ON IMBEDDING 3-MANIFOLDS INTO 4-MANIFOLDS

Tatsuyuki SHIOMI

(Received June 26, 1990)
(Revised November 15, 1990)

Introduction

We discuss an imbedding problem of a closed, connected, oriented 3-manifold into a given compact connected 4 -manifold, which arises from certain signature invariants of 3 -manifold associated with its cyclic coverings. Our main result is the following:

Theorem. For any compact, connected (orientable or non-orientable) 4manifold W (with or without boundary), there exist infinitely many closed, connected, orientable 3-manifolds M which cannot be imbedded in W.

For a closed orientable 4-manifold W, this is a direct consequence of [8, Theorem 3.2] and, for an orientable 4-manifold W with boundary, we can prove it by using the doubling technique for W. Thus the main concern in this paper is for a non-orientable 4-manifold W.

The proof of Theorem is given in §3. In §2, a classification of the types of imbeddings of M into a closed 4-manifold W is given. Section 1 is devoted to the calculation of the signatures of the finite cyclic covers of a homology handle M. We can express these signatures in terms of the local signatures of M under a certain condition on the Alexander polynomial of M, where the Alexander polynomial of a homology handle is defined in the same way as in the case of knots ($c f$. [3, Definition 1.3]). Let $\sigma_{a}(M)$ be the local signature of M at $a \in[-1,1]$, which is an analogue of the Milnor signature of a knot (cf. [9]). Let $\sigma^{(n)}(M)$ be the signature of n-fold cyclic cover of M (whose definition is given in Section 1 where $\sigma^{(n)}(M)$ is denoted by $\left.\sigma^{\dot{\gamma}^{(n)}}\left(M_{\dot{\gamma}(n)}\right)\right)$. Then the following will be shown.

Proposition 1.3. If the Alexander polynomial of M has no $2 n$-th root of unity, then

$$
\sigma^{(n)}(M)=\sum_{j=0}^{n-1}(-1)_{a_{j+1}}^{j} \sum_{\lll a_{j}} \sigma_{a}(M),
$$

where $a_{j}=\cos (j \pi / n), j=0,1, \cdots, n$.
This result reveals a connection between the signatures of finite cyclic covers of a homology handle and the local signatures of its infinite cyclic cover. When $n=2$ the assumption of the above proposition is always satisfied. So we have the following formula, which will be used in $\S 3$ to prove Theorem for a nonorientable 4-manifold W.

Corollary 1.4. $\quad \sigma^{(2)}(M)=\sum_{-1<a<1} \operatorname{sign}(a) \sigma_{a}(M)$.
Throughout this paper, all manifolds and all maps between manifolds will be assumed to be smooth.

I would like to thank my advisor Professor Akio Kawauchi for suggesting the problem to me and for his advice and encouragement.

1. Signatures of Finite Cyclic Covers of a Homology Handle

In this section, we consider the signature of the n-fold cyclic cover of a homology handle.

Throughout this paper, we use Kawauchi's notations for signatures and local signatures of a 3-manifold; for a closed oriented 3-manifold M equipped with an element $\dot{\gamma} \in H^{1}(M ; \boldsymbol{Z}), \sigma^{\dot{\gamma}}(M)$ denotes the signature of $(M, \dot{\gamma})$ and $\sigma_{a}^{\dot{\gamma}}(M)$, $a \in[-1,1]$, denotes the local signature of $(M, \dot{\gamma})$ at a. For the definitions of these invariants, see [6] and also [4], [5], [7]. (Local singatures were first considered in [9, Section 5] for the exterior of a knot in S^{3}.) In this section, $\boldsymbol{Z}\langle t\rangle$ (resp. $\boldsymbol{R}\langle t\rangle$) denotes the group ring over the infinite cyclic group $\langle t\rangle$ generated by t with coefficient ring the ring \boldsymbol{Z} of integers (resp. the field \boldsymbol{R} of real numbers).

Now let M be an oriented homology handle, that is, a compact oriented 3manifold having the homology isomorphic to that of $S^{2} \times S^{1}(c f$. [3]), and $\dot{\gamma}$ be a fixed generator of $H^{1}(M ; \boldsymbol{Z})=\left[M, S^{1}\right]$. Using the transversality of a map $M \rightarrow S^{1}$ representing $\dot{\gamma}$, we can find a closed, connected, oriented surface V in M representing the Poincare dual of $\dot{\gamma} . \quad V$ is called a leaf of $\dot{\gamma}(c f .[6])$.

We choose an orientation of $M \times[-1,1]$ so that $M \times 1$ with the induced orientation is identified with M. Let $N(V)$ be a bicollar neighborhood of V in M. Let $W_{c}=M \times[-1,1]-\operatorname{int}(N(V) \times[-1 / 2,1 / 2])(c f .[7])$. There is a natural diffeomorphism $N(V) \times[-1 / 2,1 / 2] \cong V \times D^{2}$. Let \bar{V} be a handlebody such that $\partial \bar{V}$ is diffeomorphic to V. By identifying $\partial\left(\bar{V} \times S^{1}\right)$ with $V \times S^{1}=$ $\partial(N(V) \times[-1 / 2,1 / 2]) \subset W_{c}$, we get a compact 4-manifold $\bar{W}_{c}=W_{c} \cup \bar{V} \times S^{1}$ with boundary diffeomorphic to $M \cup-M$. By the Pontrjagin/Thom construction, we have an element $\bar{\gamma}_{c} \in H^{1}\left(\bar{W}_{c} ; \boldsymbol{Z}\right)$ such that $\bar{\gamma}_{c}\left|M \times 1=\dot{\gamma}, \overline{\boldsymbol{\gamma}}_{c}\right| M \times(-1)=0$ and $\bar{\gamma}_{c} \mid \bar{V} \times S^{1}$ is represented by the natural projection $\bar{V} \times S^{1} \rightarrow S^{1}$. Taking a compact, oriented 4-manifold W_{0} bounded by M, we can cap the component
$M \times(-1)$ of $\partial \bar{W}_{c}$ and finally get a 4-manifold $W=\bar{W}_{c} \cup W_{0}$ with boundary M. Define an element $\gamma \in H^{1}(W ; \boldsymbol{Z})$ by $\gamma \mid \bar{W}_{c}=\bar{\gamma}_{c}$ and $\gamma \mid W_{0}=0$. Note that $\partial(W, \gamma)=(M, \dot{\gamma})$ and γ has a leaf $U_{\gamma}=(V \times[1 / 2,1]) \cup\left(\bar{V} \times x_{0}\right)$, where $x_{0} \in S^{\mathbf{1}}$ is the point such that $\partial\left(\bar{V} \times x_{0}\right) \equiv V \times(1 / 2) \subset \partial W_{c}$.

