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Abstract

The Fourier—Jacobi coefficients of vector valued Siegel uterdforms of degree
n are more general functions than vector valued Jacobi forefiaetl by Ziegler [9]
even whenn = 2. We define generalized vector valued Jacobi forms correipg
to the above coefficients when= 2 and prove that such a space is isomorphic to a
certain product of spaces of usual scalar valued Jacobisfofirarious weights. This
isomorphism is realized by certain linear holomorphic afi#intial operators. The
half-integral weight case is also treated.

1. Introduction

The usual scalar valued Jacobi forms are defined as functibith have the nat-
ural automorphic properties that the Fourier—Jacobi aoeffts of scalar valued Siegel
modular forms have. When we take a vector valued Siegel modalm F instead,
then each Fourier—Jacobi coefficient Bfis a vector of holomorphic functions which
satisfies more complicated relations. Here we call this kihdunctionsvector valued
Jacobi forms In this paper, we restrict ourselves to the case of funstionH x C
where H is the complex upper half plane, and we study their relatiorthe usual
scalar valued Jacobi forms. Main results are Theorem 1.1 ghdn181.

By the way, some general definition of vector valued Jacobin$oof general de-
gree was given in Ziegler [9]. But his definition is fairly fiifent from ours. His def-
inition is obtained by changing the action of the semi-senpart of the Jacobi group
to the one using vector valued automorphy factor of the sgoi group. This is
of course interesting object since it has a good connectiith vector valued Siegel
modular forms of “half-integral” weight (i.e. the deterraim part has a half-integral
power). But in the present context, a Jacobi form defined Iy té&n give only some
components of our general vector valued Jacobi forms. Famele, for functions on
H x C, his definition can give only scalar valued automorphy fectbut ours give
vector valued functions even in this case.

Although we confine ourselves to the case of functionsibix C in this paper,
some of definitions have obvious generalization to the gémgegree, which will be
omitted here.
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Now we give a precise definition of the vector valued Jacobin®in this paper.
The half-integral weight case will be shortly explained Ie tlast section and here we
explain only the case when the weight is integral. EHf be the Siegel upper half
space of degrea defined as usual by

H, = {Z ="'Z € My(C); Im(Z) > 0}.

We write H = H;. For any non-negative integex, we denote byps the symmetric
tensor representation @L,(C) of degrees. For any integek, we write px s = det ®
ps. This exhausts all the rational irreducible representatiof GL,(C). Let Sp2, R)
be the usual symplectic group of size 4, i.e.

SH2,R) = {g € My(R); 'gdg= J},

where J = (102 _&2) and we putl’; = S(2, Z) = SE2, R) N My(Z). For anyCS*2-
valued functionF(Z) of Z € H, and M = (é‘ B) € Sp2,R) we write

(FloM)(Z) = pks(CZ + D) *F(MZ).

For anyk € Z, we say that aC3*-valued holomorphic functior is a Siegel modular
forms of weightpxs of I'z if FlxsM = F for all M € I',. We denote byA s(I'2) the

vector space of these Siegel modular forms. For dny Hy, we write Z = (; rz/)

and F(Z) = F(r, z 7). If F € Acs(I'2), then we haveF(z, z, ') = F(z, z, 7’ +1) for
any integerl, so we have the following Fourier expansion

F(Z) = i Op(t, 2) e(mt’),

m=0

where we writeg(x) = exp(2rimx) for any x € C and we also writee™(x) = e(mx)
sometimes. This is called the Fourier—Jacobi expansiofr aind eachCs*-valued
function ®(t, 2) is called a Fourier—Jacobi coefficient &. The real Jacobi group
J(R) is (isomorphic to) the subgroup &d2, R) generated by the matrices

a 0 b O 1 0 0 u
01 0 O Al pno ok
c 0d oY} 0 0 1 —x
0 0 0 1 0O 0 0 1

where (2 g) € SL(R) and A, u, k € R. For any subgroud” of SlLy(Z) with finite

index, we define the Jacobi modular grolip by a subgroup generated by the above
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g) e and A, u, k € Z. By the action ofSly(Z)’

on Siegel modular form& € A, s(I'2), we obtain the action 08Lx(Z) and Z? on the
Fourier—Jacobi coefficient®(r,z) of F. For any integek, for any CS** valued func-

tion ® on H x C and for anyM = (i g) € SLe(R) and (X, k) = ([, u, x) € R3,

two kinds of matrices with(il

we write

-1
_ ct+d cz\ cZ atr+b z
(1) (CI)'(k'S)'mM)(T’Z)_’Ok’S( 0 1) © ( Cr+d)¢(Cr+d’ Cr+d)'

1 —x

-1
0 1) €A% + 20z + A + k) D(T, Z+ AT + ).

@) (@lom(X, )z, 2) = ps(

Then this is a group action aJ(R). Whenk € Z, we sometimes writeb|s (X, k) =
DlsmX. Also if s =0, we write ®|xoymM = PlkmM and &jgmX = ®|nX. The
Fourier—Jacobi coefficient®,, of a Siegel modular form i s(I",) satisfy

(cbm|(k,s),mM)(Tv 7) = Op(7, 2),
(©m|m,sx)(":v Z) = CI>m(":v Z)

for any M € Sly(Z) and X € Z2. Therefore more generally we give the definition
below. Letm be a non-negative integer ang s = det ® ps be the irreducible rep-
resentation oiGL,(C) of dimensions + 1 defined as before. Ldt be a subgroup of
SLy(Z) with finite index.

DEFINITION 1.1. A Jacobi form of weighpy s and indexm belonging tol" is a
holomorphic functiond: H x C — CS*! satisfying
(1) ®|ksmM =& for all M eT,
(2) ®lsmX = @ for all X € Z?,
(3) for eachM e Sly(Z), the function®|y s mM has the Fourier expansion of the form

(@lgmM)(@, )= > Cu(nr)a"",

r2<4nm
n,reNyz

where we writeq = e(t), ¢ = €(2) for r € H andz € C, and Ny, is a rational number
depending onM.

