \cdot m)$ . Let  $\phi \in \mathcal{D}_+(\mathcal{H}^{\mu+F})$  and define the semigroup  $P_t^{\phi}$  by

$$P_t^{\phi}f(x) = \mathbb{E}_x \bigg( e^{A_t^{\mu+F}} \frac{(\phi+\epsilon h)(X_t)}{(\phi+\epsilon h)(X_0)} \exp\bigg( -\int_0^t \frac{\mathcal{H}^{\mu+F}\phi}{\phi+\epsilon h}(X_s) ds \bigg) f(X_t) \bigg).$$

Then,  $P_t^{\phi}$  is  $(\phi + \epsilon h)^2 m$ -symmetric and satisfies  $P_t^{\phi} 1 \leq 1$ . Given  $\nu = f \cdot m \in \mathcal{P}$  with  $\sqrt{f} \in \mathcal{D}(\mathcal{E})$ , set

$$S_t^{\phi}\sqrt{f}(x) = \mathbb{E}_x \left( e^{A_t^{\mu+F}} \exp\left( -\int_0^t \frac{\mathcal{H}^{\mu+F}\phi}{\phi+\epsilon h}(X_s) \, ds \right) \sqrt{f}(X_t) \right).$$

Then

$$\begin{split} \int_X (S_t^\phi \sqrt{f})^2 \, dm &= \int_X (\phi + \epsilon h)^2 \left( P_t^\phi \left( \frac{\sqrt{f}}{\phi + \epsilon h} \right) \right)^2 \, dm \\ &\leq \int_X (\phi + \epsilon h)^2 P_t^\phi \left( \left( \frac{\sqrt{f}}{\phi + \epsilon h} \right)^2 \right) \, dm \\ &\leq \int_X (\phi + \epsilon h)^2 \left( \frac{\sqrt{f}}{\phi + \epsilon h} \right)^2 \, dm \\ &= \int_X f \, dm. \end{split}$$

Hence

$$0 \leq \lim_{t \to 0} \frac{1}{t} (\sqrt{f} - S_t^{\phi} \sqrt{f}, \sqrt{f})_m = \mathcal{E}^{\mu + F} (\sqrt{f}, \sqrt{f}) + \int_X \frac{\mathcal{H}^{\mu + F} \phi}{\phi + \epsilon h} f \, dm,$$

and thus  $\mathcal{E}^{\mu+F}(\sqrt{f}, \sqrt{f}) \geq I_h(f \cdot m).$ 

We now obtain a generalization of Theorem 1.1 in exactly the same way as the proof of it (cf. [10], [28]):

**Theorem 2.1** ([24]). Assume (I), (II) and (III). Suppose that  $\mu + F \in \mathcal{K}_{\infty} + \mathcal{A}_2$ . (i) For each open set  $G \subset \mathcal{P}$ 

$$\liminf_{t\to\infty}\frac{1}{t}\log\mathbb{E}_x(e^{A_t^{\mu+F}}; L_t\in G, t<\zeta)\geq -\inf_{\nu\in G}I^{\mu+F}(\nu).$$

(ii) For each closed set  $K \subset \mathcal{P}$ 

$$\limsup_{t\to\infty}\frac{1}{t}\log\sup_{x\in X}\mathbb{E}_x(e^{A_t^{\mu+F}}; L_t\in K, t<\zeta)\leq -\inf_{\nu\in K}I^{\mu+F}(\nu).$$

## 3. The existence of ground states

We first recall an inequality ([19]): for  $\mu \in \mathcal{K}$ ,

(3.1) 
$$\int_X \tilde{u}^2 d\mu \leq ||R_{\alpha}\mu||_{\infty} (\mathcal{E}(u, u) + \alpha(u, u)_m), \quad u \in \mathcal{D}(\mathcal{E}).$$

Let  $\lambda_2(\mu + F)$  be the bottom of the spectrum of  $\mathcal{H}^{\mu+F}$ :

(3.2) 
$$\lambda_2(\mu + F) = \inf\{\mathcal{E}^{\mu + F}(u, u) \colon u \in \mathcal{D}(\mathcal{E}), \|u\|_2 = 1\}.$$

**Proposition 3.1.** Assume (I), (II) and (III). There exists a unique ground state  $\phi_0 \in \mathcal{D}(\mathcal{E})$ :  $\lambda_2(\mu + F) = \mathcal{E}^{\mu+F}(\phi_0, \phi_0)$ .

