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1. Introduction and summary

Let v, ky λ and t be positive integers with v>k>t. Let X be a τ -set and
21 a collection of A-subsets of X. The elements of X will be called points and
the elements of SI will be called blocks. The cardinality of 51 will be called b.

®=®(X, 51) is defined to be a t-(v, k, λ) design (or simply a t-desigri) if
each ^-subset of X is contained in exactly λ blocks.υ

For 0<i<t, let λ, be the number of blocks on a given /-subset S{ of X. By
counting in two ways the number of ordered pairs (St> B) where St is a ^-subset
of X and B is a block such that S^S^B, we get

(i) ( Γ )λ = = λ"(ΐ~ )
Thus λf is independent of the /-subset chosen and 2) is an /-design for 0</<£.

If there exist 4̂ and B> distinct elements of 51, such that \A f! B | =μ, then
μ is called an intersection number of ®.

A design is called trivial if 51 consists of all ^-subsets of X.
Ray-Chaudhuri and Wilson have shown

Theorem (Ray-Chaudhuri and Wilson [7], Theorem 1). Generalized
Fisher's Inequality :

The existence of a t-{v, k, λ) design with t even, say t=2s> and v>k-\-s
implies

If ® is a 2s-design with v>k+s and b=(Ό\ then ® is called

design. (If v<k-{-sy 3) is trivial.)

If 2) is a 2s-design with v=k-{-s, then X has ί J ^-subsets. Since

1) This is not the most general definition of a design. However, it can be shown that for
tight designs, which we will be interested in here, the two definitions are equivalent.
See Ray-Chaudhuri and Wilson [7].
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Si must consists of all (vλ ^-subsets of Xy and 3) is a tight 2s-

design. It is, however, a trivial 2s-design.

The following has also been shown.

Theorem (Ray-Chaudhuri and Wilson [7], Theorem 4). // 3) is a 2s-
desίgn with v>k-\-s and with s intersection numbers, then S>s. s=s if and only
if 3) is a tight 2s-design.

Tight 2-designs are the symmetric (projective) designs (v=b). Ito [4]
has shown that the only non-trivial tight 4-designs are the Witt tight designs:
a 4-(23, 7, 1) design and its complement, a 4-(23, 16, 52) design.

We will investigate 2s-designs with s intersection numbers (thus tight
2s-designs), for s>3.

The following theorems will be proved

Theorem 4.1. Let 3) be a tight 2s-desίgn} with s>Z. If the intersection
numbers are "symmetric" about their average {β—a is an intersection number when-
ever β-\-a is an intersection number, where β is the average of the intersection num-
bers), then 3) is trivial.

Theorem 4.2. There are no non-trivial tight 6-designs.

To prove these theorems, two techniques will be used. One is to esta-
blish relationships between certain incidence matrices and adjacency matrices
that are associated with tight designs, and in particular, to establish relation-
ships between the eigenvalues of these matrices.

The other technique is to investigate the coefficients of the polynomial
whose roots are the intersection numbers, and to investigate the coefficients
of the polynomial whose roots are the differences between each intersection
number and the average of the intersection numbers.

2. Matrices associated with designs

In this section we will define certain incidence matrices and adjacency
matrices associated with designs and establish systems of equations relating
them. We will compute the eigenvalues of certain of these matrices and show
that the matrix equations can be rewritten in terms of eigenvalues.

We begin by examining the structure of adjacency matrices for trivial
designs. This structure will then be used to examine the structure of matrices
associated with other designs.

Let X be a set of v points and let Pjyj=0, -~>vy be the collection of all j -
subsets of X. Define A{, i=0y •••,./, to be the adjacency matrix, corresponding
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to *, of the trivial design (Xy P ; ) ; that is, A{ is the matrix with rows and columns
indexed by they-subsets of Xy and with ({xly •••,#,-}, {yly •• ,y ; }) entry equal to
1 if \{xly •••, Xj] Π {jΊ, — 9yj} I =*, and 0 otherwise.