We denote byJ(k,s),m(FJ) the set of all such functions. |k mM has the Fourier
expansion as above witBy(n, r) = 0 unlessr? < 4nm for every M € Sly(Z), then

® is called a vector valued Jacobiispform. We denote byd, '3, (") the subspace

of all cusp forms inJy ¢, m(I'?). Our main theorem of this paper is that this space is
essentially described by using only scalar valued Jacaingo Indeed, we prove the
following theorem in Section 2.
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Theorem 1.1. For any integer m with n¥ 1, there exists a linear isomorphism
between vector valued Jacobi forms and a direct sum of scahred Jacobi forms
given by

Jkgm(T?) 2= Im(T?) x Jgam(T?) x -+ x Jepsgm(T?),

Jieam(T7) = JEAI) > JET(0Y) - x JEL (1),
where §,, m(I'?) is a space of scalar valued Jacobi forms of weight k and index
m and (') is the subspace of cusp forms.

This linear isomorphism is given by a holomorphic diffeiehbperator with con-
stant coefficients. This operator is compatible with theéoacbf J(R) to the both sides
of the isomorphism, where the action &{R) to the right hand side is defined as a nat-
ural componentwise action. This fact is given in the follogiitheorem and the above
theorem is its corollary. We denote W the vector space o + 1 numbers of holo-
morphic functions onH x C. For & € W, we write thel-th component byps,1-i,
namely ® = Y(¢s, ¢s1, - - - , ¥0)-

Theorem 1.2. There exists a linear holomorphic differential operatofi B m with
constant coefficients from W to W such that

(D(k,s),m(q>|(k,s),mg))u = (D,s)m®P) [k, m0-
for any ge J(R).

Here for anyv € W, we denote byv, the  + 1 — p)-th component ofv. In
Section 2, we prove this theorem. In Section 3 we give a shartark on Eisenstein
series and inner metric. In Section 4, we give an analogosdtréor the half-integral
weight case.

2. Vector valued Jacobi forms and scalar valued Jacobi forms

In this section we prove Theorem 1.1 and 1.2. Most part of tleefpis devoted
to the explicit construction 0D m in Theorem 1.2.

In order to fix the coordinate, first we review the definitiontbé symmetric tensor
representation. For variableg, u,, we definevy, v, by

(Uli U2) = (ull UZ)A
where A € GL,(C). We put

(v3, vf_lvz, e vlvg_l, v3) = (U3, ui_luz, e, ulug_l, us)ps(A).
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We write the component ob(z, 2) € Jy.gm(l'?) as

(pS(T! Z)
d(1,2) = S J(kvs),m(FJ).

@o(t, 2)

The automorphic property with respect to the actio"ofind Z? is described explicitly

as follows.
ar+b z
¥s\ cr+d'cr+d

cZ :
(Ct+d)kem(—CT+ d) ar+b z
1 ct+d’'cr+d

ar+b z
¢o cr+d’cr+d

(cTt+d)3 - C:;)(cﬂrd)z(cz s-2 (s )(C‘L’—l—d)(CZS ! (z)(cz)S
| s—2 . s— > (S 3 s(7,2)
o - (5 )(cr+d) e (% )(cr+d)(cz) (3)(cz) |
0 (cr+d)? (S )(cH—d)(cz) (S)(cz)2 o(r.2) |

2 (pO(T!Z)
0 - 0 (ct+d) G)(cz)
@s(t, Z+ AT + 1)
"2t + 212) :

p1(t, z+ AT + )
@o(t, Z+ AT + 1)

. (2:2)“”5_2 (2 1)( et (2 (1)°
(; (512:)(_A) (351:)(_/\)2 (Z)(:_A)B (Ps('l;',Z)
= 0 ... 1 (S;l = (Z)(—A)Z ‘Plgéazg ,
@o(T, Z
C b (e
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where () are the usual binomial coefficients.
More generally, for any functio® = Y(¢,) = (¢s, ¢s-1, - - -, 90) € W, we have

® @D =2 (37 )er + 06D @l 2
v=0
I

@ @0 =Y (27 ) @

v=0

whereM = (2 3) € SLy(R) and X = [, 1] € R?. By dividing the first expression (3)
by (ct + d)*, we get

©) (gmkw,mM)(r,z):f(s‘“)( 2) ©lanite 2

= \u—v ct +d

First we construct some operator frowi to W compatible with the action dR?,
since this is easier than the action Si;(R).

Lemma 2.1. We fix X=[x,u] € R? and putd, = (1/(27i))d/dz. For any pair of
scalar valued functiong and v on H x C such thatp|wX = v, and any non-negative
integer t we have

t

@2 = 3 (] )@l o v 2,

j=0

Proof. We prove this by induction oh By operatingd, on both sides of the
definition of | X, we have

32(¢ImX) = 2Am(@|mX) + (9z¢)|mX.

This is nothing but the relation for = 1. Now assume that the lemma is true for
By operatingd, on both sides of the relation in the lemma forwe have

t
t . ) .
9(3llm¥X) = 3 ( j)(2m)1(—x)' iy,
j=0
Replacingy by dlg in the relation fort = 1, we get
32(83¢1mX) = 22m((3;0)ImX) + (3, ¢)ImX.

Since (})(—ka)j - (Z)Lm)(jil)(—Zm)L)j*l = (tTl)(—ZmA)J, we get the relation for
t+4 1. O
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We fix m ands. For any vector® = Y(¢s, ¢s_1, - . ., o) € W and any integet
with 0 <t <'s, we define a holomorphic functiog;(®) on H x C by

6 (@)(r,2) = Z( 2y ;1) @t ote 2

Lemma 2.2. Notation being as aboyeve have

gt(q))|mx = gt(®|s,mx)
for any X e RZ

Proof. We fixt throughout the proof. We fiX € R? and puty, = ¢, |mX. Then
by Lemma 2.1, we have

t—n

(30, X Z( " )2m iy,

j=0

Since we have

IJ J—
Vi = oulmX = Z (Z _‘;)(_)‘)M‘J(q)|s,mx)va
v=0

we get

t t—pu _ i _
_ EL) A (s =\ (E= ) (S= VY ey
gt((b)lmx - Mz:;”z:;) . (2m)‘*l“j ( )( J )( _ v) 3; J(CI>|S,mX)u-

t—u Iz

We fix u + j and putl = n + j._ We also fixv. Then 0< j <| —v. In the above
expression the coefficient @k ¢, for fixed t, v andt — I is given by

e ()
o) [ G PR I (O [ [l

I—v .
Sl —v 1 if I=v
—1)l - :
jgo( 1)( i ) {0 otherwise.