Proof. Let  $\{u_n\}$  be a minimizing sequence of the right-hand side of (3.2), i.e.,  $\|u_n\|_2 = 1$  and  $\lambda_2(\mu + F) = \lim_{n\to\infty} \mathcal{E}^{\mu+F}(u_n, u_n)$ . Put  $\mu' = |\mu| + |\mu_{F_1}|$ . Since  $\mathcal{E}(u_n, u_n) \leq c \cdot \mathcal{E}_F(u_n, u_n)$  ( $c = \exp(-\|F\|_{\infty})$ ) and  $\int_X u_n^2 d\mu' \leq \|R_{\alpha}\mu'\|_{\infty} \cdot (\mathcal{E}(u_n, u_n) + \alpha)$ ,

$$\mathcal{E}^{\mu+F}(u_n, u_n) = \mathcal{E}_F(u, u) - \int_X u_n^2 d\mu'$$
  

$$\geq \frac{1}{c} \mathcal{E}(u_n, u_n) - \|R_\alpha \mu'\|_\infty (\mathcal{E}(u_n, u_n) + \alpha)$$
  

$$= \left(\frac{1}{c} - \|R_\alpha \mu'\|_\infty\right) \mathcal{E}(u_n, u_n) - \alpha \|R_\alpha \mu'\|_\infty.$$

Taking  $\alpha$  large enough so that  $c \| R_{\alpha} \mu' \|_{\infty} < 1$  on account of (2.3), we have

$$\sup_{n} \mathcal{E}(u_n, u_n) \leq \frac{c(\sup_{n} \mathcal{E}^{\mu+F}(u_n, u_n) + \alpha \|R_{\alpha}\mu'\|_{\infty})}{1 - c \|R_{\alpha}\mu'\|_{\infty}} < \infty$$

We see from the assumption (III) that for any  $\epsilon > 0$  there exists a compact set K such that

$$\sup_{n}\int_{K^{\epsilon}}u_{n}^{2}\,dm\leq \|R_{1}1_{K^{\epsilon}}\|_{\infty}\cdot\left(\sup_{n}\mathcal{E}(u_{n},\,u_{n})+1\right)<\epsilon.$$

As a result, the subset  $\{u_n^2 \cdot m\}$  of  $\mathcal{P}$  is tight. Hence there exists a subsequence  $u_{n_k}^2 \cdot m$  which converges to a probability measure  $\nu$  weakly. Since the function  $I^{\mu+F}$  is lower semi-continuous by Proposition 2.1,

$$I^{\mu+F}(\nu) \leq \liminf_{k\to\infty} I^{\mu+F}(u_{n_k}^2 \cdot m) = \liminf_{k\to\infty} \mathcal{E}^{\mu+F}(u_{n_k}, u_{n_k}) < \infty.$$

Therefore  $\nu$  can be written as  $\nu = \phi_0^2 m$ ,  $\phi_0 \in \mathcal{D}(\mathcal{E})$  by Proposition 2.1 and  $\lambda_2(\mu + F) = \mathcal{E}^{\mu+F}(\phi_0, \phi_0)$ , that is,  $\phi_0$  is the ground state. The uniqueness of the ground state follows from the irreducibility (I) (e.g. [9, Proposition 1.4.3]).

We also know from the proof above that the level set  $\{v \in \mathcal{P} : I^{v+F}(v) \leq l\}$  is compact.

### 4. Large deviations from ground states

Given  $\omega \in \Omega$  with  $0 < t < \zeta(\omega)$ , we define the occupation distribution  $L_t(\omega) \in \mathcal{P}$  by

$$L_t(\omega)(A) = \frac{1}{t} \int_0^t 1_A(X_s(\omega)) \, ds$$

for a Borel set A of X, where  $1_A$  is the indicator function of the set A.

Define the probability measure  $Q_{x,t}$  on  $\mathcal{P}$  by

(4.1) 
$$Q_{x,t}(B) = \frac{\mathbb{E}_x(e^{A_t^{\mu+F}}; L_t \in B, t < \zeta)}{\mathbb{E}_x(e^{A_t^{\mu+F}}; t < \zeta)}, \quad B \in \mathcal{B}(\mathcal{P}).$$

We define the function J on  $\mathcal{P}$  by

(4.2) 
$$J(\nu) = I^{\mu+F}(\nu) - \lambda_2(\mu+F).$$

We then have the next lemma by Proposition 2.1 and Proposition 3.1.

