Kasue, A. Osaka J. Math. **50** (2013), 31–51

RANDOM WALKS AND KURAMOCHI BOUNDARIES OF INFINITE NETWORKS

ATSUSHI KASUE

(Received April 25, 2011)

Abstract

In this paper, we study a connected non-parabolic, or transient, network compactified with the Kuramochi boundary, and show that the random walk converges almost surely to a random variable valued in the harmonic boundary, and a function of finite Dirichlet energy converges along the random walk to a random variable almost surely and in L^2 . We also give integral representations of solutions of Poisson equations on the Kuramochi compactification.

1. Introduction

Ancona, Lyons and Peres [1] showed that a function of finite Dirichlet energy on a transient network converges along the random walk almost surely and in L^2 . In this paper, we concern the Kuramochi boundary of the network and proves that the random walk converges almost surely to a random variable valued in the harmonic boundary, and a function of finite Dirichlet energy converges along the random walk to a random variable almost surely and in L^2 .

Let G = (V, E) be a graph with the set of vertices V and the set of edges E that consists of pairs of vertices. In this paper, a graph admits no loops and multiple edges, and the set of vertices is finite or countably infinite. We say that a vertex x is adjacent to another y if $\{x, y\}$ belongs to E and write $x \sim y$ to indicate it. We also write |xy|for $\{x, y\}$. By a path in G, we mean a sequence of vertices $c = (x_0, x_1, \ldots, x_n)$ such that $x_i \sim x_{i+1}$ ($i = 0, 1, \ldots, n-1$), and we say that c connects x_0 to x_n . G is called a connected graph if for any pair of vertices x and y, there exist paths connecting them.

We are now given an admissible weight r on the set of edges E, that is a positive function on E with the property that

$$c(x) = \sum_{y \sim x} \frac{1}{r(|xy|)} < +\infty, \quad \forall x \in V.$$

An admissible weight r gives rise to a distance d_r on V, called the geodesic distance of Γ , by taking r(e) as the length of an edge e and by assigning to each pair

²⁰¹⁰ Mathematics Subject Classification. Primary 53C21; Secondary 58D17, 58J50.

of vertices x and y the infimum of the length of paths connecting them. In this paper, we call such a couple of a graph and an admissible weight a network.

Given a connected network $\Gamma = (V, E, r)$, a nonnegative quadratic form $(\mathcal{E}_{\Gamma}, D[\mathcal{E}_{\Gamma}])$ on the space l(V) of functions on V can be defined as follows:

$$D[\mathcal{E}_{\Gamma}] = \left\{ u \in l(V) \; \left| \; \sum_{x \sim y} \frac{|u(x) - u(y)|^2}{r(|xy|)} < +\infty \right\}; \\ \mathcal{E}_{\Gamma}(u, v) = \frac{1}{2} \sum_{x \sim y} \frac{(u(x) - u(y))(v(x) - v(y))}{r(|xy|)}, \quad u, v \in D[\mathcal{E}_{\Gamma}]. \end{cases} \right\}$$

The domain $D[\mathcal{E}_{\Gamma}]$ endowed with an inner product $\mathcal{E}_{\Gamma}(u, v) + u(o)v(o)$, where *o* is a fixed point of *V*, becomes a Hilbert space.

Let $D_0[\mathcal{E}_{\Gamma}]$ be the closure of the set of finitely supported functions on V in $D[\mathcal{E}_{\Gamma}]$. We say that Γ is non-parabolic if

$$\sup\left\{\frac{|u(x)|^2}{\mathcal{E}_{\Gamma}(u,u)} \mid u \in D_0[\mathcal{E}_{\Gamma}], \ \mathcal{E}_{\Gamma}(u,u) > 0\right\} < +\infty$$

for some $x \in V$. We recall here the fact that the following conditions are mutually equivalent:

(i) Γ is non-parabolic,

(ii) $D_0[\mathcal{E}_{\Gamma}]$ contains no constant functions,

(iii) $D_0[\mathcal{E}_{\Gamma}] \neq D[\mathcal{E}_{\Gamma}]$ (see [14]).

If these are the cases, $D[\mathcal{E}_{\Gamma}]$ is decomposed into the direct sum of $D_0[\mathcal{E}_{\Gamma}]$ and the space $H_{\mathcal{E}_{\Gamma}}$ of harmonic functions of finite Dirichlet sums on *V* that is the orthogonal complement of $D_0[\mathcal{E}_{\Gamma}]$ relative to the form; a function *h* on *V* belongs to $H_{\mathcal{E}_{\Gamma}}$ if and only if $h \in D[\mathcal{E}_{\Gamma}]$ and $L^ch(x) := \sum_{y \sim x} (h(x) - h(y))/r(|xy|) = 0$ for all $x \in V$.

Let $\{p(x, y) \mid x, y \in V\}$ be transition probabilities on V defined by

$$p(x, y) = \frac{c(|xy|)}{c(x)}, \quad x, y \in V,$$

where $c(|xy|) = r(|xy|)^{-1}$ and $c(x) = \sum_{y \sim x} c(|xy|)$. It is well known that Γ is non-parabolic if and only if the (reversible) Markov chain is transient.

Ancona, Lyons and Peres [1] proved the following

Theorem 1. Let $\Gamma = (V, E, r)$ be a connected non-parabolic network and $\{X_n\}$ the Markov chain. Then for any $u \in D[\mathcal{E}_{\Gamma}]$, the sequence $\{u(X_n)\}$ converges almost surely and in L^2 . If u = h + g, where $h \in H_{\mathcal{E}_{\Gamma}}$ and $g \in D_0[\mathcal{E}_{\Gamma}]$, is the Royden decomposition of u, then $\lim_{n\to\infty} u(X_n) = \lim_{n\to\infty} h(X_n)$ almost surely.

To state our main results, we introduce the Kuramochi compactification of a connected infinite network $\Gamma = (V, E, r)$.

A compactification of any (discrete) set X is a compact Hausdorff space which contains X as a dense subset and which induces the discrete topology on X. It is known that given a family Φ of bounded functions on X, there exists an (up to canonical homeomorphisms) unique compactification $C(X, \Phi)$ of X with the following properties (see e.g. [2]):

(i) every function of Φ extends to a continuous function on $\mathcal{C}(X, \Phi)$, and

(ii) the extended functions separate the points of the boundary $\partial C(X, \Phi) = C(X, \Phi) \setminus V$. We remark that if Ψ is a subfamily of Φ , then the identity map extends to a continuous map from $C(X, \Phi)$ onto $C(X, \Psi)$, and if Φ_0 is a subfamily of Φ and each function of Φ is a finite linear combination of functions in Φ_0 , then $C(X, \Phi)$ and $C(X, \Phi_0)$ are canonically homeomorphic; in particular, if in addition, X and Φ_0 is countable, then $C(X, \Phi)$ is metrizable.

The compactification relative to the space of bounded functions in $D[\mathcal{E}_{\Gamma}]$, $BD[\mathcal{E}_{\Gamma}]$, is called the Royden compactification of the network Γ and denoted by $\mathcal{R}(\mathcal{E}_{\Gamma})$. The boundary $\partial \mathcal{R}(\mathcal{E}_{\Gamma})$ is called the Royden boundary of Γ . There is an important part of the Royden boundary refered to as the harmonic boundary of Γ which is defined by $\Delta(\mathcal{E}_{\Gamma}) = \{x \in \partial \mathcal{R}(\mathcal{E}_{\Gamma}) \mid g(x) = 0 \text{ for all } g \in BD_0[\mathcal{E}_{\Gamma}]\}$. It is known (see [15], [6], [11, Chapter VI]) that Γ is non-parabolic if and only if the harmonic boundary is not empty, and also that if $\partial \mathcal{R}(\mathcal{E}_{\Gamma}) \setminus \Delta(\mathcal{E}_{\Gamma})$ is not empty, then any set of a single point there is not a G_{δ} set and for a nonempty closed subset F in $\partial \mathcal{R}(\mathcal{E}_{\Gamma}) \setminus \Delta(\mathcal{E}_{\Gamma})$, there exists a function $g \in D_0[\mathcal{E}_{\Gamma}]$ such that g(x) tends to infinity as $x \in V \to F$.

We recall a basic fact concerning Dirichlet problems on the Royden boundary $\partial \mathcal{R}(\mathcal{E}_{\Gamma})$ (see [11, Chapter VI]): for any continuous function f on $\partial \mathcal{R}(\mathcal{E}_{\Gamma})$, there exists a unique harmonic function H_f on Γ such that for any $\xi \in \Delta(\mathcal{E}_{\Gamma})$, $\lim_{x \in V \to \xi} H_f(x) = f(\xi)$, and $\sup_V |H_f| \leq \max_{\Delta(\mathcal{E}_{\Gamma})} |f|$. Given a point $a \in V$, letting $\bar{\nu}_a(f) = H_f(a)$ for $f \in C(\partial \mathcal{R}(\mathcal{E}_{\Gamma}))$, we have a Radon measure $\bar{\nu}_a$ on $\partial \mathcal{R}(\mathcal{E}_{\Gamma})$, called the harmonic measure with respect to the point a. In view of Harnack's inequality, $\bar{\nu}_a$ and $\bar{\nu}_b$ are mutually absolutely continuous for any pair of points $a, b \in V$, and the harmonic measures are supported on the harmonic boundary.

Now we consider a subspace $Q(\mathcal{E}_{\Gamma})$ of $BD[\mathcal{E}_{\Gamma}]$ which consists of functions u such that $\mathcal{E}_{\Gamma}(u, v) = 0$ for all $v \in D[\mathcal{E}_{\Gamma}]$ vanishing on a finite subset of V. The compactification relative to $Q(\mathcal{E}_{\Gamma})$ is called the Kuramochi compactification of the network Γ and denoted by $\mathcal{K}(\mathcal{E}_{\Gamma})$ (see [9]). The identity map of V extends to a continuous map from $\mathcal{R}(\mathcal{E}_{\Gamma})$ onto $\mathcal{K}(\mathcal{E}_{\Gamma})$. We denote by ρ_{Γ} the induced map from the Royden boundary $\partial \mathcal{R}(\mathcal{E}_{\Gamma})$ onto the Kuramochi boundary $\partial \mathcal{K}(\mathcal{E}_{\Gamma})$. Let $\Delta^{K}(\mathcal{E}_{\Gamma}) = \rho_{\Gamma}(\Delta(\mathcal{E}_{\Gamma}))$ and $\nu_{a} = \rho_{\Gamma*} \bar{\nu}_{a}$ ($a \in V$). Here and after, we fix a point $o \in V$ and write v for v_{o} .