If | =v thenj =0 andu = v. So the right hand side becomgg®|smX). []

We have

and
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As a corollary of this lemma we see that df|s, X = ® for any X € Z2, then
a:(®P) is also invariant by the action dZ?. But this is not invariant by the action of
I even if ®|mM = & for M € I'. So we consider the behaviour under the action
of SL(R) next.

We prepare some notation. We writen(2 1)!! = 1-3...(2n — 1) = (2n)!/2"n!
and O!= (—1)!! = 1. We define a heat operatar, by

Lm =4ma, — 82,
where we putd, = (1/(2xi)) 0/97.

Lemma 2.3. We fix a holomorphic functiop on H x C, a matrix M € SLy(R),
and puty = ¢|xmM. Notation being as aboyeve have

(a;(p)lkth,mM

(6) 2 1 2mc 2y omez\*
e o

|1=0 v=0

Proof. We prove this by induction an Whent = 0 the relation is just the defin-
ition of . We assume that the relation holds forFirst by differentiating both sides
of the definitiondiy|k+t.mM of the action ofM on dlp, we see

2mcz
ct +d

axxwmﬂmM)=(@”wnwﬁamM-—( :y%wmﬂmmy

In this equality we evaluatéiy|c+tmM by the inductive assumption and calculate the
action of 3, on that. We note that

Ay 2mcz\"
(02 n(2g) )

2mcz \" 1 2mc 2mcz \ 't
— 8t+172|7v (_ Bt72|7v .
(0 1/’)(Crer) T 2ricr+d/\cr +d (0 v)

We calculate the coefficient @ (2mcz/(ct + d))* in (3:1p)|k+t+1.mM. The coefficient
iszerounlessp + u =t +1mod2. Weput2 =t+ 1— p— u. Then the co-
efficient is a sum of three terms corresponding 2i )(2mc/(czt +d)))* times the follow-
ing quantities.

(2 — 1! (;,c)(t_fk)’ fo=p t+1-2—v=t+l-p—2 (c=1),

(2 = )N (Zt/c)(tu_—zi)’ fv+l=pt—-2—v=t+1-pu—2 (k =1),
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o e 1)

fv—1=p,t—-2—-v=t+1—pu—2« (k =1+1).

We have

@9 (2/<t— 2) (t _uz—KrJlr 2)(“+ b= @l (ZKt— 1) (t _2: ' 1)

I IR S A Ty
S e RN

t+ 1\ /t+1—2
2K n '
Hence we get

(3§+1‘P)|k+t+1,mM

[(t+1)/2] t+1—2« K _ n
_ Z Z (26— 1)1 t+1 i 2mc t+1-2«)\ [ 2mcz o2y,
= = 2¢ )\ 27i ct+d ctc+d) *

w
This is nothing but the formula for + 1. O

For Ly = 4ma, — 32, we haveL m(g|mX) = (Lmg)|mX for any X € R2. Indeed by
definition we havep|nX = €"(A%t + 212)¢(t, z+ At + 1), and if we puty = ¢|mX,
then we get

(020)|mX = 9% — 2mAyr,
(O20)|mX = 079 — 4mrd,y + (2mi)%Y,
Y = MA%Y + (3:9)lmX + A(0,90)[mX.

So we get ((#9; — 02)¢)|ImX = Lm.
Next we see the relation of the action bf, and M € SLy(R).

Lemma 2.4. We fix M€ SLp(R) and a holomorphic functiop on H x C. We
put ¥ = ¢|kmM. Then we have

t) (2k + 2t — 3)!! (1 2mc

t |
=3 -
@ (Ln#)lcsznM = s (l (2k 42t — 21 —3)1 \ 27i ¢t + d) (L ¥)-
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Proof. We prove this by induction on Whent = 0 this is just the definition of
Y. Whent =1 by direct calculation we see

(2k — 1)2me

) (Lr@licszmM = Lu(elenM) + 5 5=

(@lk,mM).

So we have

2mo(2K + 4t — 1)

Lm((L:n(P)|k+2t,mM) = (LH1¢)|k+2t+2,mM - 2ri(ct +d)

(L) k2t mM.

Now we assume that the lemma is true forWWe see

1 2mc ) ]
4m3f((ﬁcr+d) b *”))
(L 2me Ny (LM Y
B 2rict +d m 27i ¢t +d fomon

(1 2me\ o\ (1 2mc )\ ,
az((ﬁc_[ +d) (Lm W)) - (ﬁ_C‘L' +d) (asz V).

Since we have

t\ (2k+4t—1)(Kk+2t—3)11  [t\ 2(2k+2t—3)! t o (2k+20-3)n
(I) 2k +2t— 21 —3)! _(I)(2k+2t—2I—3)!!+(I+1)(2k+2t—2|—5)!!