**Lemma 4.1.** The function J satisfies:

- (i)  $0 \leq J(v) \leq \infty$ .
- (ii) J is lower semicontinuous.
- (iii) For each  $l < \infty$ , the set  $\{v \in \mathcal{P} : J(v) \leq l\}$  is compact.
- (iv)  $J(\phi_0^2 \cdot m) = 0$  and J(v) > 0 for  $v \neq \phi_0^2 \cdot m$ .

REMARK 4.1. Let  $(\mathcal{E}^{\phi_0}, \mathcal{D}(\mathcal{E}^{\phi_0}))$  the bilinear form on  $L^2(X; \phi_0^2 m)$  defined by

$$\begin{cases} \mathcal{E}^{\phi_0}(u, v) = \mathcal{E}^{\mu+F}(u\phi_0, u\phi_0) - \lambda_2(\mu+F)(u\phi_0, u\phi_0)_m, \\ \mathcal{D}(\mathcal{E}^{\phi_0}) = \{ u \in L^2(X; \phi_0^2m) \colon u\phi_0 \in \mathcal{D}(\mathcal{E}) \}. \end{cases}$$

We then see that  $(\mathcal{E}^{\phi_0}, \mathcal{D}(\mathcal{E}^{\phi_0}))$  is a Dirichlet form and  $\mathcal{E}^{\phi_0}$  is expressed by

$$\mathcal{E}^{\phi_0}(u, v) = \int_X \phi_0^2 d\mu_{\langle u, v \rangle}^c + \int_{X \times X \setminus \Delta} (u(x) - u(y))(v(x) - v(y))\phi_0(x)\phi_0(y)J(dx, dy).$$

Here  $\mu_{(u,v)}^c$  is the local part of energy measure ([6]). We then see that

$$J(\nu)=I_{\mathcal{E}^{\phi_0}}(\nu),$$

where  $I_{\mathcal{E}^{\phi_0}}$  is defined by

(4.3) 
$$I_{\mathcal{E}^{\phi_0}}(\nu) = \begin{cases} \mathcal{E}^{\phi_0}(\sqrt{f}, \sqrt{f}) & \text{if } \nu = f \cdot \phi_0^2 m, \ \sqrt{f} \in \mathcal{D}(\mathcal{E}^{\phi_0}), \\ \infty & \text{otherwise.} \end{cases}$$

We then have the main theorem:

**Theorem 4.1.** Assume (I), (II) and (III). Let  $\mu + F \in \mathcal{K}_{\infty} + \mathcal{A}_2$ . Let  $\{Q_{x,t}\}_{t>0}$  be a family of probability measures defined in (4.1). Then  $\{Q_{x,t}\}_{t>0}$  obeys a large deviation principle with rate function J: (1) For each energy at  $C \in \mathcal{P}$ .

(1) For each open set  $G \subset \mathcal{P}$ 

$$\liminf_{t\to\infty}\frac{1}{t}\log Q_{x,t}(G)\geq -\inf_{\nu\in G}J(\nu).$$

(2) For each closed set  $K \subset \mathcal{P}$ 

$$\limsup_{t\to\infty}\frac{1}{t}\log Q_{x,t}(K)\leq -\inf_{\nu\in K}J(\nu).$$

**Corollary 4.1.** The measure  $Q_{x,t}$  converges to  $\delta_{\phi_0^2,m}$  weakly.

Proof. If a closed set *K* does not contain  $\phi_0^2 \cdot m$ , then  $\inf_{x \in K} J(x) > 0$  by Lemma 4.1 (iv). Hence Theorem 4.1 (ii) says that  $\lim_{t\to\infty} Q_{x,t}(K) = 0$  and  $\lim_{t\to\infty} Q_{x,t}(K^c) = 1$ . For a positive constant  $\delta$  and a bounded continuous function *f* on the set of  $\mathcal{P}$ , define the closed set  $K \subset \mathcal{P}$  by  $K = \{v \in \mathcal{P} : |f(v) - f(\phi_0^2 \cdot m)| \ge \delta\}$ . Then we have

$$\begin{split} \left| \int_{\mathcal{P}} f(v) Q_{x,t}(dv) - f(\phi_0^2 \cdot m) \right| &\leq \int_{\mathcal{P}} |f(v) - f(\phi_0^2 \cdot m)| Q_{x,t}(dv) \\ &= \int_{K} |f(v) - f(\phi_0^2 \cdot m)| Q_{x,t}(dv) + \int_{K^c} |f(v) - f(\phi_0^2 \cdot m)| Q_{x,t}(dv) \\ &\leq \delta Q_{x,t}(K^c) + 2 \|f\|_{\infty} Q_{x,t}(K) \to \delta \end{split}$$

as  $t \to \infty$ . Since  $\delta$  is arbitrary, the weak convergence follows.