We will prove that the Kuramochi compactification $\mathcal{K}(\mathcal{E}_{\Gamma})$ of a connected, nonparabolic network Γ admits a compatible metric $d^{\mathcal{E}_{\Gamma}}$ such that for each Lipschitz function $f: (\mathcal{K}(\mathcal{E}_{\Gamma}), d^{\mathcal{E}_{\Gamma}}) \to \mathbf{R}$, the sequence $\{f(X_n)\}$ is almost surely convergent. This shows that the Markov chain $\{X_n\}$ converges to a random variable X_{∞} in $\mathcal{K}(\mathcal{E}_{\Gamma})$. In fact, a result by Ancona, Lyons and Peres [1] states that if \mathcal{M} is a complete separable metric space and $\{Y_n\}$ is a process such that for each bounded Lipschitz function A. KASUE

 $f: \mathcal{M} \to \mathbf{R}$, the sequence $\{f(Y_n)\}$ is almost surely convergent, then the process $\{Y_n\}$ in \mathcal{M} is already almost surely convergent.

We will now take an appropriate measure on V. Given two vertices x and y of Γ , we define a nonnegative number $R_{\mathcal{E}_{\Gamma}}(x, y)$, called the effective resistance between x and y, by

$$R_{\mathcal{E}_{\Gamma}}(x, y) = \sup\left\{\frac{|u(x) - u(y)|^2}{\mathcal{E}_{\Gamma}(u, u)} \mid u \in D[\mathcal{E}_{\Gamma}], \ \mathcal{E}_{\Gamma}(u, u) > 0\right\}.$$

It is known that $R_{\mathcal{E}_{\Gamma}}(x, y) \leq d_r(x, y)$ for all $x, y \in V$ and $R_{\mathcal{E}_{\Gamma}}$ induces a distance on V (see e.g., [5]). Choose a measure μ on V in such a way that $\mu(V) = \sum_{x \in V} \mu(x) = 1$ and

$$\int_V R_{\mathcal{E}_{\Gamma}}(o, x)^2 d\mu(x) \left(= \sum_{x \in V} R_{\Gamma}(o, x)^2 \mu(x)\right) < +\infty.$$

Under the condition, it is proved in [5] that $D[\mathcal{E}_{\Gamma}] \subset L^2(V, \mu)$, the embedding is compact, $(\mathcal{E}_{\Gamma}, D[\mathcal{E}_{\Gamma}])$ is a regular Dirichlet form in $L^2(\mathcal{K}(\mathcal{E}_{\Gamma}), \mu)$, and the Royden decomposition is stated in such a way that a function $u \in D[\mathcal{E}_{\Gamma}]$ is expressed as

$$u(x) = \int_{\partial \mathcal{K}(\mathcal{E}_{\Gamma})} \tau(u) \, dv_x + g(x), \quad x \in V, \ g \in D_0[\mathcal{E}_{\Gamma}],$$

where $\tau(u)$ is a function in $L^2(\partial \mathcal{K}(\mathcal{E}_{\Gamma}), \nu)$ (= $L^2(\Delta^K(\mathcal{E}_{\Gamma}), \nu)$). We define a Radon measure $\bar{\mu}$ on the Kuramochi compactification $\mathcal{K}(\mathcal{E}_{\Gamma})$ by

$$\bar{\mu}(f) = \int_{V} f \, d\mu + \int_{\partial \mathcal{K}(\mathcal{E}_{\Gamma})} f \, d\nu$$

for $f \in C(\mathcal{K}(\mathcal{E}_{\Gamma}))$. Then any function u of $D[\mathcal{E}_{\Gamma}]$ coupled with $\tau(u)$ can be considered as a function in $L^2(\mathcal{K}(\mathcal{E}_{\Gamma}), \overline{\mu})$.

Our main results are stated in the following

Theorem 2. Let $\Gamma = (V, E, r)$ be a connected non-parabolic network. Then the following assertions hold:

(i) $(\mathcal{E}_{\Gamma}, D[\mathcal{E}_{\Gamma}])$ is a regular Dirichlet form on $L^{2}(\mathcal{K}(\mathcal{E}_{\Gamma}), \overline{\mu})$.

(ii) There exists a $\Delta^{K}(\mathcal{E}_{\Gamma})$ -valued random variable X_{∞} such that in the $\mathcal{K}(\mathcal{E}_{\Gamma})$ -topology, the Markov chain X_{n} almost surely converges to X_{∞} as $n \to \infty$, the measure $v_{X_{n}}$ converges weakly to the delta measure $\delta_{X_{\infty}}$ almost surely as $n \to \infty$, and for any $u \in D[\mathcal{E}_{\Gamma}]$, $u(X_{n})$ converges to $\tau(u)(X_{\infty})$ almost surely and in L^{2} as $n \to \infty$.

(iii) Let $(\bar{L}^{\mathcal{E}_{\Gamma}}, D[\bar{L}^{\mathcal{E}_{\Gamma}}])$ be the self-adjoint operator associated with the regular Dirichlet form $(\mathcal{E}_{\Gamma}, D[\mathcal{E}_{\Gamma}])$. For a function $f \in L^{2}(\mathcal{K}(\mathcal{E}_{\Gamma}), \bar{\mu})$, there exists a solution u, unique up to additive constants, of equation: $\bar{L}^{\mathcal{E}_{\Gamma}}u = f$ if and only if $\bar{\mu}(f) = 0$; in particular, the solution is harmonic on V if f vanishes there.

We briefly explain the contents of the paper. In section 1, we introduce a resistance form of a connected non-parabolic network and its Kuramochi compactification, and prove Theorem 2 (i) for a resistance form. In Section 2, Theorem 2 (ii) for a resistance form is discussed. The last section is devoted to investigating Poisson equations on the Kuramochi compactification of a resistance form.

2. Resistance forms

In this section, we introduce the Kuramochi compactification of a resistance form of a connected non-parabolic network and prove Theorem 2 (i) for a resistance form.

Let $\Gamma = (V, E, r)$ be a connected non-parabolic network. A nonnegative quadratic form \mathcal{E} on a subspace $D[\mathcal{E}]$ of $D[\mathcal{E}_{\Gamma}]$ is called a resistance form of the network Γ if it satisfies the following properties:

(i) $D_0[\mathcal{E}_{\Gamma}] + \mathbf{R} \subset D[\mathcal{E}] \subset D[\mathcal{E}_{\Gamma}],$

(ii) $\mathcal{E}(1, 1) = 0$,

(iii) $\mathcal{E}_{\Gamma}(u, u) \leq \mathcal{E}(u, u)$ for all $u \in D[\mathcal{E}]$ and $\mathcal{E}(u, v) = \mathcal{E}_{\Gamma}(u, v)$ for all $u \in D[\mathcal{E}]$ and $v \in D_0[\mathcal{E}_{\Gamma}]$,

(iv) for $u \in D[\mathcal{E}]$, $\bar{u} = \max\{0, \min\{1, u\}\}$ belongs to $D[\mathcal{E}]$ and $\mathcal{E}(\bar{u}, \bar{u}) \leq \mathcal{E}(u, u)$,

(v) $D[\mathcal{E}]$ becomes a Hilbert space with inner product $(u, v) = \mathcal{E}(u, v) + u(o)v(o)$, where o is a fixed vertex of V. When we restrict \mathcal{E}_{Γ} to $D_0[\mathcal{E}_{\Gamma}] + \mathbf{R}$, we have the minimal resistance form denoted by $(\mathcal{E}_{\Gamma}^0, D_0[\mathcal{E}_{\Gamma}] + \mathbf{R})$.

For any pair of vertexes x, y, we have a nonnegative number $R_{\mathcal{E}}(x, y)$, called the effective resistance relative to \mathcal{E} between x and y, defined by

$$R_{\mathcal{E}}(x, y) = \sup \left\{ \frac{|u(x) - u(y)|^2}{\mathcal{E}(u, u)} \mid u \in D[\mathcal{E}], \ \mathcal{E}(u, u) > 0 \right\}.$$

Then it follows from the definitions above that

$$R_{\mathcal{E}^0_{\Gamma}}(x, y) \le R_{\mathcal{E}}(x, y) \le R_{\mathcal{E}_{\Gamma}}(x, y), \quad x, y \in V.$$

We remark that $R_{\mathcal{E}_{\Gamma}}(x, y) \leq d_r(x, y)$ for $x, y \in V$, and $R_{\mathcal{E}}$ induces a distance on V (see e.g., [5, Theorem 1.12, Proposition 2.6]). We write $H_{\mathcal{E}}$ for the space of functions u in $D[\mathcal{E}]$ which are harmonic on V, i.e.,

$$L^{c}u(x) := \sum_{y \sim x} \frac{u(x) - u(y)}{r(|xy|)} = 0, \quad \forall x \in V.$$

Given $x, z \in V$, there exist functions $g_{x,z} \in D[\mathcal{E}]$ and $h_{x,z} \in H_{\mathcal{E}}$ respectively satisfying $\mathcal{E}(g_{x,z}, u) = u(x) - u(z)$ for all $u \in D[\mathcal{E}]$ and $\mathcal{E}(h_{x,z}, h) = h(x) - h(z)$ for all $h \in H_{\mathcal{E}}$. We write $g_z^{\mathcal{E}}(x, y)$ and $h_z^{\mathcal{E}}(x, y)$ respectively for $g_{x,z}(y)$ and $h_{x,z}(y)$. It is easy to see that $g_z^{\mathcal{E}}(x, y) = g_z^{\mathcal{E}}(y, x)$ and $h_z^{\mathcal{E}}(x, y) = h_z^{\mathcal{E}}(y, x)$. We notice that $R_{\mathcal{E}}(x, y) =$ $g_x^{\mathcal{E}}(y, y) = g_x^{\mathcal{E}}(y, z) + g_y^{\mathcal{E}}(x, z)$ and $g_z^{\mathcal{E}}(x, y) = (1/2)\{R_{\mathcal{E}}(x, z) + R_{\mathcal{E}}(z, y) - R_{\mathcal{E}}(x, y)\}$ for all

A. KASUE

 $x, y, z \in V$, and also that $h_z^{\mathcal{E}}(x, x) = \sup\{|h(x) - h(z)|^2/\mathcal{E}(h, h) \mid h \in H_{\mathcal{E}}, \mathcal{E}(h, h) > 0\}$ (see [5, 7.2]). Since Γ is assumed to be non-parabolic, given a vertex $x \in V$, there exists uniquely a function $g_x \in D_0[\mathcal{E}_{\Gamma}]$ such that $\mathcal{E}_{\Gamma}(g_x, v) = v(x)$ for all $v \in D_0[\mathcal{E}_{\Gamma}]$. We write $g_{\Gamma}^0(x, y)$ for $g_x(y)$. It holds also that $g_{\Gamma}^0(x, y) = g_{\Gamma}^0(y, x)$. These functions are related as follows:

(1)
$$g_z^{\mathcal{E}}(x, y) = h_z^{\mathcal{E}}(x, y) + (g_{\Gamma}^0(x, y) - g_{\Gamma}^0(x, z) - g_{\Gamma}^0(y, z) + g_{\Gamma}^0(z, z)), \quad x, y, z \in V$$

(see [5, 7.2]).