For each positive integer n, let $p_{n}: M_{\dot{\gamma}(n)} \rightarrow M$ (resp. $P_{n}: W_{\gamma(n)} \rightarrow W$) be the n-fold cyclic covering of M (resp. W) associated with the $\bmod n$ reduction $\dot{\gamma}(n)$ (resp. $\gamma(n)$) of $\dot{\gamma}\left(\right.$ resp. γ). If $f_{\dot{\gamma}}: M \rightarrow S^{1}$ (resp. $f_{\gamma}: W \rightarrow S^{1}$) is a map representing $\dot{\gamma}$ (resp. γ), then the covering $p_{n}: M_{\dot{\gamma}(n)} \rightarrow M$ (resp. $P_{n}: W_{\gamma(n)} \rightarrow W$) is defined to be the fibered product of $f_{\dot{\gamma}}$ (resp. f_{γ}) with the natural n-fold covering q_{n} : $S^{1} \rightarrow S^{1}, z \mapsto z^{n}$, where $z \in S^{1}$ is considered as a complex number with unit norm. The lift $f_{\dot{\gamma}}^{(n)}: M_{\dot{\gamma}(n)} \rightarrow S^{1}$ (resp. $f_{\gamma}^{(n)}: W_{\gamma(n)} \rightarrow S^{1}$) of $f_{\dot{\gamma}}\left(\right.$ resp. $\left.f_{\gamma}\right)$ by q_{n} is determined by $\dot{\gamma}$ (resp. γ) up to homotopy. The homotopy calss of $f_{\dot{\gamma}}^{(n)}$ (resp. $f_{\gamma}^{(n)}$) is denoted by $\dot{\gamma}^{(n)} \in\left[M_{\dot{\gamma}(n)}, S^{1}\right]=H^{1}\left(M_{\dot{\gamma}(n)} ; \boldsymbol{Z}\right)\left(\right.$ resp. $\gamma^{(n)} \in\left[W_{\gamma(n)}, S^{1}\right]=H^{1}\left(W_{\gamma(n)} ; \boldsymbol{Z}\right)$). Note that $\partial\left(W_{\gamma(n)}, \gamma^{(n)}\right)=\left(M_{\dot{\gamma}(n)}, \dot{\gamma}^{(n)}\right)$ and that $\dot{\gamma}^{(n)}\left(\right.$ resp. $\left.\gamma^{(n)}\right)$ has as its leaf a component of the pre-image of $V\left(\right.$ resp. $\left.U_{\gamma}\right)$ by the projection $p_{n}: M_{\dot{\gamma}(n)} \rightarrow M$ (resp. $P_{n}: W_{\gamma(n)} \rightarrow W$).

Since $W_{\gamma(2 n)}$ is the 2-fold cyclic cover of $W_{\gamma(n)}$ associated with the $\bmod 2$ reduction of $\gamma^{(n)}$, we have, by [7, Lemma 4.3],

$$
\sigma^{\dot{\gamma}^{(n)}}\left(M_{\dot{\gamma}(n)}\right)=\operatorname{sign} W_{\gamma(2 n)}-2 \operatorname{sign} W_{\gamma(n)}
$$

To calculate sign $W_{\gamma(m)}$, note that $W_{\gamma(m)}=W_{c}^{(m)} \cup \bar{V} \times S^{1} \cup\left(\cup^{m} W_{0}\right)$, where $W_{c}^{(m)}$ denotes the m-fold cyclic cover of W_{c} associated with the $\bmod m$ reduction of $\bar{\gamma}_{c} \mid W_{c}$. Since $\operatorname{sign} \bar{V} \times S^{1}=0$, the Novikov additivity implies sign $W_{\gamma(m)}=$ $\operatorname{sign} W_{c}^{(m)}+m \operatorname{sign} W_{0}$. Therefore

$$
\sigma^{\dot{\gamma}^{(n)}}\left(M_{\dot{\gamma}(n)}\right)=\operatorname{sign} W_{c}^{(2 n)}-2 \operatorname{sign} W_{c}^{(n)} .
$$

Thus the calculation is reduced to that of sign $W_{c}^{(m)}$. For the calculation, we use, instead of $W_{c}^{(m)}$, the m-fold cyclic branched cover $\hat{W}_{c}^{(m)}=W_{c}^{(m)} \cup V \times D^{2}$ of $M \times[-1,1]=W_{c} \cup V \times D^{2}$ branched along $V \times 0$. Note that, by the Novikov additivity and sign $V \times D^{2}=0$, sign $\hat{W}_{c}^{(m)}=\operatorname{sign} W_{c}^{(m)}$.

Let $L: H_{1}(V ; \boldsymbol{R}) \times H_{1}(V ; \boldsymbol{R}) \rightarrow \boldsymbol{R}$ be the linking form defined by $L(x, y)=$ $\operatorname{Link}_{M}\left(c_{x}, c_{y}^{+}\right)$for $x=\left[c_{x}\right], y=\left[c_{y}\right] \in H_{1}(V ; \boldsymbol{R})$, where c_{y}^{+}denotes the translation of the cycle c_{y} in the positive normal direction and $\operatorname{Link}_{M}\left(c_{x}, c_{y}^{+}\right)$is the linking number of c_{x} with $c_{y}^{+}(c f .[6$, p. 53 and p.77]). A matrix representing L for some basis of $H_{1}(V ; \boldsymbol{R})$ is called a linking matrix on $H_{1}(V ; \boldsymbol{R})$. Let $T: \hat{W}_{c}^{(m)} \rightarrow \hat{W}_{c}^{(m)}$ be the natural extension of the generator $T: W_{c}^{(m)} \rightarrow W_{c}^{(m)}$ of the group of covering transformations of the covering $P_{m} \mid W_{c}^{(m)}: W_{c}^{(m)} \rightarrow W_{c}$ which is specified by $\overline{\boldsymbol{\gamma}}_{c} \mid W_{c}$. Let Int $\hat{W}_{c}^{(m)}: H_{2}\left(\hat{W}_{c}^{(m)} ; \boldsymbol{R}\right) \times H_{2}\left(\hat{W}_{c}^{(m)} ; \boldsymbol{R}\right) \rightarrow \boldsymbol{R}$ be the intersection form on $\hat{W}_{e}^{(m)}$. Take a basis $\left\{e_{1}, e_{2}, \cdots, e_{r}\right\}$ for $H_{1}(V ; \boldsymbol{R})$. By a standard argument due to [11] or [2] and used in [7, Lemma 3.3], we have the following.

Lemma 1.1. There exist elements $\bar{e}_{1}, \cdots, \bar{e}_{r}, \bar{e}_{r+1}, \cdots, \bar{e}_{s}$ in $H_{2}\left(\hat{W}_{c}^{(m)} ; \boldsymbol{R}\right)$ such that $\bar{e}_{1}, \cdots, \bar{e}_{r}, T_{*} \bar{e}_{1}, \cdots, T_{*} \bar{e}_{r}, \cdots, T_{*}^{m-2} \bar{e}_{1}, \cdots, T_{*}^{m-2} \bar{e}_{r}, \bar{e}_{r+1}, \cdots, \bar{e}_{s}$ form a basis for $H_{2}\left(\hat{W}_{c}^{(m)} ; \boldsymbol{R}\right)$ and such that, for $i, j \leq r$ and $p, q=0,1, \cdots, m-2$,
and, for $i=1,2, \cdots, s, j>r$ and $k=0,1, \cdots, m-2$, Int $\hat{w}_{c}^{(m)}\left(T_{*}^{k} \bar{e}_{i}, \bar{e}_{j}\right)=0$.
Let ε be the subspace of $H_{2}\left(\hat{W}_{c}^{(m)} ; \boldsymbol{R}\right)$ generated by $T_{*}^{j} \bar{e}_{i}, i=1, \cdots, r, j=$ $0,1, \cdots, m-2$. It is easily seen that the form ($\operatorname{Int} \hat{\bar{w}}_{c}^{(m)}\left|\varepsilon, T_{*}\right| \varepsilon$) is isomorphic to the symmetric \boldsymbol{Z}_{m}-form of L defined in [11] (although the coefficient in [11] is rational). Recall that the symmetric \boldsymbol{Z}_{m}-form of L is the pair $\left(L^{(m)}, \boldsymbol{\tau}_{m}\right)$ of symmetric bilinear form $L^{(m)}: H^{m-1} \times H^{m-1} \rightarrow \boldsymbol{R}$ and isometry $\tau_{m}: H^{m-1} \rightarrow H^{m-1}$ of $L^{(m)}$ of order m, defined by