= ((l _It_l)(2k+2t—2l -3)+ (T)(2k+4t—1)— G)(Zl)) (zf'jﬁfg)”

_(t+1 (2k+2(t +1)—3)!
B (I +1) (2k+2(t+1)—2( +1)-3)"

we get the relation fot + 1. (Whenl =t, we understand thaf;,) = 0.) O]

Lemma 2.5. For any ® = Y¢s, ¢s_1, ..., w0) € W, any M € SL(R) and any
integer t withO <t < s, we have

6 () s
[t/2] K
. _ 1 2mc S—t+ 2
= cvrem (o) @ -0t (750 aa(@lant
k=0

Proof. We fix M € SL(R). For the sake of simplicity, we writ@|y g mM =
'(fs, fs—1,..., fo) and for anyt with 0<t <s, we write g: = g:(®) andh; = gi(®|x,¢mM).
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We put v, = ¢ulkeu,mM. We have

GleremM = 3 (- T o) [T

u=0
Since

(@) ks tmM = (059, Ikt (t—yymM,
we have

[(t—)/2] !
t_/J, 1 2mc
- M — — )@=
(07" @) lk+t,m ; ( 2| )(zni cr +d) ( )

t—u—2
5 ( o 2|)(2mCZ) gLy )
ct +d

v=0

by Lemma 2.3. By (5), we get

. S A Y cz !
L :Z(u—j)B; o ((Cr—l—d) fj)
j=0
n . t—2l—p—v n—j
c t—2—pu—v
2 Ee) ()
= ( = cr+d y
1\ (n—ij j
_— | p—j=y gt=2—p—v—y ¢
(B orerren),

where we put(* ) =0 if y > u—j. As a whole, we have

gt|k+th

ZZt:[(t m)/2] t—p— 2lit72lfufv( ytem )Jt 1 2mec \'*7/ 2mcz \vteiy
. 27i cr +d ct+d

<o () ()
GO0

x yl (272 7r07 1)),

We evaluate the coefficient afd? fj for fixed integersa, B, | > 0. If we puta =
u+v—j—y andp =t—21—u—v—y for the abovd,u,v, j,y in the summation, then
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we havea + B8+ j =t —21 —2y. Hence if we putc = (t —a — 8 — j)/2, then 0= «
and« is an integer. Also we have+y =k andv+pu=«x+a+j—l. If y >u—j
the above sum for thig is zero, so we may assume= v + (u — j —y) > v. Here
we checked a kind of necessary condition for parameters. Wevstart from any fixed
non-negative integers, B, j such thatu + g+ j >t andt =« + g+ j mod 2. Then
we putk = (t —a — B — j)/2. We fix any integen and!| such that 0< v < « and
O0<I<k.Weputpu=j+(@x-—I1)+(e—v)andy = x —|. We now check thav, u,
I, y appears in the above summation. It is obvious that @. We seev + u + 2 =
jHl+x4+a=<j+2c+a=t—p <t. This also impliesu <t andl < (t —u)/2. We
have O<«x—l =y. We also haveu— j—y = (j +«—-l+a—v)—j— (k=) =a—v >0
andt—2l —u—v—y =t—2 —(j +«k +a—1)—(k—1) = B > 0. Under the assumption
y <u—j, we see

0 G | G (O [ Gy [ G 2
t—u/\ 2 v w1 % y )7
o (s=0) 1

TG0 @) (-] - )

_(s= ) 1

T 0B @) (k=D @ =)

Since we have{1)* = (—1yte*i(—1)(-1)", the coefficient ofz*d% f; in G|k t,mM
is given by

(s—J)
(s—1)IA!

) vriasf 1 o2mc \/ 1 2mc \*  (-1) =1y
) Z (@) =ay t(ﬁcr+d) (§Cr+d) 201 (ke = 1)! ) vi(a =)’

v,y

If « # 0, then

o (-1y B a fa L
> ey = 2V () 1o

v=0

So we can assume = 0. We also have

~ Y 0 1 (-1
;2‘I!(K—I)! = () 1(1_5) Tl T @

By definition we have

t—2

o . » S — 1
sy = Mg = Y (-1 2 @m)i 2 (t o j)(af f).
j=0
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Sincea =0, we havey =0,t— 2« — j = 8, (—1)teti—t = (—1) (—1)I~t*+2 | (2m)i—t+2 =

(2m)I-t(2m)* and
sS—t+ S—]j _ (s—j)
( 2 )(t—ZK—j)_(ZK)!(S—t)!ﬂ!'

Hence we get our relation. []

For any function® = Y(gs, ¢s_1, .. ., @) € W and any integep with 0 < <'s,
we define a scalar-valued functiop(®) on H x C by

L/l (s— [+ Zt) (2K + 2p — 2t — B! (2t — 1)!

©  w@= ; 2t (2m)Z (2K + 2u — 5)!

Lin(Gu—2t(®))

and a linear differential operat®y s m from W to W by Dk g m(®) ="(ts(®),ts-1(®P), ..,
to(®P)). We note that,(P) depends only omp, . . ., ¢, and not ong, with v > u. By
using the definition oD, _», we can rewrite the definition af,(®) more simply as

Lu(q))

"Z Z( S—v )(s—u—}—Zt) (—2m)”_”(2k+2ll«—2t—5)!!(2t_1)"aﬂ 20t g
=0

w—2t—v 2t (2k+2p—5)!
w (e 2/ s—v) (=) (2k+2u—2t—5)1 (2t — 1!t
5 (3 () BRIy
2t (2k+ 25— 5)! z m

v=0 t=0

Theorem 2.1. For any ® = Y(¢s, ¢s_1,...,90) € W and any elements M SLy(R),
we have

(PN lkrumM = 1,(Pk.5)mM).
In particular, if ® € Jy ¢ m(I'?), then we have,(®) € Jium(T).

Proof. As before we puty = gi(®) and hy = gi(®|ksmM). First we calculate
(L5Gu—20)lkte.mM. We have

Lemma 2.6.

(L:ngp.—ZI)|k+/L,mM

t [/2—t]
ZZ(It) D (1)1 (S_'u“';’ft+216)
1=0

k=0

(2K+2u—2t —2c —3)!! (2m)—K+'(i c

K+l
- Lt—lh Y
(2k+2u—2t —2c—21 -3)!! 2ri cr—l—d) (L he-z-20)
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Proof. We prove this lemma by induction @gn Whent = 0, the lemma is noth-
ing but Lemma 2.5. In particular, whem = 0, this is just the definition. We assume
that the relation is true for —2 and anyt with ©—2 > 2t and under this assumption
we show that the relation holds for andt + 1. By (8), we have

(L:n+lgu—2t—2) |k+u,m M
2mc

m('—}ngu—a—zﬂﬁu—z,m M.