Now as in the case of the form \mathcal{E}_{Γ} , we consider a subspace $Q(\mathcal{E})$ of $D[\mathcal{E}]$ which consists of functions u such that $\mathcal{E}(u, v) = 0$ for all $v \in D[\mathcal{E}]$ vanishing on a finite subset of V. The compactification relative to $Q(\mathcal{E})$ is called the Kuramochi compactification of the network Γ relative to the resistance form \mathcal{E} , and denoted by $\mathcal{K}(\mathcal{E})$. The identity map of V extends to a continuous map from the Royden compactification $\mathcal{R}(\mathcal{E}_{\Gamma})$ of Γ onto $\mathcal{K}(\mathcal{E})$. We denote by $\rho_{\mathcal{E}}$ the induced map from the Royden boundary $\partial \mathcal{R}(\mathcal{E}_{\Gamma})$ onto the Kuramochi boundary $\partial \mathcal{K}(\mathcal{E})$. Let $\Delta^{K}(\mathcal{E}) = \rho_{\mathcal{E}}(\Delta(\mathcal{E}_{\Gamma}))$ and $v_{a} = \rho_{\mathcal{E}*}\bar{v}_{a}$ $(a \in V)$. Here and after, we fix a point $o \in V$ and write v for v_{o} .

We take a positive function μ on V and consider it as a measure on V, $\mu = \sum_{x \in V} \mu(x)\delta_x$. In what follows, μ is chosen in such a way that $\mu(V) = 1$,

(2)
$$\int_{V} R_{\mathcal{E}}(o, x)^2 d\mu(x) < +\infty.$$

The measure μ extends to a Radon measure, denoted by the same letter, on the Kuramochi compactification. Here we recall some results in [5, 7.3]:

- (i) $D[\mathcal{E}] \subset L^2(\mathcal{K}(\mathcal{E}), \mu).$
- (ii) Any function $u \in D[\mathcal{E}]$ can be written in the Royden decomposition as

$$u(x) = \int_{\partial \mathcal{K}(\mathcal{E})} \tau(u) \, dv_x + g(x), \quad x \in V, \ g \in D_0[\mathcal{E}],$$

where $\tau(u)$ is a function in $L^2(\partial \mathcal{K}(\mathcal{E}), \nu)$.

(iii) $(\mathcal{E}, D[\mathcal{E}])$ is a regular Dirichlet form on $L^2(\mathcal{K}(\mathcal{E}), \mu)$.

(iv) The domain $D[L^{\mathcal{E}}]$ of the self-adjoint operator $L^{\mathcal{E}}$ associated to the Dirichlet form \mathcal{E} is embedded in the space of continuous functions on $\mathcal{K}(\mathcal{E})$, and $D[L^{\mathcal{E}}]$ is dense both in the Banach space $C(\mathcal{K}(\mathcal{E}))$ of continuous functions on $\mathcal{K}(\mathcal{E})$ and the Hilbert space $(D[\mathcal{E}], \mathcal{E} + \delta_o^2)$.

(v) The domain $D[\mathcal{E}]$ is compactly embedded into $L^2(\mathcal{K}(\mathcal{E}), \mu)$.

Now we define a Radon measure $\overline{\mu}$ on the Kuramochi compactification $\mathcal{K}(\mathcal{E})$ by

$$\bar{\mu}(f) = \int_{V} f \, d\mu + \int_{\partial \mathcal{K}(\mathcal{E})} f \, d\nu, \quad f \in C(\mathcal{K}(\mathcal{E})).$$

Then any function u of $D[\mathcal{E}]$ coupled with $\tau(u)$ can be considered as a function in $L^2(\mathcal{K}(\mathcal{E}), \bar{\mu})$.

Given $u \in D[\mathcal{E}]$, if we write *h* for the harmonic part $\int_{\partial \mathcal{K}(\mathcal{E})} \tau(u) dv_x$ of *u*, then we have the following basic identity:

(3)
$$\int_{\partial \mathcal{K}(\mathcal{E})} \tau(u)^2 dv_x - \left(\int_{\partial \mathcal{K}(\mathcal{E})} \tau(u) dv_x\right)^2 = \sum_{y \in V} g_{\Gamma}^0(x, y) \sum_{z \sim y} \frac{(h(y) - h(z))^2}{r(|yz|)}, \quad x \in V,$$

from which we can deduce that

(4)
$$\int_{\partial \mathcal{K}(\mathcal{E})} \tau(u)^2 \, d\nu_x \le 2g_{\Gamma}^0(x, x)\mathcal{E}(u, u) + 2u(x)^2, \quad x \in V$$

(see [5, Lemma 7.8]). Using this inequality, we get

$$\int_{\partial \mathcal{K}(\mathcal{E})} \tau(u)^2 \, d\nu_x \leq 2 \bigg(g_{\Gamma}^0(x, x) + \frac{1}{\mu(x)} \bigg) \bigg(\mathcal{E}(u, u) + \int_V u^2 \, d\mu \bigg).$$

since $\mu(x)u(x)^2 \leq \int_V u^2 d\mu$. This shows in particular that the norm $\mathcal{E}(u, u)^{1/2} + (\int_V u^2 d\mu)^{1/2} + (\int_{\partial \mathcal{K}(\mathcal{E})} \tau(u)^2 d\nu)^{1/2}$ is equivalent to the norm $\mathcal{E}(u, u)^{1/2} + (\int_V u^2 d\mu)^{1/2}$. Since $(\mathcal{E}, D[\mathcal{E}])$ is a regular Dirichlet form on $L^2(\mathcal{K}(\mathcal{E}), \mu)$, we can thus deduce the following

Theorem 3. Let $\Gamma = (V, E, r)$ be a connected non-parabolic network and \mathcal{E} a resistance form of Γ . Then the Dirichlet form $(\mathcal{E}, D[\mathcal{E}])$ on $L^2(\mathcal{K}(\mathcal{E}), \overline{\mu})$ is regular.

Let $(\bar{L}^{\mathcal{E}}, D[\bar{L}^{\mathcal{E}}])$ be the self-adjoint operator associated with the regular Dirichlet form \mathcal{E} in $L^2(\mathcal{K}(\mathcal{E}), \bar{\mu})$. For $u \in D[\bar{L}^{\mathcal{E}}]$, we note that

$$\bar{L}^{\mathcal{E}}u(x) = \frac{1}{\mu(x)}L^{c}u(x) = \frac{1}{\mu(x)}\sum_{y \sim x} \frac{u(x) - u(y)}{r(|xy|)}, \quad x \in V.$$

The restriction of $\bar{L}^{\mathcal{E}}u$ to the Kuramochi boundary is denoted by $N^{\mathcal{E}}u$. Then we have

$$\mathcal{E}(u, v) = \int_{V} v L^{c} u \, d\mu^{c} + \int_{\partial \mathcal{K}(\mathcal{E})} \tau(v) N^{\mathcal{E}} u \, dv, \quad v \in D[\mathcal{E}].$$

It is a consequence from the definitions of $L^{\mathcal{E}}$ and $\overline{L}^{\mathcal{E}}$ that

$$D[L^{\mathcal{E}}] = \{ u \in D[\overline{L}^{\mathcal{E}}] \mid N^{\mathcal{E}}u = 0 \text{ in } L^{2}(\partial \mathcal{K}(\mathcal{E}), \nu) \} \quad (\subset C(\mathcal{K}(\mathcal{E}))).$$

We remark that $Q(\mathcal{E})$ is a subspace of $D[L^{\mathcal{E}}]$. In fact, let u be a function in $Q(\mathcal{E})$. Then there exists a finite subset A of V such that $\mathcal{E}(u, v) = 0$ for all $v \in D[\mathcal{E}]$ which vanishes on A. Let χ_A be the characteristic function of A. Then for any $v \in D[\mathcal{E}]$, we have

$$\mathcal{E}(u, v) = \mathcal{E}(u, \chi_A v) = \sum_{x \in A} v(x) L^c u(x)$$

and hence we get

$$|\mathcal{E}(u, v)| \leq \left(\int_A (L^{\mathcal{E}}u)^2 d\mu\right)^{1/2} \left(\int_V v^2 d\mu\right)^{1/2}.$$

This shows that $u \in D[L^{\mathcal{E}}]$.