We will show that, ϊorjKv/2, the matrices A{yi=Oy "-,jy are simultaneously
diagonalizable and we will compute their eigenvalues. To state this precisely,
let Wj=RPJ,j=0y •••, v, be the vector space over the field of real numbers with
basis Pj. For 7=0, •••,«; and /=0, * ,7, define B{j to be the matrix associated
with the map from W{ to Wj which takes an /-subset of X to the formal sum of
all 7-subsets of X containing it. That is, B{j is the matrix with rows indexed by
the /-subsets of X and columns indexed .by the 7-subsets of X, and with
({#!,—,#,•}, {yl9 --,yj}) entry equal to 1 if {xly ••-, #t} c {yl9 —,y i}, and 0
otherwise.

Theorem 2.1. Forj<v/2y there is a decomposition

that for m=0, •• ,<;,

ii) Ŵ y,m w ΛW eίgenspace for A{, i—0y •••,7 ,

i i i ) ώ t e i g e n v a l u e of A { o n W , m i s a?j = Σ ( - l ) r f W V ϋ " ^ ' " " r V J " " Y
r = o \ r ι\)—ι—ri\ι—m-\-rl

Proof. We argue by induction on j . For 7=0, the statement is trivial.
Suppose that for all 7"'<7",

is a decomposition of PF/, satisfying i), ii) and iii). Define Wj m—WmrnBmjy

m=0y ".,7—1.

It can be shown that the rank of Bmj is equal to ί ^ ) for m<j<v\2 (see

Kantor [5]). Thus, for m=0y •••,7—1, dim Wjttn=dim Wm>m which, by in-

duction, is equal to ( ^ ) — ( m ^ _ i ) -

Then

( 2 ) Wj= WJ.0®-®WJJ-1®WJ,J

where Wjt~{x^Wj\x(Bij)
t=0y for all ί=0, - , 7 - 1 } , and d'ιmWjfj=h^-

Therefore (2) satisfies i), for all m=0y •••,7.
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We will verify ii) and iii) first for m = 0 , •••,./—1, and then for m=j.
For z, y, n=0, •••, [^/2], define C? ; to be the matrix with rows indexed by

the z-subsets of X> columns indexed by the y-subsets of X, and with ({xl9 •••,#,},

{y» ~ >yj)) e n t r 7 e q u a l t 0 ! ί f I fa> '">*.•} Π {j>i, — >:y;} I = n > a n d ° otherwise.
We proceed in several steps to investigate {wmBmj)A{ for wm^Wm>m.

Step 1. We show that

r-o\j—ι—

BmjA{ will be a matrix with rows indexed by the m-subsets of X and
columns indexed by the y-subsets of X. If Sm is an wz-subset of X and Sj is
a y-subset of X, then the (Smy Sj) entry will be equal to the number of j'-subsets
of X which contain Sm and meet Sj in exactly i points. Thus, if \SmΓ\Sj\ =

m-r, the (Sm, S,) entry is (jlfcί) ( J U J j ) Then

\]—ι—r/\ι—

Step 2. Similarly, we show that

(4) A7Bmi = Σ ( " T Ύ ' - 1 1 ^ ) CS7'

The (5^, 5 ; ) entry of ATBmj is equal to the number of y-subsets which meet
Sm in i points and are contained in Sj. Thus, if | Sm Π *?; I =m—r, the (5W, 5y)

entry is ( V X ' ' « - ί 0 Therefore

Now in Steps 3 and 4, we proceed to show, by induction on j \ that, for
m=0y •• ,y~ 1, Wjm=WmtmBmj is an eigenspace for all A{, i=0, * ,y, and in
particular, the eigenvalues of A\ on ^ , w is

a?;=έ ( - / X O ί
o \ /\j—t—r/ \ι—

The above statement is trivial fory=0. Assume that it holds for j ' <j.