On account of Corollary 4.1, we can regard Theorem 4.1 as a genuine large deviation principle from the ground state.

#### 5. Quasistationary distribution

In this section, we consider the existence of quasi-stationary distributions as an application of the existence of ground states. We continue with the setting of the preceding section.

Define the semigroup  $\{p_t^{\phi_0}\}_{t\geq 0}$  on  $L^2(X; \phi_0^2 m)$  generated by  $(\mathcal{E}^{\phi_0}, \mathcal{D}(\mathcal{E}^{\phi_0}))$ , that is

(5.1) 
$$p_t^{\phi_0} f(x) = e^{\lambda_2(\mu+F)t} \frac{1}{\phi_0(x)} \mathbb{E}_x \Big( e^{A_t^{\mu+F}} \phi_0(X_t) f(X_t) \Big).$$

Let  $\mathbf{M}^{\phi_0} = (\Omega, X_t, \mathbb{P}_x^{\phi_0})$  be the  $\phi_0^2 m$ -symmetric Markov process generated by the Markov semigroup  $p_t^{\phi_0}$  in (5.1).

Set

$$\mathcal{P}_0 = \bigg\{ \nu \in \mathcal{P} \colon \int_X \sqrt{p_1^{\mu+F}(x,x)} \, d\nu(x) < \infty, \ \int_X \phi_0(x) \, d\nu(x) < \infty \bigg\}.$$

We then have

**Theorem 5.1.** Assume that  $m(X) < \infty$ . Then for  $v \in \mathcal{P}_0$  and  $B \in \mathcal{B}(X)$ 

$$\lim_{t\to\infty} e^{\lambda_2(\mu+F)t} \mathbb{E}_{\nu} \left( e^{A_t^{\mu+F}}; X_t \in B \right) = \int_X \phi_0 \, d\nu \int_B \phi_0 \, dm$$

Proof. Note that

$$e^{\lambda_2(\mu+F)t}\mathbb{E}_{\nu}\left(e^{A_t^{\mu+F}}; X_t \in B\right) = \int_X \phi_0(x)\mathbb{E}_x^{\phi_0}\left(\frac{1_B}{\phi_0}(X_t)\right) d\nu(x).$$

Let  $\{E_{\lambda}, 0 \leq \lambda < \infty\}$  be the spectral family of  $(\mathcal{E}^{\phi_0}, \mathcal{F}^{\phi_0})$ . Then  $\lim_{t\to\infty} p_t^{\phi_0} f = E_0 f$ in  $L^2(X; \phi_0^2 m)$ . Since  $\mathcal{E}^{\phi_0}(E_0 f, E_0 f) = 0$ ,  $E_0 f$  equals  $\int_X f \phi_0^2 dm$ , *m*-a.e. by the irreducibility of  $(\mathcal{E}^{\phi_0}, \mathcal{F}^{\phi_0})$  (cf. [7, Theorem 5.2.13]). Note that  $p_t^{\phi_0}(x, \cdot) \in L^2(X; \phi_0^2 m)$  because  $\int_X p_t^{\phi_0}(x, y)^2 \phi_0^2(y) dm(y) = p_{2t}^{\phi_0}(x, x) < \infty$ . Put  $c = \int_B \phi_0 dm$ . We then have

(5.2) 
$$\left| \int_{X} \phi_{0}(x) \mathbb{E}_{x}^{\phi_{0}} \left( \frac{1_{B}}{\phi_{0}}(X_{t}) \right) d\nu(x) - \int_{X} \phi_{0} \, d\nu \int_{B} \phi_{0} \, dm \right|$$
$$= \left| \int_{X} \phi_{0}(x) \left( \int_{X} p_{1/2}^{\phi_{0}}(x, y) \left( \mathbb{E}_{y}^{\phi_{0}} \left( \frac{1_{B}}{\phi_{0}}(X_{t-1/2}) \right) - c \right) \phi_{0}(y)^{2} \, dm(y) \right) d\nu(x) \right|.$$