Here, referring to [5, Proposition 4.1, Theorem 7.11], we mention the following propositions:

- (I) The following conditions are mutually equivalent:
 - (i) $\sup_{x \in V} g_{\Gamma}^0(x, x)$ is finite.
 - (ii) Any $g \in D_0[\mathcal{E}_{\Gamma}]$ is bounded.
 - (iii) $\partial R(\mathcal{E}_{\Gamma}) = \Delta(\mathcal{E}_{\Gamma})$, that is, for any bounded $g \in D_0[\mathcal{E}_{\Gamma}]$, g(x) tends to zero as $x \in V \to \infty$.
 - (iv) For any $g \in D_0[\mathcal{E}_{\Gamma}]$, g(x) tends to zero as $x \in V \to \infty$.
- (II) $\sup_{x,y\in V} R_{\mathcal{E}}(x, y)$ is bounded if and only if every $f \in D[\mathcal{E}]$ is bounded.
- (III) The following conditions are mutually equivalent:
 - (i) $\sup_{x,y\in V} h_x^{\mathcal{E}}(y, y)$ is finite.
 - (ii) Any $h \in H_{\mathcal{E}}$ is bounded.
 - (iii) For any $u \in D[\mathcal{E}]$, $\tau(u)$ is continuous on $\Delta^{K}(\mathcal{E})$.
 - (iv) A nonnegative subharmonic function u in $D[\mathcal{E}]$ is bounded.

Now we prove the following

Theorem 4. Let $\Gamma = (V, E, r)$ be a connected non-parabolic network and \mathcal{E} a resistance form of Γ . Then $D[\mathcal{E}]$ is compactly embedded in $L^2(\mathcal{K}(\mathcal{E}), \bar{\mu})$ if $\sup_{x \in V} g^0_{\Gamma}(x, x)$ is finite.

Proof. Let $\{u_n\}$ be a sequence in $D[\mathcal{E}]$ such that $\mathcal{E}(u_n, u_n) + u_n(o)^2$ is bounded as $n \to \infty$. Let h_n be the harmonic part of u_n . Then we have

$$u_n(o) - h_n(o) = \mathcal{E}_{\Gamma}(g^0_{\Gamma}(o, *), u_n - h_n)$$
$$= \mathcal{E}_{\Gamma}(g^0_{\Gamma}(o, *), u_n)$$

and hence

$$h_n(o)^2 \le 2u_n(o)^2 + 2g_{\Gamma}^0(o, o)\mathcal{E}(u_n, u_n)$$

Thus we see that $\mathcal{E}(h_n, h_n) + h_n(o)^2$ are bounded as $n \to \infty$. Since $D[\mathcal{E}]$ is compactly embedded in $L^2(\mathcal{K}(\mathcal{E}), \mu)$, passing to a subsequence, we may assume that u_n and h_n

respectively converge to functions u and h in $L^2(\mathcal{K}(\mathcal{E}), \mu)$, where h is the harmonic part of u. Let $v_n = u_n - u$ and $k_n = h_n - h$. Then in view of (3), we have

$$\int_{\partial \mathcal{K}(\mathcal{E})} \tau(v_n)^2 \, dv_o = k_n(o)^2 + \sum_{x \in V} g_{\Gamma}^0(o, x) \sum_{y \sim x} \frac{(k_n(x) - k_n(y))^2}{r(|xy|)}.$$

Given $\varepsilon > 0$, let $V_{\varepsilon} = \{x \in V \mid g_{\Gamma}^{0}(o, x) \ge \varepsilon\}$. Since $g_{\Gamma}^{0}(o, x)$ tends to 0 as $x \in V$ goes to infinity by the assumption: $\sup_{x \in V} g_{\Gamma}^{0}(x, x) < +\infty$, V_{ε} is a finite subset of *V*. Therefore for sufficiently large *n*,

$$k_n(o)^2 + \sum_{x \in V_{\varepsilon}} g^0_{\Gamma}(o, x) \sum_{y \sim x} \frac{(k_n(x) - k_n(y))^2}{r(|xy|)} < \varepsilon$$

Since

$$\sum_{x \in V \setminus V_{\varepsilon}} g_{\Gamma}^0(o, x) \sum_{y \sim x} \frac{(k_n(x) - k_n(y))^2}{r(|xy|)} < \varepsilon \mathcal{E}_{\Gamma}(v_n, v_n),$$

we get

$$\int_{\partial \mathcal{K}(\mathcal{E})} \tau(v_n)^2 \, d\nu < \varepsilon \bigg(1 + \sup_n \mathcal{E}_{\Gamma}(v_n, v_n) \bigg)$$

for *n* large enough. This shows that $\int_{\partial \mathcal{K}(\mathcal{E})} \tau(v_n)^2 d\nu$ tends to 0 as $n \to \infty$. Thus we can deduce that $D[\mathcal{E}]$ is compactly embedded in $L^2(\mathcal{K}(\mathcal{E}), \bar{\mu})$.

REMARK. Let $\Gamma = (V, E, r)$ be a connected infinite network and \mathcal{E} a resistance form of Γ .

(i) Let $D[\mathcal{E}^*] = \{\tau(u) \mid u \in D[\mathcal{E}]\}$ ($\subset L^2(\partial \mathcal{K}(\mathcal{E}), v)$) and $\mathcal{E}^*(\tau(u), \tau(v)) = \mathcal{E}(h_u, h_v)$ for $u, v \in D[\mathcal{E}]$, where h_u denotes the harmonic part of u in the Royden decomposition. Then $(\mathcal{E}^*, D[\mathcal{E}^*])$ is a regular Dirichlet form on $L^2(\partial \mathcal{K}(\mathcal{E}), v)$.

(ii) Let $(\mathcal{F}, D[\mathcal{F}])$ be a Dirichlet form on a closed subspace of $L^2(\partial \mathcal{K}(\mathcal{E}), \nu)$ with $\mathcal{F}(1, 1) = 0$, and define a form $(\mathcal{E}_{\mathcal{F}}, D[\mathcal{E}_{\mathcal{F}}])$ by

$$\mathcal{E}_{\mathcal{F}}(u, v) = \mathcal{E}(u, v) + \mathcal{F}(\tau(u), \tau(v)); \quad D[\mathcal{E}_{\mathcal{F}}] = \{u \in D[\mathcal{E}] \mid \tau(u) \in D[\mathcal{F}]\}.$$

Then $\mathcal{E}_{\mathcal{F}}$ is a resistance form of Γ . Moreover for a positive number *t*, we set $\mathcal{E}_{\mathcal{F};t}(u, v) = \mathcal{E}(u, v) + t\mathcal{F}(\tau(u), \tau(v))$. Then the limit of the forms as $t \to +\infty$ also gives a resistance form of Γ .

(iii) Given a finite subset *K* of *V*, we can define a Dirichlet form on the space l(K) of functions on *K* by letting $\mathcal{E}_{K}^{*}(u, u) = \inf\{\mathcal{E}(\tilde{u}, \tilde{u}) \mid \tilde{u} \in D[\mathcal{E}], \tilde{u} = u \text{ on } K\}$ for $u \in l(K)$. Then we get a finite connected network $\Gamma_{K}^{*} = (K, E_{K}, r_{K})$ such that the effective resistance of Γ_{K}^{*} between two points of *K* is equal to the effective resistance

relative to \mathcal{E} (cf. [7, Theorem 2.1.12, Corollary 2.1.13], [5, Theorem 1.13]). Thus if we take an increasing sequence $\{V_n\}$ of finite subsets of V such that $V = \bigcup_n V_n$, then Γ endowed with the resistance form \mathcal{E} can be considered as a limit of finite networks $\{\Gamma_{V_n}^*\}$ (see [5]). Conversely if we have a sequence $\{\Gamma'_n\}$ of finite networks such that the set of vertices of Γ'_n includes the vertex boundary of V_n , namely the set of vertexes of V_n which are adjacent to those outside of V_n , we get a sequence $\{\Gamma''_n\}$ of finite networks obtained by joining the subnetwork Γ_n of Γ generated by V_n with Γ'_n through the vertex boundary of V_n . Since the effective resistance of Γ''_n between two points of V_n is bounded by the effective resistance form \mathcal{E} of Γ such that for any pair of points of V, the effective resistance of Γ''_n between them (for large n) converges to the effective resistance relative to \mathcal{E} as $n \to \infty$ (see [5, 7.4]).

3. Random walks

We consider a connected non-parabolic network $\Gamma = (V, E, r)$ endowed with a measure $\mu: V \to (0, +\infty)$ satisfying (2) and the random walk $\{X_n\}$ of Γ .

Let $(\mathcal{M}, d_{\mathcal{M}})$ be a complete separable metric space. Define a set $D[\mathcal{E}_{\Gamma, \mathcal{M}}]$ of maps of V to \mathcal{M} and a functional $\mathcal{E}_{\Gamma, \mathcal{M}}$ on $D[\mathcal{E}_{\Gamma, \mathcal{M}}]$ by

$$D[\mathcal{E}_{\Gamma,\mathcal{M}}] = \left\{ \phi \colon V \to \mathcal{M} \; \middle| \; \sum_{x \sim y} \frac{d_{\mathcal{M}}(\phi(x), \phi(y))^2}{r(|xy|)} < +\infty \right\};$$
$$\mathcal{E}_{\Gamma,\mathcal{M}}(\phi) = \frac{1}{2} \sum_{x \sim y} \frac{d_{\mathcal{M}}(\phi(x), \phi(y))^2}{r(|xy|)}, \quad \phi \in D[\mathcal{E}_{\Gamma,\mathcal{M}}].$$

A map $\phi: V \to \mathcal{M}$ in $D[\mathcal{E}_{\Gamma,\mathcal{M}}]$ is called a Dirichlet finite map. The composition $f \circ \phi$ of a Lipschitz function f on \mathcal{M} and a Dirichlet finite map $\phi: V \to \mathcal{M}$ belongs to $D[\mathcal{E}_{\Gamma}]$. Thus applying the result of [1] mentioned in the introduction, we see that the sequence $\{f(\phi(X_n))\}$ is almost surely convergent, and the process $\phi(X_n)$ is already almost surely convergent in \mathcal{M} .

Now we consider a resistance form \mathcal{E} of Γ . For any $x, y \in V$, let

$$d^{\mathcal{E}}(x, y) = \left(\int_{V} (g^{\mathcal{E}}_{\mu}(x, z) - g^{\mathcal{E}}_{\mu}(y, z))^{2} d\mu(z) \right)^{1/2},$$

where we set $g_{\mu}^{\mathcal{E}}(x, y) = \int_{V} g_{z}^{\mathcal{E}}(x, y) d\mu(z)$. Then it is proved in [5, Theorem 3.10] that $d^{\mathcal{E}}$ gives a compatible metric on $\mathcal{K}(\mathcal{E})$. In what follows, $\mathcal{K}(\mathcal{E})$ is equipped with the distance $d^{\mathcal{E}}$.