Step 3. We show by induction on n that if m<ij and wmEΞWm>my then

(6) wmcιr = (-i)»( m Wu
\ /z /
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If n=0, (4) gives CZj=lΛZBm~Bmj. Assume that the statement is true for
all n' <n. Since tn<j, the first induction hypothesis says that the eigenvalue of
AZ-n on Wm>m is

Then

7 ) {-\γ(m)wmBmj =

Rearranging (7) and applying the second induction hypothesis gives

h
V

rpi (m\(m—r\ /m\(n\

Then, since = 1 ,
V r )\m—n) \n }\r Γ

+
V n /

N o w , u s i n g a n i n d u c t i v e a r g u m e n t a n d t h e fac t t h a t (n)—(n j + ί ^ i )>

- n e g a t i v e i n t e g e r s n a n d q, i t c a n b e s h o w n t h a t Σ ( ~ 1 ) Λ W ) ( ^ ~ ^ W )
9 = 0 \ ϊ / V W /

non
where n and Λ? are non-negative integers.

Applying this to the expression in (8) gives,

and

wmC%Jn = (—lW m )(wmBmj)y for

Step 4. Now combining (3) and (6),

We now have
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where, for m=0, ~,j— 1, Wjm=WmmBmj is an eigenspace for all A{y ί=0, •• ,y,
(Note AJj=I), with eigenvalue

It remains to verify ii) and iii) for m=j; that is, we need to show that Wjtj

is an eigenspace for all A{, i=0, •••,7, and to compute the eigenvalues.
For any given j , z, and m> the matrix (Bmj)

tAriBmj can be expressed as a
linear combination of the matrices AJ

n, n=0, * ,7, as follows. By (4),

A?Bmj =
r

and thus,

(Bmi)ΆfBmj =

Now, (BmjYCZjr is a matrix with rows and columns indexed by^'-subsets of
X and (ΛS, T) entry equal to the number of m-subsets of X which are contained
in S and which meet T in exactly m—r points. Thus, if | S (Ί T \ =n, the (5, T)

entry is

Therefore, (BUJyCϊj' = ± (j~n)( n )A{, and
n — 0 \ y / fγι—γl

( 9 ) (Bmj)ΆTBmj = έ Σ
m—r

For j=0, - , [c/2], let

Let J r 1 = (βo-D.O'^Γ1^-!),- for i = 0, - J - l , and let

By (9), ^ Γ

By induction, ^IJ"1, --^Ajzl are simultaneously diagonalizable and jf?y_! is
an algebra of dimension j over R. Rj^ has dimension j over J? and is commuta-
tive and closed under multiplication since β(7-i) ; CB(y-i)>)i=(*>—7+1 )^ The
identity, /, is not contained in ^ ; _i since (B(j_1)j)

tB(j^1)j is singular. Therefore

Rj is then an algebra of dimension j-\-\ over R> and -4̂ ', •• ,-4j = / are
simultaneously diagonalizable.

j I w(jBo._l)y)
/=0>, since B^^^B^^tf is non-singular. Now,
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since any A\y i=Oy

 m",j, can be expressed âs a linear combination of the

m a t r i c e s Ά J

n ~ 1 = ( B ( j _ 1 ) j ) t A J

n ~ 1 B ( j _ 1 ) j , n = 0 9 •••,/— 1, a n d t h e i d e n t i t y , Wjtj i s a n

eigenspace for all A{, i=0, •••,/.

Setting tn=j—1 in (9) gives,

(10) {BwtfA^Bw, = ±a(i, n)AL

3
To determine the eigenvalues of A{, ί = 0 , •• , j , on Wjtj> consider the matrix

A with rows indexed by AJΓι, ί=0, •••,7, (define Aj~1=I)9 and columns indexed

by A{> i=0y •••,/, with (AJΓι> AJ

n) entry equal to a{iy «).