= Lm(LinGu—2t—2lktu—2mM) + (2k 4+ 21 — 5)

For any functionf on H x C, we have

amc
ct+d

Lm((ct +d)™ 7" f) = (=« — |)( )(cf +d)* 7 (et +d) L f.

By the inductive assumption we have
2mo2k + 24 — 5)

(L}'ng,u7272t)|k+uf2,mM

2ri(ct +d)
t [/2—(t+1)]
=0 k=0

(2K + 21 — 2(t + 1) — 2« — 5)!!
(K +2u—2(t + 1)— 2c — 2l — 5)1I

I+1+
x(2m)k+'+1(i ¢ ) ‘

2rict +d

x (L5 Dh, oei1)-20),
and

Lm(L50u—2-2tlkpu—2mM)

O w2
-y (|t) Y (—2 - 2A) (1)@ — (S_ ot ng+ b+ 2")
1=0 k=0

(2K + 21 — 2(t 4+ 1) — 2« — 51!
(2K + 2p — 2(t + 1) — 2« — 21 — 5)!I

ol 1 c I +1+« L1
X (2m)7 + +l(ﬁ cr + d) (Ltn:r (0 )hufz(H»l)fZK)

t [1/2—(t+1)]

t . S—u+ 2t +1)+ 2

+Z(I) > (-1 (2K—1)!1( o

1=0 k=0

(2k + 2 — 2(t + 1) — 2« — 5!
(2k +2u — 2(t + 1) — 2 — 21 —5)!!

1 c I+x 1
) (Z_m cr + d) (Lo hy2gr1)-20)-

(2m)’k+'
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Now we see the coefficient dflf*~(+Dh, 54,1y 2 for 0 <1 <t. Since
B _ ALty ottt
1) t+1\U+1) l+1) t+1\+1)

(I +1)(k+2n—5) (I +1) (=2« —21) (t—1)
(t+1)(K+2u—2@t+1)—2%—21=5) * (t+1)(K+2u—2t+1)—2%—21-5) t+1
 K42u—2(t+1)—2%—3
- 2k+2u—2@t+1)—2« -2 -5’

we get

and we see that the coefficient is as desired. This is the sameﬁlhﬂ,z(tﬂ),z,{.
Hence we proved Lemma 2.6. []

Proof of Theorem 2.1. By the above lemma, we have

Lu(¢‘)|k+u,mM

WA s 2t (2k+ 20— 2t —5B)l (2t — 1)
- Z{; ( 2t ) (2m)2(2k + 2 — 5)!

t [n/2-t] 1 K+ . )
>3 (lt) 3 (1 @my (%Crid) (2% — 1)1 (S “J;K + ")

1=0 k=0

» (2k +2u — 2t — 2« — )N
(2k+2pn—2t — 2 — 21 = 3)!

t—l
L m hpl—zt—ZK -

We rewrite this. Since we have

(2t)! (2)! (2t + 2 — D! (t + «)!

(2t -2~ 1) = Kt (2t + 2)! ’

we have

(2t — 1)l 2 — 1)1 (S‘ . Zt) (S— 20+ x))

2

S—p42t+2\[(t+«k

=2t + 2« — 1) .
2+ ) ( 2t 4+ 2 )( K )

Now we fix non-negative integers, B with 0 < 8 < o < [u/2] and calculate the
coefficient ofonh,kza in the above. For any with 0 <| <o — 8, we putk = a —t
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andt = g + 1. Then the coefficient oLf},hM,Za for fixed u, «, B is given by

wgf 1 ¢\’ S—u+ 20\ (2k+ 2 — 20 — 3! [«
(em) ﬂ(%cwd) X(za_l)”( 20 ) @k 1 21 —5)! (,3)

N~ (@ =B (2K +2p—2p -2 - 5!
D ﬁ%}( | )(_1)(2k+2,u—2a—2|—3)!!'

The last term is 0 fowx > B. We see this as follows. For any fixed enough big odd
integer A, we put f(x) = Y|_o(—1) ()x*?*'~\. Then we have

d-tf : —1
S =2 () (M e

1=0
1 < t) (A+ 2t — 2
-2t g(_l)l (I) (A=2+2)11"

On the other hand, sincé(x) = x*?(x — 1), the ¢ — 1)-th derivative f¢1(x) is
divisible by x — 1 and hencef ©1(1) = 0. Thus we can assume = 8 and then we
havex =1 =0, « = 8 =t, and the last sum is given byK2- 2u — 2« —3)%. So the
coefficient of L% 0,2, iS given by

S—u+ 20\ (2k + 2 — 200 — 51200 — 1N
( 20 ) (2k + 2 — 51 '

This is exactly the same as the coefficientlgfg,, 2, in the definition of, (P). Sum-
ming up overa, we haver, (P)kr,,mM = 1,(P ks mM). ]

For any integed, we denote byM,(I") the space of holomorphic modular forms
on H of weightk w.r.t. T".

Theorem 2.2. (1) The mapping s m is a bijection from W to W. For any
natural integers ks and m> 1, this induces an linear isomorphism ofi J m(I"”)
onto kism(T7) X Jers—1m(T7) x -+ x Jm(I?) C W.

(2) For m =0, we have g o(I"?) = My;s(I).
In particular, Jx.sm(I'Y) is always finite dimensional.