Now we prove the following

Lemma 5. The inclusion map I of V into the metric space $(\mathcal{K}(\mathcal{E}), d^{\mathcal{E}})$ is a Dirichlet finite map and $\mathcal{E}_{\Gamma,\mathcal{K}(\mathcal{E})}(I) = \iint_{V \times V} R_{\mathcal{E}}(z, w) d\mu(z) d\mu(w)$.

Proof. We have

$$\begin{split} \mathcal{E}_{\Gamma,\mathcal{K}(\mathcal{E})}(I) &= \sum_{x \sim y} \frac{d^{\mathcal{E}}(x, y)^2}{r(|xy|)} \\ &= \sum_{x \sim y} \int_V \frac{(g_{\mu}^{\mathcal{E}}(x, z) - g_{\mu}^{\mathcal{E}}(y, z))^2}{r(|xy|)} d\mu(z) \\ &= \int_V \sum_{x \sim y} \frac{(g_{\mu}^{\mathcal{E}}(x, z) - g_{\mu}^{\mathcal{E}}(y, z))^2}{r(|xy|)} d\mu(z) \\ &= \int_V \mathcal{E}(g_{\mu}^{\mathcal{E}}(z, *), g_{\mu}^{\mathcal{E}}(z, *)) d\mu(z) \\ &= \int_V g_{\mu}^{\mathcal{E}}(z, z) d\mu(z) \\ &= \int_V g_{\mu}^{\mathcal{E}}(z, z) d\mu(z) \\ &= \int_V R_{\mathcal{E}}(z, w) d\mu(z) d\mu(w) \\ &< \int_V R_{\mathcal{E}}(z, o) d\mu(z) + \int_V R_{\mathcal{E}}(o, w) d\mu(w) = 2 \int_V R_{\mathcal{E}}(z, o) d\mu(z). \end{split}$$

This completes the proof of the lemma.

Theorem 6. Let $\Gamma = (V, E, r)$ be a connected non-parabolic network and \mathcal{E} a resistance form of Γ . Then there exists a $\Delta^{K}(\mathcal{E})$ -valued random variable $X_{\infty}^{\mathcal{E}}$ such that the process X_{n} almost surely converges to $X_{\infty}^{\mathcal{E}}$ in $\mathcal{K}(\mathcal{E})$, the measure $v_{X_{n}}$ converges weakly to the delta measure $\delta_{X_{\infty}^{\mathcal{E}}}$ almost surely, and for any $u \in D[\mathcal{E}]$, $u(X_{n})$ converges to $\tau(u)(X_{\infty}^{\mathcal{E}})$ almost surely and in L^{2} as $n \to \infty$.

Proof. Lemma 5 and the result in [1] stated above imply that the process $\{X_n\}$ is Cauchy in $\mathcal{K}(\mathcal{E})$ almost surely. Let $X_{\infty}^{\mathcal{E}} = \lim_{n \to \infty} X_n$. We recall here that $D[L^{\mathcal{E}}]$ is densely embedded in both $C(\mathcal{K}(\mathcal{E}))$ and $D[\mathcal{E}]$. Then together with Theorem 1, we see that for $u \in D[L^{\mathcal{E}}]$,

$$\lim_{n\to\infty} u(X_n) = \lim_{n\to\infty} \int_{\partial \mathcal{K}(\mathcal{E})} \tau(u) \, d\nu_{X_n} = \tau(u)(X_{\infty}^{\mathcal{E}}).$$

Moreover it follows that ν_{X_n} weakly converges to $\delta_{X_{\infty}^{\mathcal{E}}}$ almost surely, and since the support of the measure ν_x coincides with $\Delta^K(\mathcal{E})$, it follows that $X_{\infty}^{\mathcal{E}}$ is a $\Delta^K(\mathcal{E})$ -valued random variable, and further it is easy to see that the image is dense in $\Delta^K(\mathcal{E})$.

Now we want to show that for $u \in D[\mathcal{E}]$, $u(X_n)$ converges to $\tau(u)(X_{\infty}^{\mathcal{E}})$ in L^2 . We fix a point $a \in V$. For any positive number ε , we take a function $u_{\varepsilon} \in D[L^{\mathcal{E}}]$ such that

 $\mathcal{E}(u-u_{\varepsilon}) + (u-u_{\varepsilon})(a)^2 < \varepsilon$. Let $h_{\varepsilon}(x) = \int_{\partial \mathcal{K}(\mathcal{E})} \tau(u-u_{\varepsilon}) dv_x$ and $g_{\varepsilon} = u - u_{\varepsilon} - h_{\varepsilon} \in D_0[\mathcal{E}_0]$. Then we have

$$\begin{split} \mathbf{E}_{a}[(u-u_{\varepsilon})^{2}(X_{n})] &\leq 2\mathbf{E}_{a}[h_{\varepsilon}^{2}(X_{n})] + 2\mathbf{E}_{a}[g_{\varepsilon}^{2}(X_{n})] \\ &\leq 2\int_{\partial\mathcal{K}(\mathcal{E})}\tau(h_{\varepsilon})^{2}\,d\nu_{a} + 2\mathbf{E}_{a}[g_{\varepsilon}^{2}(X_{n})], \end{split}$$

where we have used the fact that h_{ε}^2 is subharmonic, so that

$$\mathbf{E}_{a}[h_{\varepsilon}^{2}(X_{n})] \leq \int_{\partial \mathcal{K}(\mathcal{E})} \tau(h_{\varepsilon})^{2} dv_{a}.$$

In view of (4), we observe that

$$\begin{split} \int_{\partial \mathcal{K}(\mathcal{E})} \tau(h_{\varepsilon})^2 \, d\nu_a &\leq 2g_{\Gamma}^0(a, a)\mathcal{E}(u - u_{\varepsilon}, u - u_{\varepsilon}) + 2(u - u_{\varepsilon})(a)^2 \\ &\leq 2(g_{\Gamma}^0(a, a) + 1)\varepsilon. \end{split}$$

Thus we obtain

$$\mathbf{E}_a[(u-u_{\varepsilon})^2(X_n)] \le 4(g_{\Gamma}^0(a,a)+1)\varepsilon + 2\mathbf{E}_a[g_{\varepsilon}^2(X_n)].$$

Using this, we have

$$\begin{split} \mathbf{E}_{a}[(u(X_{n}) - \tau(u)(X_{\infty}^{\mathcal{E}}))^{2}] \\ &\leq 4\mathbf{E}_{a}[h_{\varepsilon}^{2}(X_{n})] + 4\mathbf{E}_{a}[\tau(u - u_{\varepsilon})^{2}(X_{\infty}^{\mathcal{E}})] + 2\mathbf{E}_{a}[(u_{\varepsilon}(X_{n}) - \tau(u_{\varepsilon})(X_{\infty}^{\mathcal{E}}))^{2}] \\ &\leq 16(g_{\Gamma}^{0}(a, a) + 1)\varepsilon + 8\mathbf{E}_{a}[g_{\varepsilon}^{2}(X_{n})] + 4\int_{\partial\mathcal{K}(\mathcal{E})}\tau(h_{\varepsilon})^{2} d\nu_{a} \\ &\quad + 2\mathbf{E}_{a}[(u_{\varepsilon}(X_{n}) - \tau(u_{\varepsilon})(X_{\infty}^{\mathcal{E}}))^{2}] \\ &\leq 24(g_{\Gamma}^{0}(a, a) + 1)\varepsilon + 8\mathbf{E}_{a}[g_{\varepsilon}^{2}(X_{n})] + 2\mathbf{E}_{a}[(u_{\varepsilon}(X_{n}) - \tau(u_{\varepsilon})(X_{\infty})^{\mathcal{E}})^{2}]. \end{split}$$

Thus we get

$$\limsup_{n \to \infty} \mathbf{E}_a[(u(X_n) - \tau(u)(X_{\infty}^{\mathcal{E}}))^2] \le 24(g_{\Gamma}^0(a, a) + 1)\varepsilon.$$

Letting ε go to zero, we see that $\lim_{n\to\infty} \mathbf{E}_a[(u(X_n) - \tau(u)(X_{\infty}^{\varepsilon}))^2] = 0$. This completes the proof of the theorem.

Now we consider a map ϕ from the network Γ to a simply connected, complete separable geodesic space $(\mathcal{M}, d_{\mathcal{M}})$ of nonpositive curvature (cf. [4], [13]). For any $x \in V$, there exists uniquely a point of \mathcal{M} , denoted by $P\phi(x)$, such that

$$\sum_{y \sim x} \frac{d_{\mathcal{M}}(P\phi(x), \phi(y))^2}{r(|xy|)} = \inf_{q \in \mathcal{M}} \sum_{y \sim x} \frac{d_{\mathcal{M}}(q, \phi(y))^2}{r(|xy|)};$$

 $P\phi(x)$ is the center of mass of the measure $\sum_{y\sim x} r(|xy|)^{-1}\delta_{\phi(y)}$ on \mathcal{M} . A map $\phi: V \to \mathcal{M}$ is said to be harmonic if $P\phi(x) = \phi(x)$ at any $x \in V$. A harmonic map $\phi: V \to \mathcal{M}$ pulls convex functions η on an open subset $A \subset \mathcal{M}$ back to subharmonic functions $\eta \circ \phi$ on $\phi^{-1}(A)$ (see [4, Proposition 12.3 (Jensen's inequality)]).

Now we prove the following

Theorem 7. Let ϕ be a map from a connected non-parabolic network $\Gamma = (V, E, r)$ to a simply connected, complete, separable geodesic space $(\mathcal{M}, d_{\mathcal{M}})$ of nonpositive curvature. Let $\phi \colon V \to \mathcal{M}$ be a Dirichlet finite harmonic map. Then the image $\phi(V)$ is contained in the convex hull $\mathcal{C}(L)$ of the set L of points to which $\phi(X_n)$ converges almost surely.

Moreover $\phi(V)$ is bounded if any $h \in H_{\mathcal{E}_{\Gamma}}$ is bounded. In particular, ϕ must be constant if $H_{\mathcal{E}_{\Gamma}} = \mathbf{R}$, that is, Γ admits no non-constant Dirichlet finite harmonic functions.