Since A is a non-singular matrix, the equation

ίx?\ (y°\ ίx?
A\ j=l has a unique solution I

Let yiy i=0, •••,.;, be equal to the eigenvalues of A\~λ on W ŷ,;. Then

xny n=0y " ,jy will be the eigenvalue of AJ

n on W... Since Wj j=

<»

We show that xi=(—l)j f'( ϊ j , ί'=0, •••,./, satisfies

(11) /xΛ /0

fx0

Using (10) to expand A \ \ J, we get a column matrix with ί-th entry,
\Λ

/=0, ••',]— 1, given by

and j-th entry equal to 1.

Non-zero entries occur in the above sum when i<i— 1—r, j— 1 — ί < l + r ,

r<j—l and j — 1 — r < n ; that is, when r=j—ί— 1 or j— 1—2, and n=j—r or

y—r—1. It is then easily verified that the sum is equal to zero.
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Therefore the eigenvalue of A{ on Wjt. is aίj=(— l ) y " f / 1 ), i=0, — , j , and

ii) and iii) are satisfied.
This completes the proof of Theorem 2.1.

Let ®=®(X, Si) be a t—(v> k, λ) design with s intersection numbers
μo> μq> *••> Ms-i Define 5 to be the greatest integer in t/2. By Ray-Chaudhuri
and Wilson [7], 3<s.

For y=0, •••yV, define I. to be the incidence matrix for the incidence
structure (Pjy 51) that is, I. is the matrix with rows indexed by the /-subsets of
X and columns indexed by the blocks, with the ({xly •••, x ;}, Ht) entry equal to
1 if the points xu •••, â . are incident with the block Hi9 and 0 otherwise.

Ij(IjY is a matrix with rows and columns indexed by the /-subsets of X
(where (7;.)' denotes the transpose of Ij). If S and T are 7-subsets of X, then
the (S, Γ)-entry oίl^I^ is equal to the number of blocks B such that S Ί J T c ΰ .
If; <s and if | 5 Π T\ = ί , then the (5, T)-entry of /,(/,)' is λ2;_ι. Therefore,
we have

Proposition 2.1. ///,•)'= 2 H - ^ ' / o r J=0> *"> 5

For i=0, « , ί — 1 , define Λ̂ z to be the adjacency matrix, corresponding to
μiy of 2); that is, N{ is the matrix with rows and columns indexed by blocks and
with (H, i£)-entry equal to 1 if \H(~)K\= μ{ and 0 otherwise.

(IjYIj is a matrix with rows and columns indexed by blocks, and with
(H, i£)-entry equal to the number of -subsets, Sy of X such that S^H Γ\K. If

\HnK\=μh then the (H, iQ-entry is (μA If H=K, then the (#, i^)-entry

is f . j . Therefore, if / is the (ό, b) identity matrix, we have

Proposition 2.2. (/,.)'/,= Σ ( y ) ^ + ( ) )l,forj=0, - , 1;.

We will compute the eigenvalues of Ij(IjY and (I^fl;., for 7=0, •••, 5, and
show that the equations given in Propositions 2.1 and 2.2 can be rewritten in
terms of eigenvalues.

Lemma 2.1. ( V ) λ ' = S ( V ) ( ί = Γ ) ^ ' >' 0<y, y+m<t.

Proof. From (1), fc})λ=λi(f Zf)» °^'^> it follows that

r Using the identity ( * " « ) = § ( * 7 ^ ) ( ; i ? ) , we obtain (*"«)

n-i)X>-h
- V«
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Applying the definitions and results of Theorem 2.1 to the set of points,
X, of ©, gives the decomposition,

w, = w^φ
such that each Wjm is an eigenspace for all A\y i=0, •••, j .