$$
\begin{aligned}
L^{(m)}(x, y)= & \sum_{i=1}^{m-1}\left(L\left(\pi_{i}(x), \pi_{i}(y)\right)+L\left(\pi_{i}(y), \pi_{i}(x)\right)\right) \\
& -\sum_{i=1}^{w-2}\left(L\left(\pi_{i+1}(x), \pi_{i}(y)\right)+L\left(\pi_{i+1}(y), \pi_{i}(x)\right)\right)
\end{aligned}
$$

and

$$
\tau_{m}(x)=\sum_{i=1}^{m-2} \iota_{i+1} \pi_{i}(x)-\sum_{i=1}^{m-1} \iota_{i} \pi_{m-1}(x)
$$

for $x, y \in H^{m-1}$, where H^{m-1} denotes the $(m-1)$ th Cartesian product of the real vector space $H=H_{1}(V ; \boldsymbol{R})$, and $\pi_{i}: H^{m-1} \rightarrow H$ and $\iota_{i}: H \rightarrow H^{m-1}(i=1,2, \cdots, m-1)$ are the i-th coordinate projection and imbedding respectively.

Thus we have proved the following.
Proposition 1.2. $\quad \sigma^{\dot{\gamma}^{(n)}}\left(M_{\dot{\gamma}(n)}\right)=\operatorname{sign} L^{(2 n)}-2 \operatorname{sign} L^{(n)}$.
By using Proposition 1.2, we can express $\sigma^{\dot{\gamma}^{(n)}}\left(M_{\dot{\gamma}(n)}\right)$ in terms of local signatures $\sigma_{a}^{\dot{\gamma}}(M)$ of $(M, \dot{\gamma})$.

Proposition 1.3. If the Alexander polynomial $A_{\dot{\gamma}}(t) \in \boldsymbol{Z}\langle t\rangle$ of the homology handle $(M, \dot{\gamma})$ has no $2 n$-th root of unity, then

$$
\sigma^{\dot{j}(n)}\left(M_{\dot{\gamma}(n)}\right)=\sum_{j=0}^{n-1}(-1)^{j} \sum_{a_{j+1}<a<a_{j}} \sigma_{a}^{\dot{\gamma}}(M),
$$

where $a_{j}=\cos (j \pi / n), j=0,1, \cdots, n$.
Since $\left|A_{\dot{\gamma}}(1)\right|=1$ for any homology handle $(M, \dot{\gamma})(c f .[3$, Theorem 1.4]),
$A_{\dot{\gamma}}(t)$ always has no 4-th root of unity. Thus the following simple formula is given.

Corollary 1.4. For any homology handle ($M, \dot{\gamma}$),

$$
\sigma^{\dot{\gamma}^{(2)}}(M \dot{\gamma}(2))=\sum_{-1<a<1} \operatorname{sign}(a) \sigma_{a}^{\dot{\gamma}}(M)
$$

To prove Proposition 1.3, we need some lemmas. Let $H_{C}^{m-1}=H^{m-1} \otimes$ $\boldsymbol{C}(m \geq 2)$ and $L_{c}^{(m)}: H_{c}^{m-1} \times H_{c}^{m-1} \rightarrow \boldsymbol{C}$ be the Hermitian form of $L^{(m)}$ in the usual sense ($c f .\left[11,3.6\right.$. Note]). The isometry $\tau_{m}: H^{m-1} \rightarrow H^{m-1}$ of $L^{(m)}$ extends to the isometry (also denoted by $\left.\tau_{m}\right) H^{m-1} \otimes \boldsymbol{C} \rightarrow H^{m-1} \otimes \boldsymbol{C}$ of $L_{C}^{(m)}$ naturally. Let $E_{\boldsymbol{m}}(\zeta)$ be the eigenspace of H_{C}^{m-1} corresponding to the eigenvalue $\zeta \in C$ of $\tau_{m}: H_{C}^{m-1} \rightarrow$ H_{C}^{m-1}.

Lemma 1.5. If $m=p q, p, q>0$, and ζ_{p} is a primitive p-th root of unity, then

$$
\mu: E_{p}\left(\zeta_{p}\right) \rightarrow E_{m}\left(\zeta_{p}\right), \quad \mu(z)=\frac{1}{\sqrt{q}} \sum_{l=0}^{q-1} \sum_{j=1}^{p-1} \iota_{j+p l}^{(m)} \pi_{j}^{(p)}(z)
$$

is an isometry between $\left.L_{C}^{(k)}\right|_{E_{p}\left(\zeta_{p}\right)}$ and $\left.L_{C}^{(m)}\right|_{E_{m}\left(\zeta_{p}\right)}$, where $\pi_{j}^{(k)}: H_{C}^{k-1} \rightarrow H_{C}$ and $\iota_{j}^{(k)}:$ $H_{C} \rightarrow H_{C}^{k-1}$ are the j-th coordinate projection and imbedding respectively on H_{c}^{k-1}.

Proof. First we show that

$$
\bar{\mu}: E_{p}\left(\zeta_{p}\right) \rightarrow H_{C}^{m-1}, \quad \bar{\mu}(z)=\sum_{l=0}^{q-1} \sum_{j=1}^{p-1} \iota_{j+p l}^{m)} \pi_{j}^{(p)}(z)
$$

is an injection and the image of $\bar{\mu}$ is $E_{m}\left(\zeta_{p}\right)$. In fact, by solving the equation $\tau_{k} z=\zeta_{p} z(k=p, m)$ directly, we can check that

$$
E_{p}\left(\zeta_{p}\right)=\left\{\left(x, \sum_{j=0}^{1} \zeta_{p}^{j} x, \cdots, \sum_{j=0}^{p-2} \xi_{p}^{j} x\right) \in H_{C}^{p-1} ; x \in H_{C}=H \otimes \boldsymbol{C}\right\}
$$

and $E_{m}\left(\zeta_{p}\right)=\bar{\mu}\left(E_{p}\left(\zeta_{p}\right)\right)$, from which the injectivity of $\bar{\mu}$ is obvious.
Since spaces $E_{p}\left(\zeta_{p}\right)$ and $E_{m}\left(\zeta_{p}\right)$ are such ones as described above, we can easily calculate $L_{C}^{(m)}(\bar{\mu}(x), \bar{\mu}(y))$ for $x, y \in E_{p}\left(\zeta_{p}\right)$ and have

$$
L_{C}^{(m)}(\bar{\mu}(x), \bar{\mu}(y))=q L^{(p)}(x, y),
$$

which means that $\mu=(1 / \sqrt{q}) \cdot \bar{\mu}$ is an isometry between $\left.L_{C}^{(p)}\right|_{E_{p}\left(\zeta_{p}\right)}$ and $\left.L_{C}^{(m)}\right|_{E_{m}\left(\zeta_{p}\right)}$. This completes the proof.