Proof. Let η be a distance function to the convex hull C(L) of L, that is the smallest closed convex subset containing L in \mathcal{M} . Then η^2 is convex and hence $\eta^2 \circ \phi$ is subharmonic on V. Thus we have

$$\eta^2 \circ \phi(x) \leq \mathbf{E}_x[\eta^2 \circ \phi(X_n)]$$

for any $x \in V$ and all n = 1, 2, ... Since $\lim_{n\to\infty} \eta^2(\phi(X_n)) = 0$ almost surely, we get $\eta^2 \circ \phi(x) = 0$, that is, $\phi(x) \in C(L)$.

Now we suppose that any $h \in H_{\mathcal{E}_{\Gamma}}$ is bounded. Since this condition is equivalent to the condition that any nonnegative subharmonic function u of $D[\mathcal{E}_{\Gamma}]$ is bounded, for the distance function η to a point of \mathcal{M} , $\eta \circ \phi$ is bounded. Thus $\phi(V)$ must be bounded. Moreover we suppose that Γ admits no non-constant Dirichlet finite harmonic functions. Then $\Delta(\mathcal{E}_{\Gamma})$ consists of a single point, and hence so does L. Thus ϕ must be a constant map. This completes the proof of the theorem.

Let Ω be the set of one-sided infinite paths in a connected non-parabolic network Γ . Given a path $\omega \in \Omega$, the set of limit points of ω in the Royden boundary $\partial \mathcal{R}(\mathcal{E}_{\Gamma})$ of Γ is defined as

$$L(\omega) = \overline{\{X_n(\omega)\}} \cap \partial \mathcal{R}(\mathcal{E}_{\Gamma}).$$

Then we can deduce from Theorem 6 the following

Lemma 8. For any null family Σ of one-sided infinite paths, one has

$$\overline{\bigcup\{L(\omega)\mid \omega\in\Omega\setminus\Sigma\}}\supset\Delta(\mathcal{E}_{\Gamma}).$$

Now we prove the following

A. KASUE

Theorem 9. Let $\phi: \Gamma \to (\mathcal{M}, d_{\mathcal{M}})$ be a Dirichlet finite map from a connected non-parabolic network $\Gamma = (V, E, r)$ to a proper metric space $(\mathcal{M}, d_{\mathcal{M}})$, that is a metric space such that any bounded closed subset is compact. Let $\overline{\mathcal{M}} = \mathcal{M} \cup \{\infty_{\mathcal{M}}\}$ be the one-point compactification of \mathcal{M} . Then ϕ extends to a continuous map $\overline{\phi}: \mathcal{R}(\mathcal{E}_{\Gamma}) \to \overline{\mathcal{M}}$ from the Royden compactification $\mathcal{R}(\mathcal{E}_{\Gamma})$ of Γ to $\overline{\mathcal{M}}$. Moreover there exists a null family Σ in Ω such that $\phi(X_n(\omega))$ converges in \mathcal{M} for all $\omega \in \Omega \setminus \Sigma$ and

$$\bar{\phi}(\Delta(\mathcal{E}_{\Gamma})) = \left\{ \lim_{n \to \infty} \phi(X_n(\omega)) \in \mathcal{M} \mid \omega \in \Omega \setminus (\Sigma' \cup \Sigma) \right\} \cup \{\infty_{\mathcal{M}}\}$$

for any null family Σ' in Ω .

Proof. For a point $x \in \mathcal{M}$, we denote by η_x the distance function to x in \mathcal{M} . Let $\Lambda_{\phi} = \{\xi \in \partial \mathcal{R}(\mathcal{E}_{\Gamma}) \mid \overline{\eta_x \circ \phi}(\xi) = +\infty\}$, where $\overline{\eta_x \circ \phi}$ stands for the continuous extension of $\eta_x \circ \phi$ to $\mathcal{R}(\mathcal{E}_{\Gamma})$ with values in $\mathbf{R} \cup \{\pm\infty\}$. This closed subset is independent of the choice of a reference point x. Now we take a countably infinite dense subset $\{x_i\}$ of \mathcal{M} . Let ξ and $\{v_n\}$ be, respectively, a point of $\partial \mathcal{R}(\mathcal{E}_{\Gamma}) \setminus \Lambda_{\phi}$ and a sequence in V converging to ξ . Then $\phi(v_n)$ stays in a compact subspace in \mathcal{M} . Since $d_X(x_i, \phi(v_n))$ tends to $\overline{\eta_{x_i} \circ \phi}(\xi)$ as $n \to \infty$ for all x_i which are densely distributed in \mathcal{M} , we can deduce that as n tends to infinity, $\phi(v_n)$ converges to a point, $\overline{\phi}(\xi)$, in \mathcal{M} . By setting $\overline{\phi}(\xi) = \infty_{\mathcal{M}}$ for $\xi \in \Lambda_{\phi}$, we obtain a continuous map $\overline{\phi}$ from $\mathcal{R}(\mathcal{E}_{\Gamma})$ to $\overline{\mathcal{M}}$.

Let Ω_{ϕ} be the set of one-sided infinite paths along which $\phi(X_n)$ converges in \mathcal{M} . For any j = 1, 2, ...,let $\overline{\phi}(\Delta(\mathcal{E}_{\Gamma}))_j = \{x \in \mathcal{M} \mid d_{\mathcal{M}}(x, \overline{\phi}(\Delta(\mathcal{E}_{\Gamma}))) < 1/j\}$ and $A_j = \overline{\phi}(\partial \mathcal{R}(\mathcal{E}_{\Gamma})) \setminus \overline{\phi}(\Delta(\mathcal{E}_{\Gamma}))_j$. Since $\overline{\phi}^{-1}(A_j)$ is disjoint from $\Delta(\mathcal{E}_{\Gamma})$, we have by Lemma 5.3 in [15] a function $g_j \in D_0[\mathcal{E}_{\Gamma}]$ such that $g_j = +\infty$ on $\overline{\phi}^{-1}(A_j) \cap \partial \mathcal{R}(\mathcal{E}_{\Gamma})$. On the other hand, it follows from Theorem 1 that $\lim_{n\to\infty} g_j(X_n) = 0$ almost surely. This shows that $\{\omega \in \Omega_{\phi} \mid \lim_{n\to\infty} \phi(X_n(\omega)) \in A_j\}$ is a null family of paths, and hence, letting $\Sigma = \{\omega \in \Omega_{\phi} \mid \lim_{n\to\infty} \phi(X_n(\omega)) \in \bigcup_j A_j\}$, we see that $\lim_{n\to\infty} \phi(X_n(\omega)) \in \overline{\phi}(\Delta(\mathcal{E}_{\Gamma}))$ for all $\omega \in \Omega_{\phi} \setminus \Sigma$. Moreover by Lemma 8, the assertion holds true.

REMARK. Relevantly to Theorem 7, we refer to [8] in which a Liouville type theorem for harmonic maps to convex spaces via Markov chains is discussed. For an existence result of Dirichlet finite harmonic maps, see [12]. A connected parabolic network admits no non-constant Dirichlet finite harmonic maps to a simply connected, complete, geodesic space of nonpositive curvature. In fact, Theorem (3.34) in [11] states that a Dirichlet finite subharmonic function on such a network must be constant. We also refer to [3], where it is proved that if on a complete Riemannian manifold M, every harmonic function with finite Dirichlet energy is bounded, then every harmonic map with finite total energy from M into a Cartan–Hadamard manifold must also have bounded image.

4. Poisson equations

Let $\Gamma = (V, E, r)$ be a connected non-parabolic network and \mathcal{E} a resistance form of Γ . In this section, we derive integral representations of solutions of Poisson equations on the Kuramochi compactification of \mathcal{E} .

To begin with, we show the following

Lemma 10 (Harnack's inequality). Let h be a positive harmonic function on V. Then

$$h(x) \le \frac{g_{\Gamma}^0(x,x)}{g_{\Gamma}^0(y,x)} h(y)$$

for all $x, y \in V$.

Proof. Let $\{V_n\}$ be an increasing sequence of finite subsets of V such that $V = \bigcup_n V_n$. Let D_n be the space of functions on V which vanish outside of V_n . Then for any $x \in V_n$, there exists uniquely a function $g_x \in D_n$ satisfying

$$\mathcal{E}_{\Gamma}(g_x, u) = u(x)$$

for all $u \in D_n$. We write $g_n(x, y)$ for $g_x(y)$. Fix points $x, y \in V$ and consider V_n for n large enough. Then there exists uniquely a function $p_n \in D_n$ such that $p_n(x) = h(x)$, $p_n(y) = h(y)$, and $L^c p_n(z) = 0$ for any $z \in V_n \setminus \{x, y\}$. The maximum principle ensures that $p_n \leq h$ in V and hence $L^c p_n(x) \geq 0$ and $L^c p_n(y) \geq 0$. Then we have

$$h(x) = p_n(x)$$

$$= \mathcal{E}_{\Gamma}(g_n(x, *), p_n)$$

$$= \sum_{z \in V_n} g_n(x, z) L^c p_n(z)$$

$$= g_n(x, x) L^c p_n(x) + g_n(x, y) L^c p_n(y)$$

$$= \frac{g_n(x, x)}{g_n(y, x)} g_n(y, x) L^c p_n(x) + \frac{g_n(x, y)}{g_n(y, y)} g_n(y, y) L^c p_n(y)$$

$$\leq \frac{g_n(x, x)}{g_n(y, x)} \{g_n(y, x) L^c p_n(x) + g_n(y, y) L^c p_n(y)\}$$

$$= \frac{g_n(x, x)}{g_n(y, x)} \mathcal{E}_{\Gamma}(g_n(y, *), p_n)$$

$$= \frac{g_n(x, x)}{g_n(y, x)} p_n(y)$$

$$= \frac{g_n(x, x)}{g_n(y, x)} h(y).$$

Thus we get

$$h(x) \le \frac{g_n(x, x)}{g_n(y, x)} h(y)$$

for all large *n*. As $n \to \infty$, $g_n(z, w)$ converges to $g_{\Gamma}^0(z, w)$ for any $(z, w) \in V \times V$, and thus we obtain the required inequality.