The right-hand side is dominated by

$$\int_{X} \phi_0(x) \sqrt{\int_{X} p_{1/2}^{\phi_0}(x, y)^2 \phi_0^2(y) \, dm(y)} \, d\nu(x) \cdot \sqrt{\int_{X} \left( \mathbb{E}_{y}^{\phi_0} \left( \frac{1_B}{\phi_0}(X_{t-1/2}) \right) - c \right)^2 \phi_0^2(y) \, dm(y)}.$$

Since

$$p_t^{\phi_0}(x, y) = e^{\lambda_2(\mu+F)t} \frac{p_t^{\mu+F}(x, y)}{\phi_0(x)\phi_0(y)}$$

the first factor is equal to

$$\int_X \phi_0(x) \sqrt{p_1^{\phi_0}(x,x)} \, d\nu(x) = e^{(1/2)\lambda_2(\mu+F)} \int_X \sqrt{p_1^{\mu+F}(x,x)} \, d\nu(x)$$

and is finite by the assumption that  $v \in \mathcal{P}_0$ . Hence the right-hand side of (5.2) converges to zero as  $t \to \infty$  because  $1_B/\phi_0 \in L^2(X; \phi_0^2 m)$ .

Let  $\eta$  and  $R_{\nu,t}$  be probability measures on X defined by

(5.3) 
$$\eta(B) = \frac{\int_{B} \phi_{0}(x) \, dm(x)}{\int_{X} \phi_{0}(x) \, dm(x)}, \quad R_{\nu,t}(B) = \frac{\mathbb{E}_{\nu}\left(e^{A_{t}^{\mu+F}}; \, X_{t} \in B\right)}{\mathbb{E}_{\nu}\left(e^{A_{t}^{\mu+F}}; \, t < \zeta\right)} \quad \text{for} \quad B \in \mathcal{B}(X)$$

**Corollary 5.1.** For  $v \in \mathcal{P}_0$  and  $B \in \mathcal{B}(X)$ 

(5.4) 
$$\lim_{t\to\infty} R_{\nu,t}(B) = \eta(B).$$

Note that the Dirac measure  $\delta_x$  belongs to  $\mathcal{P}_0$  and so the distribution  $R_{\delta_x,t}$  converges to  $\eta$  for all  $x \in X$ . Hence Corollary 5.1 says that the semigroup  $\{p_t^{\mu+F}\}_{t\geq 0}$  is *conditionally ergodic* and  $\eta$  is a *quasi-stationary distribution* of the semigroup  $\{p_t^{\mu+F}\}_{t\geq 0}$ : for any t > 0

(e.g. [16]). If the semigroup  $\{p_t^{\mu+F}\}_{t\geq 0}$  is ultracontractive,  $p_t^{\mu+F}(x, y) \leq c_t$ , then  $p_t^{\mu+F}(x, x)$  and  $\phi_0(x)$  are bounded and  $\mathcal{P}_0$  equals  $\mathcal{P}$ . Consequently, for any  $\nu \in \mathcal{P}$ , the distribution  $R_{\nu,t}$  converges to  $\eta$ .

When the measure *m* is not finite, we assume the *intrinsic ultracontractivity* of  $\{p_t^{\mu+F}\}_{t\geq 0}$ , that is,

(5.6) 
$$p_t^{\mu+F}(x, y) \le C_t \phi_0(x) \phi_0(y).$$

In [16], they proved that for a (not necessary symmetric) Markov process, the intrinsic ultracontractivity is a sufficient condition for the measure  $\eta$  being a unique quasistationary distribution, and the equation (5.4) holds for any initial distribution. We would like to give another proof of this fact by using the next theorem due to Fukushima [13].

**Theorem 5.2.** Assume that  $m(X) < \infty$  and **M** is conservative,  $p_t 1 = 1$ , t > 0. Then for  $f \in L^1(X; m)$ ,

$$\lim_{t\to\infty} p_t f(x) = \frac{1}{m(X)} \int_X f(x) \, dm(x), \quad m\text{-a.e. and in} \quad L^1(X;m).$$

Note that  $\mathbf{M}^{\phi_0}$  satisfies the assumptions in Theorem 5.2.

**Theorem 5.3.** Assume that  $\{p_t^{\mu+F}\}_{t\geq 0}$  is intrinsically ultracontractive. Then for any  $\nu \in \mathcal{P}$  and any  $B \in \mathcal{B}(X)$ 

$$\lim_{t\to\infty} e^{\lambda_2(\mu+F)t} \mathbb{E}_{\nu} \left( e^{A_t^{\mu+F}}; X_t \in B \right) = \int_X \phi_0 \, d\nu \int_B \phi_0 \, dm.$$

Consequently, the equation (5.4) follows.