Proof. First we prove (1). By definition, we see thatg,-» = LL¢,—2 + (terms
determined byp, with 0 < v < u — 2t). So¢,(P) = ¢, + (terms determined by, with
0 < v < pn—1). This means that the transformation matrix frévre @ to D) m(P) € W
is “upper triangular” whose diagonal components are 1, arté the mapping is bijec-
tive onW. If ® € J g m(T7), thent,(®) € J,m(I"?) by Theorem 2.1 since the con-
ditions on Fourier coefficients are obviously satisfied. Témriction of this mapping on
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Jk.s.m(I'?) is of course also injective. We see that this is surjectvgt.sm(I"?) x - - - x
Jem(I'?). Take fi € Jem(I'?) for | with 0 <1 <'s. Then sinceD ¢ m iS Surjective on
W, there existsb € W such thatD ) m(®) = '(fs, fs—1,..., fo). By Theorem 2.1, for any
M e I'?, we have,, (®|ksmM) = 4 (@) lktpmM = fulks,M = f, = 1,(®). By inject-
ivity of Ds),m on' W, we haved|x s m = ®. The conditions on the Fourier coefficients
are also easily seen. Hence this mapping is surjective. Newhew the assertion (2) for
index zero. Whend = Ygs, ¢s_1, ..., @o) € J(k,S)YO(FJ), we now show thaty, = 0 for
anyl < s by induction onl. We assume thap; = O for any j < | — 1. Then we have
o (t,z4+tr+ 1) = ¢ (r,2) for any integers. andi. Hence for a fixed, the holomorphic
function ¢ (z, 2) is a bounded foz € C and consequently, is independent of and we
write ¢ (t) = ¢ (z, ). Next we show thap, = 0. Since

oya(t, Z+ A + p) = @rpa(r, 2 — A(s — Do (1),

we have

0+1
0z

(t, 2+ Th+p) = “"'“(r,z)

and henceélg . 1/0z is also bounded and independentzofThis means that there exist
holomorphic functionsc;(z) and cy(t) of T € H such thaty . 1(z, 2) = ¢1(r)z + co(7).
Hence we have,(t)(tA + 1) = —A(s—gi(r) for any A, u € Z. By takingx =1 and
w =0, 1, we see that;(r) = ¢(r) = 0. By the same reasows(z, 2) is independent
of z and gs|k+smM = ¢s for any M € T'. Hencegs(t, 2) € Mys(D). O

REMARK. The Fourier—Jacobi coefficient of index 0 of Siegel moddtams F
of SH2, Z) of weight pxs is '(f, 0,..., 0) where f € S <(SLx(Z)): the space of cusp
forms of weightk +s. (cf. Arakawa [1]). Hence an element dfi s)m(SL2(Z)?) is not
necessarily the Fourier—Jacobi coefficient of Siegel madtdrms.

ExampLES. If we write simply asDgm(®) = (@s, @s-1, - .., go) for & =

Y@s, ..., 90), then by definitiong,, depends only ompy,...,», and not ong, 1, ...,¢s.
For first few u, they are given explicitly as

s
(1) o
- S — 1
G2 = @2 —(2m)7* 82901 + (2m) 2 (32% + ——Lmoo |,
2k -1
Y ~1\ (., 1
@3 = @3 —(2m)~ ( )82902 + (2m)~ ( 5 )(8z¢1 + o1 n 1Lm¢1)

- em2(5) (200 + 5

%o = ¢o,

$1=g¢1—(2m)*

0,L
12 m(pO)
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- _.(s—3 _,(s—2 1
4 = s — (2m) 1( 1 )3Z(P3+(2m) 2( 2 )(322(P2+m|-m§02)
_ _5fs—1 3 3
(2m) ( 3 )(3z<ﬂ1+—2k+33sz<p1)

S 6 3
o)y 5 (8%00 + —>— 921 S 2.0
+(2m) (4)(Z¢°+2k+32 0t Dk + 3) m“’o)

Next we give the inverse linear mapping By m explicitly. First we note that
if ®="Y s, 0s_1,...,9,0,...,0), then we can show that

D(k,s),m((b) = (D(k+u,sfv),m((p31 Ys—1,.-., %), 0,...,0)

by comparing the definition of the both sides. df € Jxgm(I'?) besides, then
t(WSa Ps—1y +« vy §0u) € J(k+v,sfu),m(r‘])- Indeed, ifcl:'l(k,s),mwI = ¢ and ¢>|3va = & for
every M e I and X € Z?, then by the conditions (3) and (4), we have

n

(ubmM) = 3 (Z:i)(a +d) (2" gy,

k=0
2.l x—f(s‘”)( T
uimA = - -
k=0 H—kK

Since we are assuming that = 0 for x < v, we replacec by « + v in the above and
the right hand sides become

> (707 Yeer + @yt
k=0
and
MZ_V ((S - l)) —K )(_}L)(ﬂ—v)—x
~ (Hv _ V) —x Dot

So we get the assertion. For any holomorphic functiomn H x C and any integers
I, v, swith 0 <I| <v < s we define a holomorphic function,(fg(f) on H x C by

[(v=1)/2] .
©)ey o fs—1 (v—=I\@2j =@k =3 i
= (003 () g e

and if 0< v <1 we definen®(f) = 0. We write

&) =00, S (F) ()
=), n_y (), .. nS(F),0,..., 0).

If | <v, then we have;l(:sz = néf;'_),.
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Theorem 2.3. Notation being as aboyehe mapping Ws F = (fs, ..., fo) —
nOF) = 1 (fo) + -« + nO(f) + - - - + nO(fs) € W gives the inverse of @ym. In
particular, if f, € Jk+|,m(1‘ ), then n(fl) € Jks.m(I'?), and the above mapping gives a
linear isomorphism of |dsm(I'7) x - - - x Jm(I'Y) onto Jx g m(I?).