Theorem 2.2.
i) For j=0y « ,5=[ί/2], and m = 0 , •••,7, Wjm is an eigenspace for I\(I^

with eigenvalue

) Σ(
j—ml r=o

ii) Let V= R$H be the vector space over the field of real numbers with basis SI.
For m=0, •••, s, define

Vm=WmJm, and

Then V=V0® φVmφ Q)VsφVs' is a decomposition of V into eigenspaces of
jYIj.for allj=0, •••, S. For m<i, the eigenvalue of (Ij)Ίj on Vm is

andform>ifjtm=0.

\Vm\ =(*)-( V Λ fσrm=09..;S,andj=0,.:,S,

and \Vs>\=b-(v

s).

Proof.

i) Recall that Wj,m=Wm.mBmj. Let wmeWm,m. By Theorem 2.1 (iii)
and Proposition 2.1,

{wmBm .)///y)' = ± X2ri(wmBmj)Ai

(")[ Σ (rr r)(r
V r /L f-o \ ^ — i — r / \ ι —

tn+r/

Then applying Lemma 2.1 to the above expression with i replaced by j—t—r,
n by j—m and y by y+r, gives

{wmBmμμy = (krm) Σ (-i)'( WW,KA,,)
1 3 3 \j—m) r=o \r/

ii) F ix j,j=O> ' ,s. L e t m < j . Since BmjI\=( • _ _ ) / „ , , it follows t h a t
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Vm= Wm.Ju= Wm,mBmjI^ WhJr Then Vm{I .)</,.= W hJ β $1 ,=e ,.mW ,,J,
=ej,mVm.

Since the rank of /y a(v.\=\W}\, Γ»(/y)'=0 for m> ι so P

for «*>»'.

The matrix equations

can be written in terms of eigenvalues as follows:

Theorem 2.3. There is a decomposition

V= Foθ

of V such that for m—0, •••, S, s', Vm is an eίgenspace for (I\yi),j=0, •••, s, and

also for Nit i=0, •••, s— 1, and

where fjm is the eigenvalue for (I;.)
ί/'. on Vm and g{t1it is the eigenvalue for N{ on Vm.

Proof. Take Vm=WmtMIm as in the proof of Theorem 2.2. The theorem
can then be easily verified by showing that i V f G S = < 7 , (7O)'7O, •••, (7s_1)

ί7s_1>Λ,
for i=0y •••, s (see Cameron [2]).

3. Polynomials associated with designs

Consider the polynomial whose roots are the intersection numbers,
Mo> *">A6s-i> f°Γ a design, and the polynomial whose roots are the differences,
β—μi9 z=0, " ,s—1, between each intersection number μi9 and the average β,
of the intersection numbers, for a design, we will compute the coefficients for
these polynomials, for a tight design, in terms of the design parameters and the
coefficients of the polynomial x(x— l) --(x—s+1). This will lead to a proof
of Theorem 4.1.

Consider the polynomial given by

(12) n\(x) =x(x-l)-(x-n+l) = Σs{n, r)x".
\n/ r=o

The coefficients, s(n, r), r=0, •••, w, are called Stirling numbers of the first kind.
It is convenient to define s(0, 0 ) = l . The following facts are known..
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Proposition 3.1. For n>\ and r such that n>r>0,

i) s(n, r)=s(n—l, r—l)—(n—l)s(n—l, r)

ii) Σ*(«, r)=0, for n>2
r=>0

iii) ί(0, 0 )=l , s(n, n)=\, s(n, 0)=0

iv) 5(M) „ _ ! ) =

v) s(n,n-2)=

vi) s(n,n-3)=

vii) s(n, n-4)=(l/48)(15w3-30w2+5«+2)( "

viii) 5(«, M -5)=

Proof, i) and iii) follow from the definition of s(n, r). ii) follows from the
fact that 1 is a root of x(x—1) (#—n-\-l)f for n>2. iv)-viii) can be proved
by inductive arguments using i).