Proof. First note that the upper bound (5.6) implies the lower bound ([9, Theorem 4.2.5]):

(5.7) 
$$c_t \phi_0(x) \phi_0(y) \le p_t^{\mu+F}(x, y).$$

As a result,

$$\sup_{x \in X} \phi_0(x) \int_X \phi_0(y) \, dm(y) \leq \frac{1}{c_t} \| p_t^{\mu+F} 1 \|_{\infty} < \infty.$$

Hence  $\phi_0$  belongs to  $L^1(X; m) \cap L^{\infty}(X; m)$  and  $1_B/\phi_0 \in L^1(X; \phi_0^2 m)$ . Applying Theorem 5.2 to  $\mathbf{M}^{\phi_0}$ , we have

$$\mathbb{E}_{y}^{\phi_{0}}\left(\frac{1_{B}}{\phi_{0}}(X_{t})\right) \to \int_{B} \phi_{0} \, dm, \quad m\text{-a.e. } y \quad \text{and} \quad L^{1}(X; \, \phi_{0}^{2}m)$$

as  $t \to \infty$ . Since  $p_{1/2}^{\phi_0}(x, \cdot)$  is bounded by the ultracontractivity, it follows from the equation (5.2) that

$$\lim_{t \to \infty} \int_X \phi_0(x) \mathbb{E}_x^{\phi_0}\left(\frac{1_B}{\phi_0}(X_t)\right) d\nu(x) = \int_X \phi_0 \, d\nu \int_B \phi_0 \, dm. \qquad \Box$$

We finally consider the exponential integrability of hitting times of compact sets. Let  $K \subset X$  be a compact set and D the complement of K,  $D = X \setminus K$ . We define the part (or absorbing) process  $X^D$  on D by

$$X_t^D = \begin{cases} X_t & t < \tau_D, \\ \Delta & t \ge \tau_D, \end{cases} \quad \tau_D = \inf\{t \ge 0 \colon X_t \notin D\}.$$

Define the regular Dirichlet form  $(\mathcal{E}^D, \mathcal{D}(\mathcal{E}^D))$  on D by

$$\begin{cases} \mathcal{E}^{D} = \mathcal{E}, \\ \mathcal{D}(\mathcal{E}^{D}) = \{ u \in \mathcal{D}(\mathcal{E}) \colon u = 0 \text{ q.e. on } K \}. \end{cases}$$

By [14, Theorem 4.4.3] the part process  $X^D$  is regarded as a Hunt process generated by  $(\mathcal{E}^D, \mathcal{D}(\mathcal{E}^D))$ . We see from [4, Theorem 4.2] that *m* is in  $\mathcal{K}_{\infty}$ . We write  $\mathcal{K}_{\infty}(R_1)$ for  $\mathcal{K}_{\infty}$  to show the dependence. Let  $R_1^D$  be the 1-resolvent of  $X^D$ . The restriction  $m^D$ of *m* on *D* is in  $\mathcal{K}_{\infty}(R_1^D)$ . Indeed, let a compact set  $\tilde{K}$  and a positive constant  $\delta$  in the definition of  $\mathcal{K}_{\infty}$  (Definition 2.1). We can suppose  $K \subset \tilde{K}$ . Let *G* be a relatively compact open set such that  $K \subset G \subset \tilde{G} \subset \tilde{K}$  and  $m(G \setminus K) < \delta$ . Then  $\tilde{K} \cap G^c$  is a compact subset of *D* and

$$R_1^D \mathbb{1}_{(\tilde{K} \cap G^c)^c} = R_1^D \mathbb{1}_{\tilde{K}^c \cup (G \setminus K)} \le R_1 \mathbb{1}_{\tilde{K}^c} + R_1 \mathbb{1}_{G \setminus K} \le 2\epsilon.$$

Moreover,  $R_1^D 1_B \leq R_1 1_B$  for any Borel set  $B \subset \tilde{K} \cap G^c$ . Hence we have  $m^D \in \mathcal{K}_{\infty}(R_1^D)$ . If  $X^D$  satisfies the irreducibility (I), it follows from [4, Theorem 4.1] that

$$\sup_{x\in D}\mathbb{E}_x(e^{\lambda\tau_D})<\infty\iff\lambda<\lambda^D,$$

where  $\lambda^{D}$  is the bottom of the spectrum of  $(\mathcal{E}^{D}, \mathcal{D}(\mathcal{E}^{D}))$ .