For $\omega \in \boldsymbol{C},|\omega|=1, \omega \neq 1$, define a Hermitian form $L_{(\omega)}:(H \otimes \boldsymbol{C}) \times(H \otimes \boldsymbol{C}) \rightarrow$ \boldsymbol{C} by

$$
L_{(\omega)}(x \otimes \alpha, y \otimes \beta)=\alpha \bar{\beta}((1-\bar{\omega}) L(x, y)+(1-\omega) L(y, x))
$$

for $x, y \in H$ and $\alpha, \beta \in \boldsymbol{C}$. The following lemma is well-known (cf. [11, 4.7]).
Lemma 1.6. Let $p(\geq 2)$ be an integer. If ζ_{p} is a primitive p-th root of unity, t^{l} len the form $L_{\left(\zeta_{p}\right)}$ is isomorphic to the restriction to $E_{p}\left(\zeta_{p}\right)$ of the form $L_{c}^{(p)}$.

Let $\omega_{x}=x+\sqrt{1-x^{2}} i \in \boldsymbol{C}, x \in[-1,1]$. For any real square matrix A, define a t-Hermitian $\boldsymbol{R}\langle t\rangle$-matrix

$$
A^{-}(t)=\left(2-\left(t+t^{-1}\right)\right)\left((1-t) A+\left(1-t^{-1}\right) A^{\mathrm{T}}\right)
$$

Kawauchi $[6, \S 5]$ considered the "local signatures" $\sigma_{a}^{-}(A), a \in[-1,1]$, of A which are defined by $\sigma_{a}^{-}(A)=\lim _{x \rightarrow a-0} \operatorname{sign} A^{-}\left(\omega_{x}\right)-\lim _{x \rightarrow a+0} \operatorname{sign} A^{-}\left(\omega_{x}\right)$ for $a \in$ $(-1,1)$ and $\sigma_{1}^{-}(A)=\lim _{x \rightarrow 1-0} \operatorname{sign} A^{-}\left(\omega_{x}\right), \sigma_{-1}^{-}(A)=\operatorname{sign}\left(A+A^{\mathrm{T}}\right)-\lim _{x \rightarrow-1+0} \operatorname{sign}$ $A^{-}\left(\omega_{x}\right)$.

Lemma 1.7. For $\omega_{a}(\neq 1)$ satisfying $\operatorname{rank}_{C}\left(A-\omega_{a} A^{\mathrm{T}}\right)=\operatorname{rank}_{\boldsymbol{R}^{\langle t\rangle}}\left(A-t A^{\mathrm{T}}\right)$,

$$
\operatorname{sign}\left(\left(1-\bar{\omega}_{a}\right) A+\left(1-\omega_{a}\right) A^{\mathrm{T}}\right)=\sum_{a<x \leq 1} \sigma_{\bar{x}}^{-}(A) .
$$

Proof. Note that $A^{-}(t)=(1-t)^{2}\left(1-t^{-1}\right)\left(A-t^{-1} A^{T}\right)$. Let $x_{1}<x_{2}<\cdots<x_{r}$ be the all points in the interval $(a, 1)$ satisfying $\operatorname{rank}_{C}\left(A-\bar{\omega}_{x_{i}}, A^{\mathrm{T}}\right)<\operatorname{rank}_{\boldsymbol{R}\langle t\rangle}(A-$ $\left.t^{-1} A^{\mathrm{T}}\right)$. By assumption, $\operatorname{rank}_{\boldsymbol{C}}\left(A-\bar{\omega}_{x} A^{\mathrm{T}}\right)=\operatorname{rank}_{\boldsymbol{R}\langle t\rangle}\left(A-t^{-1} A^{\mathrm{T}}\right)$ on $x \in[a, 1)-$ $\left\{x_{1}, x_{2}, \cdots, x_{r}\right\}$. Then by [6, Corollary 5.2],

$$
\begin{aligned}
\operatorname{sign} A^{-}\left(\omega_{a}\right) & =\lim _{x \rightarrow x_{1}-0} \operatorname{sign} A^{-}\left(\omega_{x}\right), \\
\lim _{x \rightarrow x_{i}+0} \operatorname{sign} A^{-}\left(\omega_{x}\right) & =\lim _{x \rightarrow x_{i+1}-0} \operatorname{sign} A^{-}\left(\omega_{x}\right), \quad i=1, \cdots, r-1
\end{aligned}
$$

and

$$
\lim _{x \rightarrow x_{r}+0} \operatorname{sign} A^{-}\left(\omega_{x}\right)=\lim _{x \rightarrow 1-0} \operatorname{sign} A^{-}\left(\omega_{x}\right)=\sigma_{1}^{-}(A) .
$$

Thus

$$
\operatorname{sign}\left(\left(1-\bar{\omega}_{a}\right) A+\left(1-\omega_{a}\right) A^{\mathrm{T}}\right)=\operatorname{sign} A^{-}\left(\omega_{a}\right)=\operatorname{sign} \overline{A^{-}\left(\omega_{a}\right)}=\sum_{a<x \leq 1} \sigma_{x}^{-}(A) .
$$

This completes the proof.
1.8. Proof of Proposition 1.3. For simplicity, we use the following notations:

$$
\begin{aligned}
\langle k\rangle_{m} & =E_{m}\left(e^{2 \pi i k / m}\right), \quad k=0,1, \cdots, m-1, \\
\sigma\langle k\rangle_{m} & =\operatorname{sign}\left(L_{c}^{(m)} \mid\langle k\rangle_{m}\right), \quad k=0,1, \cdots, m-1, \\
s_{j} & =\sum_{a_{j+1}<a<a_{j}} \sigma_{a}^{\dot{\gamma}}(M), \quad j=0,1, \cdots, n-1 .
\end{aligned}
$$

Note that $\langle 0\rangle_{m}=\{0\}$ for all m. We have to show $\sigma^{\dot{\gamma}^{(n)}}\left(M_{\dot{\gamma}(n)}\right)=\sum_{j=0}^{n-1}(-1)^{j} s_{j}$.
First we consider the case when n is odd. In this case, $H_{C}^{2 n-1}$ and H_{C}^{n-1}
split into the orthogonal sums

$$
H_{C}^{2 n-1}=\left({\underset{k=1}{n-1}}_{\varliminf_{1}}^{\left.\left.\langle k\rangle_{2 n} \perp\langle-k\rangle_{2 n}\right)\right) \perp\langle n\rangle_{2 n}}\right.
$$

and
with respect to $L_{C}^{(2 n)}$ and $L_{C}^{(n)}$ respectively. By Proposition 1.2 and the fact (\dagger) $\sigma\langle 2 k\rangle_{2 n}=\sigma\langle k\rangle_{n}=\sigma\langle q\rangle_{p}$, where $0<q<p,(p, q)=1 \quad$ and $\quad q / p=k / n$, which is derived from Lemma 1.5, we have

$$
\begin{aligned}
\sigma^{\dot{\gamma}^{(n)}}\left(M_{\dot{\gamma}(n)}\right) & =\operatorname{sign} L_{C}^{(2 n)}-2 \operatorname{sign} L_{C}^{(n)} \\
& =\left(\sum_{k=1}^{n-1} 2 \sigma\langle k\rangle_{2 n}+\sigma\langle n\rangle_{2 n}\right)-2 \sum_{k=1}^{(n-1) / 2} 2 \sigma\langle k\rangle_{n} \\
& =2 \sum_{k=1}^{(n-1) / 2}\left(\sigma\langle 2 k-1\rangle_{2 n}-\sigma\langle 2 k\rangle_{2 n}\right)+\sigma\langle n\rangle_{2 n} .
\end{aligned}
$$