Applying (12) to (X a\ and rearranging according to powers of x yields,

Proposition 3.2. For x—a>n>0

If we define *(—1, - 1 ) = 1 and <0, — 1)= — 1 , then

Proposition 3.3. For x>n>0

\n—

Proof. Follows from (12) using proposition 3.1, i) and ii).

Let ®=©(-Y, Sϊ) be a t—(vy k, λ) design with s intersection numbers,

Let

(13)
π (*-/*,) = Σ(-iy«r>

; = 0 ; = 0

so that (— \y σi is the coefficient of xs j in the polynomial whose roots are the
intersection numbers of ®.

Let y=x—β, where β=σ1/s is the average of the intersection numbers.
Then substituting into (13) yields
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ri (y-(μj-β)) = έ/,y~'>w h e r e

(is) p, = Ί^-iy

Thus p. is the coefficient of ys~j in the polynomial whose roots are the differences

(μ>j-β)J=0, - , J - 1 .
If the intersection numbers of 3) have the property that β—a is an inter-

section number whenever β-\-a is an intersection number, where β is the ave-
rage of the intersection numbers, then we will say that the intersection numbers
of © are symmetric. It is easy to show the following.

Proposition 3.4. If 5) has symmetric intersection numbers, then pj=O
for odd).

We will use the systems of eigenvalue relations of section 2 to compute
σf, ί=0, •••,$, in terms of design parameters and Stirling numbers. Then
using (15) and Proposition 3.1 we will obtain expressions for p2 and p3 in
terms of the design parameters. These, along with Proposition 3.4 will be
used in proving the main result in section 4.

The following result will be needed in the proof of lemma 3.2.

Lemma 3.1 (Generalized Vandermonde Determinant).
Let Dr> r=0, 1, - , w - l , be the (nyn)-matrix with (i,j)-entry defined as

follows, for 0<ijj<n—l,

(Xj)* for i<r and (Xj)i+1 for r<ί.

n

ThenDr=σn_r(xly"'yxn) Π (*»—*,•)
»>y-i J

where σn-r(xx, --,xn) is defined by

In the rest of this section we will assume that 3) is a tight 2s-design. Then
S=s, where S=t/2 and s is the number of intersection numbers.

If hjm=fjm—( k. \ then Theorem 2.3 becomes

(16) Σ (μAgim = hjm, for y=0, .-, 5, and m=0, - , 7 -
t=0 \ j /

Lemma 3.2. g (-ly-'.S.-A,.,,y=0, ;=0, - , *,

5s_s=σs, and for ί=0, ••• J— 1,
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3, I2)s(l2y /O

Proof. For fixed tn, 0<m<s> the s+1 equations in the s variables
gimy z=0, •••, s—1, given in (16) are dependent. Therefore, the determinant,

(17)

(?) CvO*-
= 0 .

Then by multiplying by constants and performing row operations on (17),
we get

(18)

where

(19)

1

(μ?)
2

{(μ'oY

1

s-lYKm)

klu = i\him+ Σ r\hrm
i

{-ly-'KL 4-O ^a, h)<k, h) •

Now, applying Lemma 3.1 in computing the above determinant, we have

(20) Σ(- i ) f 'V .- , = o, for y=o, . ,ί.

The proof is then completed by using (19) to rewrite (20) in terms of the A .̂'s.

Another expression for Ss.i will be given in Lemma 3.5. The following two
lemmas will be needed in the proof. The first may be verified by a straightfor-
ward manipulation.