In what follows, we take a probability measure μ on V satisfying (2) and

(5)
$$\int_{V} \frac{g_{\Gamma}^{0}(x,x)}{g_{\Gamma}^{0}(x,o)} d\mu(x) < +\infty.$$

Proposition 11. (i) For any fixed $x \in V$, $g_{\Gamma}^{0}(x, *) \in D[\overline{L}^{\mathcal{E}}] \cap D_{0}[\mathcal{E}_{\Gamma}]$ and the harmonic measure v_{x} with respect to $x \in V$ is given by

$$\nu_x = -N^{\mathcal{E}}g_{\Gamma}^0(x,*)\nu.$$

(ii) Let

$$G^0_\mu(x) = \int_V g^0_\Gamma(x, z) \, d\mu(z), \quad x \in V.$$

Then G^0_{μ} belongs to $D[\bar{L}^{\mathcal{E}}]$ and $N^{\mathcal{E}}G^0_{\mu} = \int_V N^{\mathcal{E}}g^0_{\Gamma}(x, *) d\mu(x)$. Moreover $N^{\mathcal{E}}G^0_{\Gamma}$ satisfies

$$0 < \mu(0) < -N^{\mathcal{E}} G^0_{\mu} < \int_V \frac{g^0_{\Gamma}(x,x)}{g^0_{\Gamma}(x,o)} \, d\mu(x).$$

Proof. For a function $u \in D[\mathcal{E}]$, we have

$$\left| \int_{\partial \mathcal{K}(\mathcal{E})} \tau(u) \, dv_x \right| \leq \int_{\partial \mathcal{K}(\mathcal{E})} |\tau(u)| \, dv_x$$
$$\leq \frac{g_{\Gamma}^0(x, x)}{g_{\Gamma}^0(x, o)} \int_{\partial \mathcal{K}(\mathcal{E})} |\tau(u)| \, dv$$

This implies that

$$\left|\mathcal{E}(g_{\Gamma}^{0}(x,\,*),\,u)\right| = \left|u(x) - \int_{\partial \mathcal{K}(\mathcal{E})} \tau(u)\,d\nu_{x}\right|$$

is bounded by $\mu(x)^{-1} \int_{V} |u| d\mu + g_{\Gamma}^{0}(x, x)/g_{\Gamma}^{0}(x, o) \int_{\partial \mathcal{K}(\mathcal{E})} |\tau(u)| d\nu$. Thus we see that $g_{\Gamma}^{0}(x, *)$ belongs to $D[\bar{L}^{\mathcal{E}}]$. Moreover since $L^{c}g_{\Gamma}^{0}(x, *) = \delta_{x}$, we get

$$\begin{split} u(x) &- \int_{\partial \mathcal{K}(\mathcal{E})} \tau(u) \, d\nu_x = \int_V u(y) L^{\mathcal{E}} g^0_{\Gamma}(x, y) \, d\mu(y) + \int_{\partial \mathcal{K}(\mathcal{E})} \tau(u) N^{\mathcal{E}} g^0_{\Gamma}(x, *) \, d\nu \\ &= u(x) + \int_{\partial \mathcal{K}(\mathcal{E})} \tau(u) N^{\mathcal{E}} g^0_{\Gamma}(x, *) \, d\nu. \end{split}$$

In this way, we obtain

$$\int_{\partial \mathcal{K}(\mathcal{E})} \tau(u) \, dv_x = - \int_{\partial \mathcal{K}(\mathcal{E})} \tau(u) N^{\mathcal{E}} g_{\Gamma}^0(x, *) \, dv.$$

This shows the first assertion.

Given $u \in D[\mathcal{E}]$, let $g(x) = u(x) - \int_{\partial \mathcal{K}(\mathcal{E})} \tau(u) dv_x$. Then we have

$$\begin{split} \mathcal{E}_{\Gamma}(G^{0}_{\mu}, u) &|= |\mathcal{E}_{\Gamma}(G^{0}_{\mu}, g)| \\ &= \left| \int_{V} g(x) \, d\mu(x) \right| \\ &= \left| \int_{V} u(x) \, d\mu(x) - \int_{V} \int_{\partial \mathcal{K}(\mathcal{E})} \tau(u) \, d\nu_{x} \, d\mu(x) \right| \\ &\leq \int_{V} |u(x)| \, d\mu(x) + \int_{V} \int_{\partial \mathcal{K}(\mathcal{E})} |\tau(u)| \, d\nu_{x} \, d\mu(x) \\ &\leq \int_{V} |u(x)| \, d\mu(x) + \int_{V} \frac{g^{0}_{\Gamma}(x, x)}{g^{0}_{\Gamma}(x, o)} \, d\mu(x) \int_{\partial \mathcal{K}(\mathcal{E})} |\tau(u)| \, d\nu. \end{split}$$

This shows that G^0_{μ} belongs to $D[\bar{L}^{\mathcal{E}}]$. It is easy to see the remaining assertions. This completes the proof of the proposition.

As in Section 3, we now introduce a kernel function $g^{\mathcal{E}}_{\mu}$ on \mathcal{E} by

$$g_{\mu}^{\mathcal{E}}(x, y) = \int_{V} g_{z}^{\mathcal{E}}(x, y) d\mu(z), \quad x, y \in V.$$

Then we have

$$\mathcal{E}(g^{\mathcal{E}}_{\mu}(x,*),u) = u(x) - \int_{V} u \, d\mu, \quad u \in D[\mathcal{E}].$$

In particular, the function $g_{\mu}^{\mathcal{E}}(x, *)$ for a fixed $x \in V$ belongs to $D[L^{\mathcal{E}}]$. Similarly, let

$$h_{\mu}^{\mathcal{E}}(x, y) = \int_{V} h_{z}^{\mathcal{E}}(x, y) d\mu(z), \quad x, y \in V.$$

Then we have

$$\mathcal{E}(h_{\mu}^{\mathcal{E}}(x,*),h) = h(x) - \int_{V} h \, d\mu, \quad h \in H_{\mathcal{E}}.$$

In view of (1), we see that

(6)
$$g_{\mu}^{\mathcal{E}}(x, y) = h_{\mu}^{\mathcal{E}}(x, y) + g_{\Gamma}^{0}(x, y) - G_{\mu}^{0}(x) - G_{\mu}^{0}(y) + C_{\Gamma,\mu},$$

where we put $C_{\Gamma,\mu} = \int_V g_{\Gamma}^0(z, z) d\mu(z)$. Given a function $u \in D[\bar{L}^{\mathcal{E}}]$, we have

$$\begin{split} u(x) &= \int_{V} u \, d\mu + \mathcal{E}(g_{\mu}^{\mathcal{E}}(x,*),u) \\ &= \int_{V} u \, d\mu + \int_{V} g_{\mu}^{\mathcal{E}}(x,y) L^{\mathcal{E}}u(y) \, d\mu(y) + \int_{\partial \mathcal{K}(\mathcal{E})} g_{\mu}^{\mathcal{E}}(x,\xi) N^{\mathcal{E}}u(\xi) \, d\nu(\xi) \\ &= \int_{V} u \, d\mu + \int_{V} g_{\mu}^{\mathcal{E}}(x,y) L^{\mathcal{E}}u(y) \, d\mu(y) + \int_{\partial \mathcal{K}(\mathcal{E})} h_{\mu}^{\mathcal{E}}(x,\xi) N^{\mathcal{E}}u(\xi) \, d\nu(\xi) \\ &- (G_{\mu}^{0}(x) - C_{\Gamma,\mu}) \int_{\partial \mathcal{K}(\mathcal{E})} N^{\mathcal{E}}u(\xi) \, d\nu(\xi). \end{split}$$

Since

$$\int_{V} L^{\mathcal{E}} u \, d\mu + \int_{\partial \mathcal{K}(\mathcal{E})} N^{\mathcal{E}} u \, d\nu = \mathcal{E}(u, 1) = 0,$$

by letting

$$\bar{g}^{\mathcal{E}}_{\mu}(x, y) = g^{\mathcal{E}}_{\mu}(x, y) + G^0_{\mu}(x) - C_{\Gamma,\mu},$$

we obtain an integral representation of a function u of $D[\bar{L}^{\mathcal{E}}]$ as follows:

$$u(x) = \int_{V} u \, d\mu + \int_{V} \bar{g}_{\mu}^{\mathcal{E}}(x, y) L^{\mathcal{E}}u(y) \, d\mu(y) + \int_{\partial \mathcal{K}(\mathcal{E})} h_{\mu}^{\mathcal{E}}(x, \xi) N^{\mathcal{E}}u(\xi) \, d\nu(\xi).$$

Let f be a function in $L^2(\mathcal{K}(\mathcal{E}), \bar{\mu})$. Suppose that $\bar{\mu}(f) = \int_V f \, d\mu + \int_{\partial \mathcal{K}(\mathcal{E})} f \, d\nu =$ 0. Then for any $h \in H_{\mathcal{E}}$, we have

$$\begin{split} \left| \int_{V} hf \, d\mu + \int_{\partial \mathcal{K}(\mathcal{E})} \tau(h) f \, d\nu \right|^{2} \\ &= \left| \int_{V} (h - h(o)) f \, d\mu + \int_{\partial \mathcal{K}(\mathcal{E})} \tau(h - h(0)) f \, d\nu \right|^{2} \\ &\leq \left(\int_{V} (h - h(o))^{2} d \, \mu + \int_{\partial \mathcal{K}(\mathcal{E})} \tau(h - h(o))^{2} \, d\nu \right) \left(\int_{V} f^{2} \, d\mu + \int_{\partial \mathcal{K}(\mathcal{E})} f^{2} \, d\nu \right) \\ &\leq \left(\int_{V} R_{\mathcal{E}}(o, x) \, d\mu(x) + 2g_{\Gamma}^{0}(o, o) \right) \left(\int_{V} f^{2} \, d\mu + \int_{\partial \mathcal{K}(\mathcal{E})} f^{2} \, d\nu \right) \mathcal{E}(h, h), \end{split}$$

where we have used

$$\int_{V} (h(x) - h(o))^{2} d\mu(x) \leq \int_{V} h_{o}^{\mathcal{E}}(x, x) d\mu(x) \mathcal{E}(h, h) \leq \int_{V} R_{\mathcal{E}}(o, x) d\mu(x) \mathcal{E}(h, h)$$

and

$$\int_{\partial \mathcal{K}(\mathcal{E})} \tau(h - h(o))^2 \, d\nu \le 2g_{\Gamma}^0(o, o)\mathcal{E}(h, h)$$

by (4). For $g \in D_0[\mathcal{E}_{\Gamma}]$, we have

$$\begin{split} \left| \int_{V} gf \, d\mu \right|^{2} &\leq \int_{V} g^{2} \, d\mu \int_{V} f^{2} \, d\mu \\ &\leq \int_{V} \mathcal{E}_{\Gamma}(g_{\Gamma}^{0}(x,*),g)^{2} \, d\mu(x) \int_{V} f^{2} \, d\mu \\ &= \int_{V} g_{\Gamma}^{0}(x,x) \, d\mu(x) \int_{V} f^{2} \, d\mu \, \mathcal{E}_{\Gamma}(g,g) \\ &\leq \left(\int_{V} R_{\mathcal{E}}(o,x) \, d\mu(x) + 2g_{\Gamma}^{0}(o,o) \right) \int_{V} f^{2} \, d\mu \, \mathcal{E}_{\Gamma}(g,g). \end{split}$$