Proof. First we prove thabD s)m(70(f0)) = (0,..., 0, fo). We putg, = no,.(fo)
and ® = Y(gs, ..., ¢0). We have to show thab(cb) = fo and,(®) = 0 for anyu > 0.
By definition (9), we havay(®) = ¢o = '7 (fo) = fo. Now we assume that > 0.
We have

u(P)
i (u=v)/2) y — 0\ (2K + 2u — 2t — 51 (2t — 1)
Z Z (- Zm)u n w s o "o t o
v=0 -v/\ 2 (2K + 2 — B! z m
B i [(M_U)/Z](_Zm)v—u s—v\[/u—v\(2k+2u—2t—5)" 2t — 1)
- v=0 t=0 v 2t (2k + 2 — 5N

[v/2] .
VY Q2] DN 2Kk =3 o i i
2 —1)! U2l UH £
XZ( m” ( )( 1 (Zj) (k+2j -3 2 m 0
We puta =t + j and calculate the coefficient of L fo. We have

Go)C)06E) = CIE) 6 e

We also have

(2t — 1 2] — 1) Qa)! o
@)1 @) = (@ — 18 (J)

Hence, fixingu and«, the coefficient ofgs ™2 L fo is given by

() [S) @Kk —3) (20 — 11
(=2m) (Za) (M) @K + 2, —5)!
200+2]

(2K +2; — 20 4+ 2j =5 " o(H 2
XZ( 1)1() (2k 4 2j - 3)! 2 D (”_zj).

v=2j

We havez’j;g‘;‘”j (-1 (’::g‘j’) = 0 unlessy = 2«. If © = 2, then we can show as

before by differentiatingckt*=52(x — 1)* by x « — 1 times that

(2K + 20 4+ 2] —B)II
Jzo(_ )](1) &+2j -3
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unlessee = 0. But if « =0 thenp = 0, so we have,(®) = 0 unlessu = 0. So
no(fo) gives an inverse image of (0,., 0, fp) by Dy m. Hence by Theorem 2.2 (2),
if foe Jm(l?) besides, then we hawg)(fo) € Jy.g.m(T'?). We have

Dsiom(1 (7)) = (Dt s—tym@m2(F), - -, 0 (£1)), 0, ., 0)
= (DgeststymmSs) (F1), -« o 1S5 (£1)), 0, ., 0)
= (Ds1 sm(S (F)), 0,. .., 0).

By the result fornf)s)(fo), the last expression is equal to (0,., 0, f,0,...,0). So
summing up the result for eadh we have

3 Doeapm@(F)) = (fs, ..., To).
=0

Since Ds)m gives a bijection between Jacobi forms by Theorem 2.2 (1)f) ik
Jert.m(T3), thenn®(f) € Jg.m(T?). O

EXAMPLES. We assume thafy € Jxm(I'?).
nop(fo) = fo,

1810 = ey ()
1810 = e ()
S
(5

n5x(fo) = (2m)~

3
(affo— 1 aszfO),

6 3
© (fo) = (2m)~* S 3o — =——02Lmfo+ =————L2 10 ).
1810 = ) () (9 fo- g PLnto + gy Lo

3. Eisenstein series

As in the case of scalar valued Jacobi forms, we define Eisienseries of the
vector valued Jacobi forms. From now on, for the sake of suoitplwe assume that
I' =T = Sly(Z) and '] = SLy(Z) x Z2. We define a subgroup?, of T} by

Tl :={yer}:lmy =1 = {((é 2) (QN)): n.MGZ}-

For any good function® € W invariant by I') and any natural numbers, s, and
m > 1, we define an Eisenstein seri&g ¢ m(t, z ®) € Jks.m(7) by

Ekgm(T, Z®) = > ®legmy.
yerd\ry
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For example, if® is a vector of constant functions, then this is written as

E.s)m(t, z; @)
1
1 ct+d cz—a mf 28T +b z cZ
2 e 2 21 — ®.
2(c§_1§pk's( 0 1 ) ( CT-i-d+ ct+d cr+d

We denote bye; the unit vector of lengtlis+1 whosej-th component is 1 and the oth-
ers are zero. Ifb = q"¢"es;1—j for integersn > 0 andr, then the serie&y s)m(z,z; D)

is convergent fork > 4. For a function¢g on H x C such that¢|xmM = ¢ for all
M e T2, we also put

Exn(T, Z¢)= Y Slcmy.

yer\ry

By Theorem 2.1, we see

yer\ry

D,s)m(E,sm(T, Z: p€sy1-)) = ( Z Lu(¢es+1j)|k+u,m)’> :
O0=u=s

If we assume that ¢ = 0 for anym > 1, then by definition of,, we have

0 if 0<p<]j,
Lu(pesi1j) = (_Zm)j—u(s_ J_)ag—i¢ if j<wu<s
n—]

Now as in Eichler—Zagier [2], leb be the largest integer such thit | m and put
m = ab? For any integett, we put¢, = q2°z2%, Then this is invariant byr? and
we havel h¢; = (dmat® — (2abt)®)¢ = 0 andd; ' ¢, = (2abt)* 1¢;. So we have

L(Ewem(T, Z, dresi1-))
{O if 0<u<]j,

(—mtabty*] (S -/

j)Ekwm(r, 260 i j<p<s

Then for a fixedu, the seriesEy,,,mt = Ex+,,m(t,Z ¢¢) are nothing but the Eisenstein
series defined in [2] p. 25, which spalf's

+u,m*

We assume thak > 4. We denote MbyJ(Efz)vm(Ff) the linear space spanned by
Eks.m(t, Z g2 ¢ %)) for any j with 0 < j <'s, a, b with m = ab? as above and
t=0,...,[b/2] if kis even and =0,...,[(b—1)/2] if k is odd. By the above consider-
ation, we haveD s m(J&3m(T7)) = [T5—0 I55,m(T'7) and also the spacdy (I'7)
is the space spanned by?(JES ,(T'7))) for all integer j with 0 < j <s.
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The Petersson inner product Bf= (fs,..., fo) andG = (gs,...,Qo) € kam(l“f)x
-+ x Jm(T]) is defined as the sum of the usual inner product of the dinectnsands
and given by

s _a .
(F,G) = Z/FJ\H Cexp(nTmyz)vk“?’ fi(z.2) 0 (x, D dx dy du d
j=0 X

wherer = x+iy e H andz =u+iv € C. We define the inner product afx s m(I';})
by this through the isomorphism in Theorem 2.2.

Proposition 3.1. We assume that k 4. We have
Jk9m(T?) = Jggm(TD) & Iy m(T7).

This follows directly from [2] p.25 Theorem 2.3.