Note that $\sigma\langle k\rangle_{m}=\sigma\langle-k\rangle_{m}$ by (\dagger) and Lemma 1.7. If the Alexander polynomial $A_{\dot{\gamma}}(t) \doteq \operatorname{det}\left(A-t A^{\mathrm{T}}\right) \in \boldsymbol{R}\langle t\rangle$ has no $2 n$-th root of unity, then, by (\dagger) and Lemmas 1.6 and 1.7, we have

$$
\begin{aligned}
\sigma\langle k\rangle_{2 n} & =\operatorname{sign} L\left(e^{\pi i k / n}\right) \\
& =\operatorname{sign}\left(\left(1-e^{-\pi i k / n}\right) A+\left(1-e^{\pi i k / n}\right) A^{\mathrm{T}}\right) \\
& =\sum_{j=0}^{k-1} s_{j},
\end{aligned}
$$

for all $k=1,2, \cdots, n$, where A is a linking matrix on $H=H_{1}(V ; \boldsymbol{R})$. So we have $\sigma\langle 2 k-1\rangle_{2 n}-\sigma\langle 2 k\rangle_{2 n}=-s_{2 k-1}, k=1,2, \cdots,(n-1) / 2$. Furthermore, by [6, Main Theorem], $\sigma\langle n\rangle_{2 n}=\sigma\langle 1\rangle_{2}=\sigma^{\dot{\gamma}}(M)=\sum_{j=0}^{n-1} s_{j}$. Therefore

$$
\sigma^{\dot{\gamma}^{(n)}}\left(M_{\dot{\gamma}(n)}\right)=2 \sum_{k=1}^{(n-1) / 2}\left(-s_{2 k-1}\right)+\sum_{j=0}^{n-1} s_{j}=\sum_{j=0}^{n-1}(-1)^{j} s_{j} .
$$

Next we consider the case when n is even. In this case, $H_{C}^{2 n-1}$ and H_{C}^{n-1} split into the orthogonal sums

$$
H_{C}^{2 n-1}=\left(\prod_{k=1}^{n-1}\left(\langle k\rangle_{2 n} \perp\langle-k\rangle_{2 n}\right)\right) \perp\langle n\rangle_{2 n}
$$

and
respectively. By the same argument as in the odd case, we have

$$
\begin{aligned}
\sigma^{\dot{j}^{(n)}}\left(M_{\dot{\gamma}(n)}\right) & =\operatorname{sign} L_{C}^{(2 n)}-2 \operatorname{sign} L_{C}^{(n)} \\
& =\left(\sum_{k=1}^{n-1} 2 \sigma\langle k\rangle_{2 n}+\sigma\langle n\rangle_{2 n}\right)-2\left(\sum_{k=1}^{(n-2) / 2} 2 \sigma\langle k\rangle_{n}+\sigma\langle n / 2\rangle_{n}\right) \\
& =2\left(\sum_{k=1}^{(n-2) / 2}\left(\sigma\langle 2 k-1\rangle_{2 n}-\sigma\langle 2 k\rangle_{2 n}\right)+\sigma\langle n-1\rangle_{2 n}\right)-\sigma\langle 1\rangle_{2} \\
& =2\left(-\sum_{k=1}^{(n-2) / 2} s_{2 k-1}+\sum_{j=0}^{n-2} s_{j}\right)-\sum_{j=0}^{n-1} s_{j} \\
& =2 \sum_{k=0}^{(n-2) / 2} s_{2 k}-\sum_{j=0}^{n-1} s_{j} \\
& =\sum_{j=0}^{n-1}(-1)^{j} s_{j} .
\end{aligned}
$$

This completes the proof.
Example 1.9. Let k be a knot in S^{3} and $M=M(k)$ denote S^{3} surgered along k with framing zero. Then M is a homology handle. Let \tilde{M} be the infinite cyclic cover of M associated with any generator $\dot{\gamma}$ of $H^{1}(M ; Z)$. The quadratic form of \tilde{M} on $H^{1}(\tilde{M} ; \boldsymbol{R})$ (see [4, p. 186] for the definition) in the present case is non-singular (cf. [5, p. 99]).

If k is a trefoil knot, then $H^{1}(\tilde{M} ; \boldsymbol{R}) \cong \boldsymbol{R}\langle t\rangle /\left(t^{2}-t+1\right)$. Thus $\sigma_{1 / 2} \dot{\gamma}^{\prime}(M)= \pm 2$ and $\sigma_{a}^{\dot{\gamma}}(M)=0$ for $a \neq 1 / 2$ (cf. [9, Assertion 11] or [5, Lemma 1.4]). By Corollary 1.4, we have $\sigma^{\dot{\gamma}^{(2)}}\left(M_{\dot{\gamma}(2)}\right)=\sigma_{1 / 2}(M)= \pm 2$. This result can be obtained from a direct calculation of the quadratic form by using a mapping torus structure of $M(k)_{\dot{\gamma}(2)}(c f .[10$, p. 333]). Furthermore, if k is the g-fold connected sum of trefoil knot, then the quadratic form of \widetilde{M} is the orthogonal sum of g copies of the form of trefoil knot. Thus $\sigma_{1 / 2}^{\dot{\gamma}}(M(k))= \pm 2 g$ and $\sigma_{a}^{\dot{\gamma}}(M(k))=0$ for $a \neq 1 / 2$. By Corollary 1.4, $\sigma^{\dot{\gamma}^{(2)}}\left(M(k) \dot{\gamma}_{\dot{\gamma}(2)}\right)=\sigma_{1 / 2}(M(k))= \pm 2 g$, which of course coincides with the result obtained from the calculation using the mapping torus structure of $M(k)_{\dot{\gamma}(2)}$.

2. Types of Imbeddings

Throughout this section, M is a closed, connected, oriented 3-manifold and W a closed, connected 4-manifold. We consider imbeddings $f: M \rightarrow W$.

First note that f has at least two types according to whether $W-f M$ is connected or not. We say that f is of type I (resp. type II) if $W-f M$ is connected (resp. disconnected). We can characterize the type I or II imbedding by examining the homomorphism $f_{*}: H_{3}\left(M ; \boldsymbol{Z}_{2}\right) \rightarrow H_{3}\left(W ; \boldsymbol{Z}_{2}\right)$. If $f_{*} \neq 0$ then f is of type I , and if $f_{*}=0$ then f is of type II and $W-f M$ has exactly two components. This is stated in [8] in the case when W is orientable, and Kawauchi's
proof is valid for non-orientable 4-manifold W. Note that the coefficient of the (co-)homology in [8, p. 171] is \boldsymbol{Z}_{2}.

For the rest of this section we assume that W is non-orientable, and classify the types of $f: M \rightarrow W$ more in detail. Let $p: W \rightarrow W$ be the orientation double covering of W.

Type I imbedding. A type I imbedding f is called two-sided or one-sided according as the normal bundle of f is trivial or not.

If f is of type I and one-sided (called type I_{1}), we have two cases according as $W-f M$ is orientable or not. These two cases may be characterized by the types of the imbedding $\tilde{M}=p^{-1}(f M) \subset W$. That is, $W-f M$ is non-orientable (resp. orientable) if and only if $\tilde{M} \subset \mathscr{W}$ is of type I (resp. type II). Thus we say that f is of type $\mathrm{I}_{1}-1$ (resp. type $\mathrm{I}_{1}-2$) if $W-f M$ is non-orientable (resp. orientable).