Lemma 3.3. i+n)\
k

i+n+l
( v \fv—(i+n)\ ( v \(v—{i
\i+n)\ q ) \i+n+\)\

^ \i+n)\q+l)
( v γt,-(i+»)\
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k\(v-k

Lemma 3.4. ± (-iy({)xi+» = * j ^ j t e j '

(Λ)Proof. Using the fact that λi+Λ = \ n{b, along with Lemma 3.3, we get

(*+»)
k \(v-k-k\

° *n)( v y»-(*+n)\
*+βΛ o y

k \(v-k

n )( v \(v-{ί+ή)\
. \i+n)\ 1 )

k \(v-
q

n ) I v \(v—{i-\-n)
: \i+n)\ q

6(1X!/)
(1X70

Lemma 3.5. 5 s_,=(-l) s-'^-ί: s_ ( ) for i=0,—,s,
ι\

where K,= Π ^ ' l J ^ ^ ^ " ^ , for j=h-,s, and Ko=\

Proof. Consider the ί + 1 equations given in Lemma 3.2,

Subtracting the (y=ί)-equation from the (j=s—i) equation gives

(21) Σ (-ly-'S.-Ju-.to-o-i-WJS. = 0

Let L c ,= Σ (-1)"( f ) λc+B. Then / r f = ( * _ J ) L c i ) by Theorem 2.3.

By Lemma 3.2, *Sr

s=(—l)5ί!. Using this and rearranging (21), we get
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(22) .t ( Σ ( ) ( T

for / = 0 , "'yS.

Now using Lemma 3.4 in (22) and arguing inductively (on /),

S5^ = (-iγ-iS^Kh for 1 = 1 , " . , * , and S s = ( - l ) s s ! .

The values, σ, , /=0, •••,$, are the coefficients of the polynomial whose
roots are the intersection numbers of ©. Each σ{ is a function of i and the
design parameters v> k, λ, and s. The next theorem shows that, in fact, σ{

depends only on v, k, and s (in addition to ϊ).

Theorem 3.1.

CΓ. = Σ (-iy-y( ' )<W, s-ι)Kp 0<i<s ,

^wrf K0=l, and s(s—j, s—i)fj=O, ---,i, is a Stirling number of the first kind.

Proof. This is trivial for ί'=0. Assume it holds for all i' such that
0</'</. Combining Lemmas 3.2 and 3.5, we have

(-l)-'4^ = (*-')! K-lΓ'σ,- Σ (-lΓfβ(?, *VJ
for ι=0, •••, s,

where

?, 0 == Σ

Then, solving for σ, and applying induction to σqy q=0y 1, •••, ί—1,

= ( ' ) ^ , - Σ Σ (-1)'"'/ * )s(s-j, s-q)Q(q, i)K}.

For a given partition of the form, s—i=lλ<>" <ln-i=s—q<ln=sjy we
have a pair of terms in the sum which are identical except for opposite sign:

, .J—Λ s-q)s(s-qy ln-2)-s(l2y l1)Kj

and
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\s{s—j, s—j)s(s—j, s—q)s(s—q, ln-2J%"s{l2, h)Kj.

For a partition of the form, s —i=l1<l2=s—j, there is only one term

that occurs in the sum:

Therefore,

This result can be used to obtain expressions for the coefficients, p., of

the polynomial whose roots are, β—μh ι=0, - , ί - l .

Theorem 3.2.

yk-s+l)(k-s)(υ-k-s+l)(v-k-s)i) f - -(H-1H*-1) / s y
} 24 \ 2 /

ϋ) + - - ( s\(k-s+l)(k-s)(v-k-s+ί)(v-k-s)(v-2k+l)(v-2k-l)

\ 3 / (z;-2ί+3)(^-2ί+2)(^-2ί+l)3

Proof. Recall that

j —

Using Proposition 3.1, iii)-vi), and Theorem 3.1, we can compute

σiy i=0y 1, 2, 3, in terms of the design parameters, and then obtain expres-

sions for p2 and pz.

4. A general result on the existence of tight ί-design, and the non-

existence of non-trivial tight 6-designs

Lemma 4.1. IfΊS) is a non-trivial tight 6-design, then v^2k±_\.