In this way, we see that for any $u \in D[\mathcal{E}]$,

$$\begin{split} & \left| \int_{V} uf \, d\mu + \int_{\partial \mathcal{K}(\mathcal{E})} \tau(u) f \, d\nu \right|^{2} \\ & \leq \left(\int_{V} R_{\mathcal{E}}(o, x) \, d\mu(x) + 2g_{\Gamma}^{0}(o, o) \right) \left(\int_{V} f^{2} \, d\mu + \int_{\partial \mathcal{K}(\mathcal{E})} f^{2} \, d\nu \right) \mathcal{E}(u, u). \end{split}$$

This shows that there exists a function ϕ in $D[\mathcal{E}]$, unique up to additive constants, such that

$$\mathcal{E}(u,\phi) = \int_{V} uf \, d\mu + \int_{\partial \mathcal{K}(\mathcal{E})} \tau(u) f \, d\nu, \quad u \in D[\mathcal{E}],$$

so that ϕ belongs to $D[\bar{L}^{\mathcal{E}}]$, $\bar{L}^{\mathcal{E}}\phi = f$ in $K^2(\mathcal{K}(\mathcal{E}),\bar{\mu})$, and ϕ is expressed in the following way:

(7)
$$\phi(x) = \int_{V} \phi \, d\mu + \int_{V} \bar{g}_{\mu}^{\mathcal{E}}(x, y) f(y) \, d\mu(y) + \int_{\partial \mathcal{K}(\mathcal{E})} h_{\mu}^{\mathcal{E}}(x, \xi) f(\xi) \, d\nu(\xi).$$

In the case where $\bar{\mu}(f) \neq 0$, the function ϕ defined in (7) satisfies $L^{\mathcal{E}}\phi = f$ on V and $N^{\mathcal{E}}\phi = f + \bar{\mu}(f)N^{\mathcal{E}}G^{0}_{\mu}$ in $L^{2}(\partial \mathcal{K}(\mathcal{E}), \nu)$.

In fact, we have

$$\begin{split} \phi(x) &- \int_{V} \phi \, d\mu \\ &= \int_{V} \bar{g}_{\mu}^{\mathcal{E}}(x, y) f(y) \, d\mu(y) \\ &+ \int_{\partial \mathcal{K}(\mathcal{E})} h_{\mu}^{\mathcal{E}}(x, \xi) (f(\xi) - \bar{\mu}(f)) \, d\nu(\xi) + \bar{\mu}(f) \int_{\partial \mathcal{K}(\mathcal{E})} h_{\mu}^{\mathcal{E}}(x, \xi) \, d\nu(\xi) \\ &= \int_{V} \bar{g}_{\mu}^{\mathcal{E}}(x, y) f(y) \, d\mu(y) + \int_{\partial \mathcal{K}(\mathcal{E})} h_{\mu}^{\mathcal{E}}(x, \xi) (f(\xi) - \bar{\mu}(f)) \, d\nu(\xi) + \bar{\mu}(f) h_{\mu}^{\mathcal{E}}(x, o) \end{split}$$

and

$$N^{\mathcal{E}}h^{\mathcal{E}}_{\mu}(\xi, o) = 1 + N^{\mathcal{E}}G^{0}_{\mu}(\xi).$$

Thus we have the following

Theorem 12. Let $\Gamma = (V, E, r)$ be a connected non-parabolic network and \mathcal{E} a resistance form of Γ . A probability measure μ on V satisfying (2) and (5) is given. (i) For $u \in D[\overline{L}^{\mathcal{E}}]$, one has

$$u(x) = \int_{V} u \, d\mu + \int_{V} \bar{g}_{\mu}^{\mathcal{E}}(x, y) L^{\mathcal{E}}u(y) \, d\mu(y) + \int_{\partial \mathcal{K}(\mathcal{E})} h_{\mu}^{\mathcal{E}}(x, \xi) N^{\mathcal{E}}u(\xi) \, d\nu(\xi), \quad x \in V.$$

(ii) For $f \in L^2(\mathcal{K}(\mathcal{E}), \overline{\mu})$ and a constant c, the function

$$u(x) = c + \int_{V} \bar{g}^{\mathcal{E}}_{\mu}(x, y) f(y) d\mu(y) + \int_{\partial \mathcal{K}(\mathcal{E})} h^{\mathcal{E}}_{\mu}(x, \xi) f(\xi) d\nu(\xi), \quad x \in V.$$

belongs to $D[\bar{L}^{\mathcal{E}}]$ and satisfies $\bar{L}^{\mathcal{E}}u = f$ on V and $\bar{L}^{\mathcal{E}}u = f + \bar{\mu}(f)N^{\mathcal{E}}G^{0}_{\mu}$ in $L^{2}(\partial \mathcal{K}(\mathcal{E}), \nu)$. In particular if $\bar{\mu}(f) = 0$, then $\bar{L}^{\mathcal{E}}u = f$ in $L^{2}(\mathcal{K}(\mathcal{E}), \bar{\mu})$.

Let $D[\mathcal{E}^*] = \{\tau(u) \mid u \in D[\mathcal{E}]\} (\subset L^2(\partial \mathcal{K}(\mathcal{E}), v))$ and $\mathcal{E}^*(\tau(u), \tau(v)) = \mathcal{E}(h_u, h_v)$ for $u, v \in D[\mathcal{E}]$, where h_u denotes the harmonic part of u in the Royden decomposition. Let $(L^*, D[L^*])$ be the self-adjoint operator associated to the regular Dirichlet form $(\mathcal{E}^*, D[\mathcal{E}^*])$ on $L^2(\partial \mathcal{K}(\mathcal{E}), v)$. The restriction of τ to $H_{\mathcal{E}}$ gives rise to a bijection between $H_{\mathcal{E}}$ and $D[\mathcal{E}^*]$ such that $\tau(H_{\mathcal{E}} \cap D[\bar{L}^{\mathcal{E}}]) = D[L^*]$ and $N^{\mathcal{E}}h = L^*\tau(h)$ for $h \in H_{\mathcal{E}} \cap D[\bar{L}^{\mathcal{E}}]$.

References

- A. Ancona, R. Lyons and Y. Peres: Crossing estimates and convergence of Dirichlet functions along random walk and diffusion paths, Ann. Probab. 27 (1999), 970–989.
- [2] D.I. Cartwright, P.M. Soardi and W. Woess: Martin and end compactifications for non-locally finite graphs, Trans. Amer. Math. Soc. 338 (1993), 679–693.
- [3] S.Y. Cheng, L.-F. Tam and T.Y.-H. Wan: *Harmonic maps with finite total energy*, Proc. Amer. Math. Soc. **124** (1996), 275–284.
- [4] J. Eells and B. Fuglede: Harmonic Maps Between Riemannian Polyhedra, Cambridge Univ. Press, Cambridge, 2001.
- [5] A. Kasue: Convergence of metric graphs and energy forms, Rev. Mat. Iberoam. 26 (2010), 367–448.
- [6] T. Kayano and M. Yamasaki: Some properties of Royden boundary of an infinite network, Mem. Fac. Sci. Shimane Univ. 22 (1988), 11–19.
- [7] J. Kigami: Analysis on Fractals, Cambridge Tracts in Mathematics 143, Cambridge Univ. Press, Cambridge, 2001.
- [8] K. Kuwae and K.-T. Sturm: On a Liouville type theorem for harmonic maps to convex spaces via Markov chains; in Proceedings of RIMS Workshop on Stochastic Analysis and Applications, RIMS Kôkyûroku Bessatsu, B6, Res. Inst. Math. Sci., Kyoto, 177–191, 2008.
- [9] A. Murakami and M. Yamasaki: An introduction of Kuramochi boundary of an infinite network, Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math. Sci. 30 (1997), 57–89.

- [10] T. Nakamura and M. Yamasaki: Generalized extremal length of an infinite network, Hiroshima Math. J. 6 (1976), 95–111.
- [11] P.M. Soardi: Potential Theory on Infinite Networks, Lecture Notes in Mathematics 1590, Springer, Berlin, 1994.
- [12] K.-T. Sturm: Nonlinear Markov operators associated with symmetric Markov kernels and energy minimizing maps between singular spaces, Calc. Var. Partial Differential Equations 12 (2001), 317–357.
- [13] K.-T. Sturm: Probability measures on metric spaces of nonpositive curvature; in Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), Contemp. Math. 338, Amer. Math. Soc., Providence, RI., 357–390, 2003.
- [14] M. Yamasaki: Parabolic and hyperbolic infinite networks, Hiroshima Math. J. 7 (1977), 135–146.
- [15] M. Yamasaki: Discrete Dirichlet potentials on an infinite network; Potential theory and its related fields (Kyoto, 1986), RIMS Kôkyûroku 610, Res. Inst. Math. Sci., Kyoto, 51–66, 1987.

Department of Mathematics Kanazawa University Kanazawa 920-1192 Japan e-mail: kasue@se.kanazawa-u.ac.jp