If f is of type I and two-sided (called type I_{2}), then f can be lifted to two imbeddings $\tilde{f}: M \rightarrow W$, each of which is of type I . [To see that \tilde{f} is of type I , note that there is a loop α in W which intersects $f M$ transversely in a single point. If α preserves orientation, then one of the lifts of α to W intersects $\hat{f} M$ transversely in a single point. Thus $\tilde{f}_{*} \neq 0: H_{3}\left(M ; \boldsymbol{Z}_{2}\right) \rightarrow H_{3}\left(W ; \boldsymbol{Z}_{2}\right)$, which means \tilde{f} is of type I. If α reverses orientation, then, by using the loop $p^{-1} \alpha$, we can do the same argument as above and have the same conclusion.]

Type II imbedding. Assume f is of type II. Let W_{1}, W_{2} be the components of $W-f M$. Since W is non-orientable and M is connected, we have the following two cases:
a) both W_{1} and W_{2} are non-orientable,
b) one of W_{1} and W_{2} is orientable and the other is non-orientable.

The type II imbedding f can be lifted to two imbeddings $\tilde{f}: M \rightarrow W$. Take any one of them. Then it is easily seen that a) (resp. b)) is equal to the condition that \tilde{f} is of type I (resp. \tilde{f} is of type II). From this, in case a) (resp. b)) we say that f is of type II-1 (resp. type II--2).

3. Proof of Theorem

Throughout this section, for a manifold X with boundary, $D X$ denotes the double of X. For a closed oriented 3-manifold M equipped with an element $\dot{\gamma} \in H^{1}(M ; \boldsymbol{Z})$, we define $\boldsymbol{\tau}_{a}^{\dot{\gamma}}(M)=\sum_{x \in(a, 1]} \sigma_{x}^{\dot{\gamma}}(M)$ for all $a \in[-1,1]$ (cf. [8]). We denote by $\kappa_{1}^{\dot{\gamma}}(M)$ the rank of the kernel of the homomorphism $t-1: H_{1}(\tilde{M} ; \boldsymbol{Z}) \rightarrow$ $H_{1}(\tilde{M} ; \boldsymbol{Z})$, where \tilde{M} is the infinite cyclic cover of M associated with $\dot{\gamma}$ and t : $H_{1}(\tilde{M} ; \boldsymbol{Z}) \rightarrow H_{1}(\tilde{M} ; \boldsymbol{Z})$ is the automorphism induced from the generator specified by $\dot{\gamma}$ of the group of covering transformations on $\tilde{M}(c f$. [8]).

For the rest of this section, M denotes a closed, connected, oriented 3manifold and W denotes a compact, connected 4-manifold. Let M^{0} denote the once punctured M. Recall that an element $\dot{\gamma} \in H^{1}\left(D M^{0} ; \boldsymbol{Z}\right)$ is called \boldsymbol{Z}_{2}-asym-
metric if the mod 2 reduction $\dot{\gamma}(2) \in H^{1}\left(D M^{0} ; \boldsymbol{Z}_{2}\right)$ of $\dot{\gamma}$ satisfies $\rho_{*}(\dot{\gamma}(2)) \neq \dot{\gamma}(2)$ for the standard reflection ρ of $D M^{0}$ ([8, p. 179]). Theorem 3.1 of [8] can be extended to the case of orientable 4-manifold W with boundary.

Lemma 3.1. Assume that W is orientable and $\partial W \neq \emptyset$. If M^{0} is imbedded in W, then $\beta_{1}(M ; \boldsymbol{Z}) \leq \beta_{2}\left(W ; \boldsymbol{Z}_{2}\right)$ or there is a \boldsymbol{Z}_{2}-asymmetric indivisible element $\dot{\gamma} \in H^{1}\left(D M^{0} ; \boldsymbol{Z}\right)$ such that for all $a \in[-1,1]$

$$
\left|\tau_{a}^{\dot{\gamma}}\left(D M^{0}\right)\right|-\kappa_{1}^{\dot{\gamma}}\left(D M^{0}\right) \leq 2 \beta_{2}(W ; Z) .
$$

Proof. Applying [8, Theorem 3.1] to the imbedding $M^{0} \subset W \subset D W$, we have the above conclusion. Note that $\beta_{2}(D W ; \boldsymbol{Z})=2 \beta_{2}(W ; \boldsymbol{Z}), \boldsymbol{\beta}_{2}\left(D W ; \boldsymbol{Z}_{2}\right)=2 \boldsymbol{\beta}_{2}$ ($W ; \boldsymbol{Z}_{2}$) and $\operatorname{sign} D W=0$.

We then think of non-orientable case.
Lemma 3.2. Assume W is non-orientable and closed. Let $f: M \rightarrow W$ be an imbedding.
(1) If f is of type I_{2} or $I I-1$, then $\beta_{1}(M ; \boldsymbol{Z}) \leq \beta_{2}\left(W ; \boldsymbol{Z}_{2}\right)$ or there is a $\boldsymbol{Z}_{2}-$ asymmetric indivisible element $\dot{\gamma} \in H^{1}\left(D M^{0} ; \boldsymbol{Z}\right)$ such that for all $a \in[-1,1]$

$$
\left|\tau_{a}^{\dot{\gamma}}\left(D M^{0}\right)\right|-\kappa_{1}^{\dot{\gamma}}\left(D M^{0}\right) \leq \beta_{2}(W ; \boldsymbol{Z})+\beta_{2}\left(W ; \boldsymbol{Z}_{2}\right) .
$$

(2) If f is of type II-2, then $2 \beta_{1}(M ; \boldsymbol{Z}) \leq \beta_{2}(W ; \boldsymbol{Z})+\boldsymbol{\beta}_{2}\left(W ; \boldsymbol{Z}_{2}\right)$ or there is an indivisible element $\dot{\gamma} \in H^{1}(M ; \boldsymbol{Z})$ such that for all $a \in[-1,1]$

$$
\left|\tau_{a}^{\dot{\gamma}}(M)\right|-\kappa_{1}^{\dot{\gamma}}(M) \leq \beta_{2}(W ; \boldsymbol{Z})+\beta_{2}\left(W ; \boldsymbol{Z}_{2}\right) .
$$

Proof. Let W be the orientation double cover of W. As seen in section 2, each imbedding of above types has a lift $\tilde{f}: M \rightarrow W$. Applying [8, Theorems $2.1,3.1]$ to f and noting the following lemma and the fact that sign $W=0$ [because W admits an orientation-reversing involution], we have the result.

Lemma 3.3. Let X be a compact manifold and \tilde{X} be any double cover of X. Then $\boldsymbol{\beta}_{k}(X ; \boldsymbol{Z}) \leq \boldsymbol{\beta}_{k}(\tilde{X} ; \boldsymbol{Z}) \leq \boldsymbol{\beta}_{k}(X ; \boldsymbol{Z})+\boldsymbol{\beta}_{k}\left(X ; \boldsymbol{Z}_{2}\right)$ and $\boldsymbol{\beta}_{k}\left(\tilde{X} ; \boldsymbol{Z}_{2}\right) \leq 2 \boldsymbol{\beta}_{k}$ $\left(X, \boldsymbol{Z}_{2}\right)$ for all k.