Proof. Since the complementary design of a non-trivial tight ^-design is

also a tight ί-design, it suffices to show that z;φ2&+l. If s=3 and ^ =

then

_k(k-l)(k-2)(k-3)
3 4(2&-3)

is not an interger, contradicting the definition of σ3.

The following lemma is due to E. Bannai.
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Lemma4.2 (Bannai [1]). If&isatight 2s-design, with s>2, then v

Proof. The following result of Schur [8, Satz I] is crucial in the proof.

(Schur): Let h be an integer and let m be an odd number greater
than 2A+1. Then m(m+2) (m+4)—(m+2(h—l)) is divisible by a prime
p>2h-{-l except for the cases (i) h=2> m—25 and (ii) h=\ and m=3a.

Since the complementary design of a non-trivial tight design is also tight,
it suffices to show that vΦ2k-\-l. Assume that v=2k-\-l.

First suppose that s>4. Then the result of Schur shows that there is
a prime />>2[s/2] + l (>s) which divides the product of [s/2] consecutive odd
numbers,

(2k-2s+2[sl2]+l)...(2k-2s+5)(2k-2s+3),

which appears in the denominator of Ksy unless [sβ]=2 (i.e., s=4 or 5) and
2k—3ί+3=25 (i.e., either (i) h=l5, v=3ί or (ii) h=l6, Ϊ ; = 3 3 according as
s=4 or 5). But, these exceptional cases do not occur, because σ2 is not an
integer in these cases.

Therefore, we can choose the smallest even integer j (less than 2[s/2]) such
that

(2k-2s+3)(2k-2s+5)-(2k-2s+j+l)

has a prime factor />>2[s/2] + l. Now, we want to show that σj is not an
integer. Since the G.C.D. (2k—2s+j+l, k—(s—r))y with 0<r<j\ which is

( s

is not a ̂ >-adic interger. On the other hand,

s
and the right side is a ̂ -adic integer. Hence, σj is not an integer, which is
a contradiction.

The case s=2 has been shown by Ito [4], and the case s=3 has been shown
in Lemma 4.1.

Theorem 4.1. If ® is a tight 2s-design (s>3) with the coefficient p3=0,
then © is trivial. In particular, if 3) is a tight 2s-desίgn (s>3) with symmetric
intersection numbers, then ® is trivial.

Proof. By Theorem 3.2.

= / s\(k-s+l)(k-s)(v-k-s+l)(v-k-s)(v-2k+l)(v-2k-l)
p3 V 3 / (v-2s+3)(v-2s+2)(v-2s+l)3
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Since k>t=2s>s, &Φs and &Φs— 1. Since 3) must have s distinct in-
tersection numbers, vΦk-\-s— 1. By Lemma 4.2, *;φ2&=l=l Therefore if
p3=0, then z;=£-f-ί and 2) is trivial. If the intersection numbers are symmetric

3=0 by Proposition 3.4.

Theorem 4.2. If & is a tight 6-design, then © is trivial

Proof. By Theorem 4.1, it suffices to show thatp3=0.
Assume />3φ0. By Theorem 3.2,

P 3 (v-3)(v-4)(v-5)3

Then

Let di=β—μi and ef = |έ/f |, i=0, 1, 2.
Now, ̂ >3 is the constant term of the polynomial whose roots are diy z'=0, 1, 2.

Thus

(23) p 3 = d^dλd2 = —e

Similarly, p2 is the coefficient of the linear term of this polynomial. Thus

p2 = dQdι

Since do-\-d1+d2=Q we get,

(24) p2 = -\{dl

Since 0>ρ3=d0d1d0 and do-]-d1-{-d2—O, we may assume that d2<0 and

1 < \d2\. Then since

(25)

Also,

(26)

because

and /z0, /^j, /̂ 2 are integers.

Then by (23)-(26),
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\<el, ί<e0

Now, since 1 <eo<e1,

< Ze\-\ .

Therefore 0 < ^ < —1/3. This contradiction proves that p3=0.
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