Noting that by (3.1)

$$1 \leq ||R_1 1_D||_{\infty} (\lambda^D + 1),$$

we see from (III) that

$$\lambda_D \uparrow \infty \quad \text{as} \quad K \uparrow X.$$

We can conclude that if for any compact set *K*, the part process  $X^D$  ( $D = X \setminus K$ ) is irreducible, then for any  $\lambda > 0$  there exists a compact set *K* such that

(5.9) 
$$\sup_{x \in X} \mathbb{E}_x \left( e^{\lambda \tau_D} \right) < \infty$$

If **M** is conservative,  $\tau_D$  equals the first hitting time  $\sigma_K$  of K,  $\sigma_K = \inf\{t > 0 : X_t \in K\}$ . Then the property (5.9) is called the *uniform hyper-exponential recurrence* in [30].

EXAMPLE 5.1 (One-dimensional diffusion processes). Let us consider a onedimensional diffusion process  $\mathbf{M} = (X_t, \mathbb{P}_x, \zeta)$  on an open interval  $I = (r_1, r_2)$  such that  $\mathbb{P}_x(X_{\zeta-} = r_1 \text{ or } r_2, \zeta < \infty) = \mathbb{P}_x(\zeta < \infty), x \in I$ , and  $\mathbb{P}_a(\sigma_b < \infty) > 0$  for any  $a, b \in I$ . The diffusion  $\mathbf{M}$  is symmetric with respect to its canonical measure m and it satisfies (I) and (II). The boundary point  $r_i$  of I is classified into four classes: *regular boundary, exit boundary, entrance boundary and natural boundary* ([15, Chapter 5]): (a) If  $r_2$  is a regular or exit boundary, then  $\lim_{x\to r_2} R_1 \mathbb{1}(x) = 0$ .

(b) If  $r_2$  is an entrance boundary, then  $\lim_{r \to r_2} \sup_{x \in (r_1, r_2)} R_1 \mathbb{1}_{(r, r_2)}(x) = 0$ .

(c)  $r_2$  is a natural boundary, then  $\lim_{x \to r_2} R_1 \mathbb{1}_{(r,r_2)}(x) = 1$  and thus  $\sup_{x \in (r_1, r_2)} R_1 \mathbb{1}_{(r, r_2)}(x) = 1$ . Therefore, (III) is satisfied if and only if no natural boundaries are present. As a corollary of the equation (5.8), If  $r_2$  is entrance, for any  $\lambda > 0$  there exists  $r_1 < r < r_2$  such that

$$\sup_{x>r}\mathbb{E}_x(\exp(\lambda\sigma_r))<\infty,$$

where  $\sigma_r$  is the first hitting time of  $\{r\}$ . The statement above implies a uniqueness of quasi-stationary distributions ([3]).