Finally we give a little remark. Imitating [2], we define an evptor |} which
shifts the index, mappinglk s m(l';) t0 Jks.m(l]). First we generalize the action
of SLy(R) to the groupGL; (R) of 2 x 2 matrices with positive determinants. For any

M = (2 3) € GLJ (R) with detM) =1 and any® € W, we write

- cZ ct+d cz\ ' (ar+b Iz
P|kymM = (ct +d) kem'(—CTer)pS( 0 1) <1>(Cr+d’0r+d)'

Then for My, M, € GLJ (R) with det(M;) =1, we have
®@|k,5)mM1M2 = (D] 5)mM1)lk s),mM2.
Lemma 3.1. For M € GLJ (R) with det(M) =1, we have
D,s)mi(Plk,s.mM) = (D,9)m®)lk+sM,
where we write kt s=(k+s,k+s—1,...,Kk).

Now the operatolV, is defined by
(D|(k,s),mvl

— k1 Z e cr +d Cz)_lem _ cZ ® ar+b Iz
a 0 1 cr +d ct+d ct+d)
(2 5)es@\M0)
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where we putM(l) = {M € My(Z); detM =1}. We put

~ m O
Dksm = ,Os( 0 1) Dk,s),m-
For anym, we put Eysm = Eks),m(z, Z: €s11).
Proposition 3.2. We have
Dik.9mi(®|k9mVi) = (Dik.s)m®)lk+sVi
and Ek.¢)m = ok-1(M)Es),1| V.

Proof. By Eichler—Zagier [2] p.46 Theorem 4.3, it is knownathEy, =
ok_1(M)Ex 1|Vim. Since D.5),1(Es,1) = (O, - ., 0, Ex1) € [T5_o Iksu1(T'7), we have

0k-1(1) D9 (i (7, Z: €541) M) = 01 1(1)(D9)1 (Eqs), D)) lks, Vi) = (O, . . ., 0, Ex1)
= D)1 (Eke)1 (T, Z; €511)).

Since Ij(k’s)J is injective, we have the result. OJ

4. Half-integral weight case

Here we explain how we can modify our results also for haiégnal weight case.
We put

ri’@) = {9 = (é g) € Spn, Z); C = 0 mod 4},

and putl'g(4)’ = J(R) N F(()z)(4). For the sake of simplicity, we writ€y(4) = Fél)(4).
In order to define automorphy factors of half-integral wejghe put

0n(Z) = ) e(27i'pZp)

pezn

for Z € H,. For anyk € Z, we write px1/25(CZ + D) = (02(MZ)/6,(Z))*+1 x
ps(CZ + D). We defineF|;12sM for M e T'o(4) similarly as in the case of in-
tegral weight in the introduction by replacing.s by pk+12s. We say that a holo-
morphic functionF on Hj is a Siegel modular form of weightxy1/2s Of F((,Z)(4),

if Fliy12sM = F for any M e I”((JZ)(4). We denote byAk+1/2,S(F(()2)(4)) the vector
space of such functions. Sinde is translation invariant, we have the Fourier—Jacobi
expansionF(Z) = >, ®m(r, 2)e(me’) as before. We denote by a character of
I'o(4). Now we define a vector valued Jacobi form of half-intéguaight of I'o(4)’



806 T. BBUKIYAMA AND R. KYOMURA

with charactery. The action®|y. 12 m 0f M € I'g(4) is defined similarly as in the
introduction by replacing s by pki1/2s and the action ofF |sm(X, «) for (X,«) € Z3
is just the same as in the introduction. Then a vector valwenbhl form of weight
Pr+1/2,5 is defined to be &s*t1l.valued function such thad|k+1/2.5,mM = x (M) for
all M € I'p(4), @|sm(X, k) = @ for all (X, k) € Z*> and thatF satisfies the following

condition at each cusps dfy(4). For anyM = (2 3) € Sly(z), we put

-1
_ w12 (ct+d cz m( —CZ atr+b z
Pu = (c +d) ’OS( 0 1) ®\c+a ® ct+d cr+d

where the branch ofcg + d)¥? is fixed for eachM. Then the Fourier expansion of
the function®), is given by the following form

oy= Y  Cu(ng'

n,reNy'z, r2<4nm

where Ny, is a suitably chosen integer for eath. This condition does not depend on
the choice of the branch. We denote &y.1/> 5 m(Io(4), x) the vector space of all such
Jacobi forms. Whety is trivial, we write Jyi1/2,9,m(T0(4), x) = Jx+1/2.5,m(Co(4)) and
whens = 0, we write Jk+1/2,9.m = Jkr1/2,m-

Theorem 4.1. We have the following linear isomorphism.

S
Jir1/29m(To@)) = [T Irrz01m(To(8), x').
=0

Here the isomorphism is given by the differential operak.;1/2m on & =
t(§0$! Ps—1y -+« (,00) S WS g'Ven by

Lin(9u—2t(P)),

5 _[“/2] s—pu+2t\2'(k+p—t—2) @2 —1)
(Dk+1/2,9m®) = Z ot Cm)2(k + p —2)!
t=0

where g, o is defined as in Section 2 for a fixeth ands. In particular, for any
y € I'o(4) and X € Z? and a function® € Ws, we have

(Dk+1/2,9.m®P)lmX = (Dikr1/2.9,m(Pls,mX)) e

(Dk+1/2.9.mP)plktp+1/2my = x(¥) (D172, m(Plk+1/2.8.my)u-
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We do not give here the details of the proof. Instead we emplehich points differ

from the case of integral weight. First for = (2 3) € I'g(4) we put

M, =

oo oo
O O PR O
o220 T
—» O o ©

Then we note thad.(M,, Z2)/0-(Z) = 61(yt)/61(r). So the automorphy factor defined
by pr+1/2;s IS compatible with the usual automorphy factor of degree afde also have

5 (00D At _(2k+ 1) d o(yr)\ "

“\ o(r) N 2 2ri(ct +d) J\ 6(7) '
So the most of the formulas in the previous sections arefigati;n the same way and
we have our theorem.
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