Proof. By the transfer argument, we have $\boldsymbol{\beta}_{k}(X ; \boldsymbol{Z}) \leq \boldsymbol{\beta}_{k}(\tilde{X} ; \boldsymbol{Z})$. The inequality $\boldsymbol{\beta}_{k}(\tilde{X} ; \boldsymbol{Z}) \leq \boldsymbol{\beta}_{k}(X ; \boldsymbol{Z})+\boldsymbol{\beta}_{k}\left(X ; \boldsymbol{Z}_{2}\right)$ is the case $d=2$ of [1, Proposition 1.3]. The inequality $\boldsymbol{\beta}_{k}\left(\tilde{X} ; \boldsymbol{Z}_{2}\right) \leq 2 \boldsymbol{\beta}_{k}\left(X ; \boldsymbol{Z}_{2}\right)$ is readily obtained from the exact sequence of Smith homology groups used in the proof of [1, Proposition 1.3].

In the case of type I_{1} imbedding, we cannot use [8, Theorem 2.1, 3.1] as in the proof of Lemma 3.2. But for certain M an estimation like Lemma 3.2 can be obtained by using the consequence of Section 1. For each positive integer r, consider the class $\mathscr{M}(r)$ of 3 -manifolds consisting of the connected
sums of r homology handles:
$\mathscr{M}(r)=\left\{M=\underset{i=1}{\#_{i=1}^{r}} M_{i} ; M_{i}\right.$ is a 3-manifold with $\left.H_{*}\left(M_{i} ; \boldsymbol{Z}\right) \cong H_{*}\left(S^{2} \times S^{1} ; \boldsymbol{Z}\right), \forall i\right\}$.
Especially we have a subclass $\mathscr{M}^{\prime}(r)$ of $\mathscr{M}(r)$ consisting of all $M=\#_{i=1}^{r} M_{i}$ such that each M_{i} is S^{3} surgered along a knot with framing zero ($c f$. Example 1.9). Note that, for any $M \in \mathscr{M}(r)$ and any $\dot{\gamma} \in H^{1}(M ; \boldsymbol{Z}), \tau_{{ }_{-1}}(M)=\sigma^{\dot{\gamma}}(M)$ and $\kappa_{1}^{\dot{\gamma}}(M)$ $=0(c f .[3])$. For an (oriented) homology handle M, we denote by $\sigma(M)$ (resp. $\left.\sigma_{a}(M)\right)$ the signature $\sigma^{\dot{\gamma}}(M)$ (resp. the local signature $\left.\sigma_{a}^{\dot{\gamma}}(M)\right)$ associated with any generator $\dot{\gamma}$ of $H^{1}(M ; \boldsymbol{Z})$. [Note that $\sigma^{\dot{\gamma}}(M)=\sigma^{-\dot{\gamma}}(M)$ and $\sigma_{a}^{\dot{\gamma}}(M)=\sigma_{a}^{-\dot{\gamma}}(M)$.]

Lemma 3.4. Let W be as in Lemma 3.2. Let $M=\#_{i=1}^{r} M_{i}$ be the connected sum of homology handles $M_{i}, i=1,2, \cdots, r$. If M is type I_{1} imbedded in W, then $r \leq \beta_{2}\left(W ; \boldsymbol{Z}_{2}\right)$ or there are numbers $(1 \leq) i_{1}, i_{2}, \cdots, i_{p}, i_{p+1}, \cdots, i_{q}(\leq r)$ such that
$\left(^{*}\right)\left|\sum_{j=1}^{p} \sum_{-1<a<1} \varepsilon_{j} \operatorname{sign}(a) \sigma_{a}\left(M_{i_{j}}\right)+\sum_{j=p+1}^{q} \varepsilon_{j} \sigma\left(M_{i j}\right)\right| \leq \beta_{2}(W ; \boldsymbol{Z})+\boldsymbol{\beta}_{2}\left(W ; \boldsymbol{Z}_{2}\right)$,
where $\varepsilon_{j}=1$, or $-1, j=1,2, \cdots, q$.
Proof. Assume that M is type I_{1} imbedded in W. We think M is a submanifold of W. If $p: W \rightarrow W$ is the orientation double covering of W, then $M^{(2)}=p^{-1} M \subset W$ is a double cover of M.

Since the mod 2 reduction $H^{1}(M ; \boldsymbol{Z}) \cong \oplus_{i=1}^{r} \boldsymbol{Z} \rightarrow H^{1}\left(M ; \boldsymbol{Z}_{2}\right) \cong \oplus_{i=1}^{r} \boldsymbol{Z}_{2}$ is onto, any double cover of M is associated with the $\bmod 2$ reduction $\psi(2) \in H^{1}$ (M; \boldsymbol{Z}_{2}) of some $\psi \in H^{1}(M ; \boldsymbol{Z})$. For each $i=1,2, \cdots, r$, the restriction $\psi(2) \mid M_{i}$ is the δ_{i} multiple of the generator of $H^{1}\left(M_{i} ; \boldsymbol{Z}_{2}\right) \cong \boldsymbol{Z}_{2}$, where $\delta_{\boldsymbol{i}}=0$ or 1 . Thus we denote $\psi(2)$ by $\psi\left[\delta_{1}, \cdots, \delta_{r}\right]$.

We may assume $M^{(2)}$ is the double cover corresponding to $\psi[\overbrace{1, \cdots, 1}^{m}, 0, \cdots, 0]$ by permuting the indices if necessary. Then $M^{(2)}$ is diffeomorphic to

$$
\left(\underset{i=1}{\#_{i}^{m}} M_{i}^{(2)}\right) \#\left(\underset{i=m+1}{\stackrel{r}{\#}} M_{i}\right) \#\left(\underset{i=m+1}{\stackrel{r}{\#}} M_{i}\right) \#\left(\stackrel{m-1}{\#} S^{2} \times S^{1}\right),
$$

where $M_{i}^{(2)}$ denotes the unique (up to equivalence) double cover of M_{i}.
Put $\hat{M}=\left(\#_{i=1}^{m} M_{i}^{(2)}\right) \#\left(\#_{i=m+1}^{r} M_{i}\right)$. Since \hat{M}^{0} is imbedded in $M^{(2)}$ naturally, \hat{M}^{0} can be imbedded into W. Applying Theorem 3.1 of [8] and using Lemma 3.3, we have $r \leq \beta_{2}\left(W ; \boldsymbol{Z}_{2}\right)$ or there is a \boldsymbol{Z}_{2}-asymmetric indivisible element $\dot{\eta} \in H^{1}\left(D \hat{M}^{0} ; \boldsymbol{Z}\right)$ such that $\left|\sigma^{\dot{n}}\left(D \hat{M}^{0}\right)\right| \leq \beta_{2}(W ; \boldsymbol{Z})+\beta_{2}\left(W ; \boldsymbol{Z}_{2}\right)$. (Note that $\tau_{-1}^{\dot{n}}\left(D \hat{M}^{0}\right)=\sigma^{\dot{\eta}}\left(D \hat{M}^{0}\right)$.)