#### References

- S. Albeverio, P. Blanchard and Z.M. Ma: *Feynman-Kac semigroups in terms of signed smooth measures*; in Random Partial Differential Equations (Oberwolfach, 1989), Birkhäuser, Basel, 1991, 1–31.
- [2] S. Albeverio and Z.M. Ma: Additive functionals, nowhere Radon and Kato class smooth measures associated with Dirichlet forms, Osaka J. Math. 29 (1992), 247–265.
- [3] P. Cattiaux, P. Collet, A. Lamberrt, S. Martinez, S. Meleard and J. San Martin: *Quasi-stationary distributions and diffusion models in population dynamics*, Ann. Probab. 37 (2009), 1926–1969.
- [4] Z.-Q. Chen: Gaugeability and conditional gaugeability, Trans. Amer. Math. Soc. 354 (2002), 4639–4679.
- [5] Z.-Q. Chen: Analytic characterization of conditional gaugeability for non-local Feynman–Kac transforms, J. Funct. Anal. **202** (2003), 226–246.
- [6] Z.-Q. Chen, P.J. Fitzsimmons, M. Takeda, J. Ying and T.S. Zhang: Absolute continuity of symmetric Markov processes, Ann. Probab. 32 (2004), 2067–2098.
- [7] Z.-Q. Chen and M. Fukushima: Symmetric Markov Processes, Time Change and Boundary Theory, book manuscript, 2009.
- Z.-Q. Chen and R. Song: Conditional gauge theorem for non-local Feynman-Kac transforms, Probab. Theory Related Fields 125 (2003), 45–72.
- [9] E.B. Davies: Heat Kernels and Spectral Theory, Cambridge Univ. Press, Cambridge, 1989.
- [10] G. De Leva, D. Kim and K. Kuwae: L<sup>p</sup>-independence of spectral bounds of Feynman-Kac semigroups by continuous additive functionals, J. Funct. Anal. 259 (2010), 690–730.
- [11] J.-D. Deuschel and D.W. Stroock: Large Deviations, Academic Press, Boston, MA, 1989.
- [12] M.D. Donsker and S.R.S. Varadhan: Asymptotic evaluation of certain Markov process expectations for large time, I, Comm. Pure Appl. Math. 28 (1975), 1–47.
- [13] M. Fukushima: A note on irreducibility and ergodicity of symmetric Markov processes; in Stochastic Processes in Quantum Theory and Statistical Physics (Marseille, 1981), Lecture Notes in Phys. 173, Springer, Berlin, 1982, 200–207.
- [14] M. Fukushima, Y. Oshima and M. Takeda: Dirichlet Forms and Symmetric Markov Processes, second rev. and ext. ed., de Gruyter, Berlin, 2010.
- [15] K. Itô: Essentials of Stochastic Processes, Amer. Math. Soc., Providence, RI, 2006.
- [16] R. Knobloch and L. Partzsch: Uniform conditional ergodicity and intrinsic ultracontractivity, Potential Anal. 33 (2010), 107–136.
- [17] E.H. Lieb and M. Loss: Analysis, second edition, Graduate Studies in Mathematics 14, Amer. Math. Soc., Providence, RI, 2001.
- [18] Z.M. Ma and M. Röckner: Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Universitext, Springer, Berlin, 1992.
- [19] P. Stollmann and J. Voigt: Perturbation of Dirichlet forms by measures, Potential Anal. 5 (1996), 109–138.
- [20] M. Takeda: Asymptotic properties of generalized Feynman–Kac functionals, Potential Anal. 9 (1998), 261–291.
- M. Takeda: Conditional gaugeability and subcriticality of generalized Schrödinger operators, J. Funct. Anal. 191 (2002), 343–376.
- [22] M. Takeda: Large deviation principle for additive functionals of Brownian motion corresponding to Kato measures, Potential Anal. 19 (2003), 51–67.
- [23] M. Takeda: Large deviations for additive functionals of symmetric stable processes, J. Theoret. Probab. 21 (2008), 336–355.
- [24] M. Takeda: A large deviation principle for symmetric Markov processes with Feynman–Kac functional, to appear in J. Theoret. Probab.
- [25] M. Takeda and Y. Tawara: L<sup>p</sup>-independence of spectral bounds of non-local Feynman–Kac semigroups, Forum Math. 21 (2009), 1067–1080.
- [26] M. Takeda and K. Tsuchida: Differentiability of spectral functions for symmetric α-stable processes, Trans. Amer. Math. Soc. 359 (2007), 4031–4054.
- [27] M. Takeda and T. Uemura: Subcriticality and gaugeability for symmetric  $\alpha$ -stable processes, Forum Math. 16 (2004), 505–517.

- [28] Y. Tawara: L<sup>p</sup>-independence of spectral bounds of Schrödinger-type operators with non-local potentials, J. Math. Soc. Japan 62 (2010), 767–788.
- [29] S.R.S. Varadhan: Asymptotic probabilities and differential equations, Comm. Pure Appl. Math. 19 (1966), 261–286.
- [30] L. Wu: Some notes on large deviations of Markov processes, Acta Math. Sin. (Engl. Ser.) 16 (2000), 369–394.
- [31] J. Ying: Bivariate Revuz measures and the Feynman–Kac formula, Ann. Inst. H. Poincaré Probab. Statist. 32 (1996), 251–287.
- [32] J. Ying: Dirichlet forms perturbated by additive functionals of extended Kato class, Osaka J. Math. 34 (1997), 933–952.

Masayoshi Takeda Mathematical Institute Tohoku University Aoba, Sendai, 980-8578 Japan e-mail: takeda@math.tohoku.ac.jp

Yoshihiro Tawara Division of General Education Nagaoka National College of Technology 888 Nishikatakai, Nagaoka, Niigata 940-8532 Japan e-mail: tawara@nagaoka-ct.ac.jp