Since $D \hat{M}^{0}=\left[\#_{i=1}^{m}\left(M_{i}^{(2)} \#-M_{i}^{(2)}\right)\right] \#\left[\#_{i=m+1}^{r}\left(M_{i} \#-M_{i}\right)\right]$, we have

$$
\sigma^{\dot{r}}\left(D \hat{M}^{0}\right)=\sum_{i=1}^{m} \sigma^{\dot{n}_{i}}\left(M_{i}^{(2)} \#-M_{i}^{(2)}\right)+\sum_{i=m+1}^{r} \sigma^{\dot{n_{i}}}\left(M_{i} \#-M_{i}\right),
$$

where $\dot{\eta}_{i}$ is the restriction of $\dot{\eta}$ to the i-th summand, $i=1,2, \cdots, r$. Let $\left\{i_{j} ; 1 \leq j \leq p\right\}$ (resp. $\left\{i_{j} ; p+1 \leq j \leq q\right\}$) be the set of all integers i between 1 and m (resp. $m+1$ and r) such that the restriction $\dot{\eta}_{i}$ of $\dot{\eta}$ is still \boldsymbol{Z}_{2}-asymmetric. Then by [8, Lemma 1.3] we have

$$
\sigma^{\dot{\eta}}\left(D \hat{M}^{0}\right)=\sum_{j=1}^{p} \varepsilon_{j} \sigma_{i_{i}^{(2)}}^{\left(M_{i}\right)}\left(M_{i}^{(2)}\right)+\sum_{j=p+1}^{q} \varepsilon_{j} \sigma\left(M_{i_{j}}\right),
$$

for some $\varepsilon_{j} \in\{1,-1\}, j=1,2, \cdots, q$, where $\dot{\boldsymbol{\gamma}}_{i_{j}}^{(2)} \in H^{1}\left(M_{i_{j}}^{(2)} ; \boldsymbol{Z}\right) \cong \boldsymbol{Z}$ is the element defined, as in section 1 , by a generator $\dot{\gamma}_{i_{j}}$ of $H^{1}\left(M_{i_{j}} ; \boldsymbol{Z}\right), j=1,2, \cdots, p$. Compare the proof of [8, Theorem 3.2]. Since $\sigma^{\dot{\gamma}_{i}^{(2)}}\left(M_{i}^{(2)}\right)=\sum_{-1<a<1} \operatorname{sign}(a) \sigma_{a}\left(M_{i}\right)$ by Corollary 1.4 , this implies the inequality $\left(^{*}\right)$. This completes the proof.

We now prove Theorem.
3.5. Proof of Theorem for orientable 4-manifold W. Assume that W is compact, connected and orientable. If W is closed, then Theorem is an immediate consequence of [8, Theorem 3.2] showing that, for sufficiently large r_{0} and for all $r>r_{0}$, certain elements of $\mathscr{M}^{\prime}(r)$ cannot be imbedded in W. If W is bounded, then Lemma 3.1 implies Theorem by the same argument as the proof of [8, Theorem 3.2].
3.6. Proof of Theorem for non-orientable 4-manifold W. Assume first that W is closed, connected and non-orientable. Let $M[g]$ be S^{3} surgered along the g-fold connected sum of trefoil knot with framing zero. Recall that, for any generator $\dot{\gamma} \in H^{1}(M[g] ; \boldsymbol{Z}) \cong \boldsymbol{Z}, \quad \dot{\sigma^{\prime}}(M[g])=\sigma^{\dot{\gamma}^{(2)}}\left(M[g] \dot{\gamma}_{(2)}\right)= \pm 2 g(c f$. Example 1.9).

From now on, assume $M=\#_{i=1}^{r} M\left[g_{i}\right]$. We show that if M is imbedded in W, then one of the following conditions holds:
(1) $r \leq \beta_{2}\left(W ; \boldsymbol{Z}_{2}\right)$.
(2) For some numbers $(1 \leq) i_{1}, i_{2}, \cdots, i_{s}(\leq r)$ and for some choice of $\varepsilon_{j} \in$ $\{1,-1\}, j=1,2, \cdots, s$, the inequality

$$
2\left|\varepsilon_{1} g_{i_{1}}+\varepsilon_{2} g_{i_{2}}+\cdots+\varepsilon_{s} g_{i_{s}}\right| \leq \beta_{2}(W ; \boldsymbol{Z})+\beta_{2}\left(W ; \boldsymbol{Z}_{2}\right)
$$

holds.
In fact, if M is type I_{1} imbedded in W, then, by Lemma 3.4, we obtain the desired result. If M is type I_{2} or II-1 imbedded in W, then, by Lemma 3.2(1), we have the above result. Compare the proof of Lemma 3.4. If M is type II-2 imbedded in W, then by Lemma 3.2-(2) we have $r \leq\left[\beta_{2}(W ; \boldsymbol{Z})+\right.$ $\left.\beta_{2}\left(W ; \boldsymbol{Z}_{2}\right)\right] / 2$ or the above condition (2) holds. Note that for an indivisible element $\dot{\gamma} \in H^{1}(M ; \boldsymbol{Z})$, if $M\left[g_{i j}\right], j=1,2, \cdots, s, 1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq r$ are the all summands of M such that $\dot{\gamma} \mid M\left[g_{i j}\right]$ is an odd multiple of a generator of $H^{1}\left(M\left[g_{i j}\right]\right.$; $\boldsymbol{Z}) \cong \boldsymbol{Z}$, we have

$$
\tau_{-1}^{\dot{\gamma}}(M)=\sigma^{\dot{\gamma}}(M)=2\left(\varepsilon_{1} g_{i_{1}}+\varepsilon_{2} g_{i_{2}}+\cdots+\varepsilon_{s} g_{i_{s}}\right)
$$

for some $\varepsilon_{i} \in\{1,-1\} \quad(c f .[8$, Lemma 1.3]).
Thus, if we take $r_{0}=\beta_{2}\left(W ; \boldsymbol{Z}_{2}\right)$, then for all $r>r_{0}$ and for $\left\{g_{i}\right\}^{r}{ }_{i=1}$ such that

$$
g_{1} \geq \beta_{2}\left(W ; \boldsymbol{Z}_{2}\right) \quad \text { and } \quad g_{i} \geq \beta_{2}\left(W ; \boldsymbol{Z}_{2}\right)+\sum_{j=1}^{i-1} g_{j}, i=2,3, \cdots, r,
$$

$M=\#_{i=1}^{r} M\left[g_{i}\right]$ cannot be imbedded in W. This implies Theorem for closed non-orientable 4-manifold W.

To have Theorem for non-orientable 4-manifold W with boundary, we have only to use the doubling technique as in the orientable case. The proof of Theorem is completed.

References

[1] P.M. Gilmer: Configurations of surfaces in 4-manifolds, Trans. Amer, Math. Soc. 264 (1981), 353-380.
[2] L.H. Kauffman: Branched coverings, open books and knot periodicity, Topology 13 (1974), 143-160.
[3] A. Kawauchi: Three dimensional homology handles and circles, Osaka J. Math. 12 (1975), 565-581.
[4] -: On quadratic forms of 3-manifolds, Invent. Math. 43 (1977), 177-198.
[5] -: On a 4-manifold homology equivalent to a bouquet of surfaces, Trans. Amer. Math. Soc. 262 (1980), 95-112.
[6] -: The signature invariants of infinite cyclic coverings of closed odd dimensional manifolds, "Algebraic and Topological Theories-to the memory of Dr. MIYATA," Kinokuniya Co. Ltd., 1985, 52-85.
[7] _-: On the signature invariants of infinite cyclic coverings of even dimensional manifolds, "Homotopy Theory and Related Topics," Adavanced Studies in Pure Math., 1986, 177-188.
[8] -: The imbedding problem of 3-manifolds into 4-manifolds, Osaka J. Math. 25 (1988), 171-183.
[9] J.W. Milnor: Infinite cyclic coverings, "Conference on the Topology of Manifolds," Prindle, Weber \& Schmidt, Boston, Mass., 1968, 115-133.
[10] D. Rolfsen: "Knots and Links," Math. Lecture Series \#7, Publish or Perish Inc., Berkeley, 1976.
[11] O.Ja. Viro: Branched coverings of manifolds with boundary and link invariants. I, Math. USSR Izv. 7 (1973), 1239-1256.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku
Osaka 558, Japan

