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1. Introduction and summary

Let v, k, X and ¢ be positive integers with v >k>¢. Let X be a v-set and
A a collection of k-subsets of X. The elements of X will be called points and
the elements of 2 will be called blocks. The cardinality of 2 will be called &.

D=J(X, A) is defined to be a t-(v, k, \) design (or simply a t-design) if
each z-subset of X is contained in exactly A blocks.?

For 0<i<t, let A, be the number of blocks on a given i-subset S; of X. By
counting in two ways the number of ordered pairs (S,, B) where S, is a t-subset
of X and B is a block such that S;CS,CB, we get

(1) (”_’:) A= x,-(k":>, 0<i<t.
t—1 t—1
Thus A, is independent of the i-subset chosen and 2D is an 7-design for 0<¢<t.
If there exist A and B, distinct elements of 9, such that |4 N B|=pu, then
u is called an intersection number of D.

A design is called trivial if A consists of all k-subsets of X.
Ray-Chaudhuri and Wilson have shown

Theorem (Ray-Chaudhuri and Wilson [7], Theorem 1). Generalized
Fisher’s Inequality :
The existence of a t-(v, k, \) design with t even, say t=2s, and v>k+s

implies
()

If D is a 2s-design with v>k-+s and b:(?), then D is called a tight 2s-
design. (If v <k+s, D is trivial.)
If D is a 2s-design with v=*k+-s, then X has (ﬂZJ k-subsets. Since

1) This is not the most general definition of a design. However, it can be shown that for
tight designs, which we will be interested in here, the two definitions are equivalent.
See Ray-Chaudhuri and Wilson [7].
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bZ(f): (vzs)’ A must consists of all (?) k-subsets of X, and D is a tight 2s-

design. It is, however, a trivial 2s-design.
The following has also been shown.

Theorem (Ray-Chaudhuri and Wilson [7], Theorem 4). If ® is a 2s-
design with v>k+s and with S intersection numbers, then $>s. §=s if and only
if D is a tight 2s-design.

Tight 2-designs are the symmetric (projective) designs (v=b). Ito [4]
has shown that the only non-trivial tight 4-designs are the Witt tight designs:
a 4-(23,7,1) design and its complement, a 4-(23, 16, 52) design.

We will investigate 2s-designs with s intersection numbers (thus tight
2s-designs), for s>3.

The following theorems will be proved

Theorem 4.1. Let D be a tight 2s-design, with s>3. If the intersection
numbers are “symmetric” about their average (3—a is an intersection number when-
ever B-a is an intersection number, where (3 is the average of the intersection num-
bers), then D is trivial.

Theorem 4.2. There are no non-trivial tight 6-designs.

To prove these theorems, two techniques will be used. One is to esta-
blish relationships between certain incidence matrices and adjacency matrices
that are associated with tight designs, and in particular, to establish relation-
ships between the eigenvalues of these matrices.

The other technique is to investigate the coefficients of the polynomial
whose roots are the intersection numbers, and to investigate the coefficients
of the polynomial whose roots are the differences between each intersection
number and the average of the intersection numbers.

2. Matrices associated with designs

In this section we will define certain incidence matrices and adjacency
matrices associated with designs and establish systems of equations relating
them. We will compute the eigenvalues of certain of these matrices and show
that the matrix equations can be rewritten in terms of eigenvalues.

We begin by examining the structure of adjacency matrices for trivial
designs. This structure will then be used to examine the structure of matrices

associated with other designs.

Let X be a set of v points and let P;, j=0, .-, v, be the collection of all j-
subsets of X. Define 4}, =0, -+, J, to be the adjacency matrix, corresponding
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to z, of the trivial design (X, P,); that is, A} is the matrix with rows and columns
indexed by the j-subsets of X, and with ({x,, -+, x;}, {3y, =+, ¥,;}) entry equal to
Lif [{xy, -, 2} N {yy, =+, ¥;} | =7, and O otherwise.

We will show that, for j <v/2, the matrices 4%,i=0, -+, j, are simultaneously
diagonalizable and we will compute their eigenvalues. To state this precisely,
let W;=RP,, j=0, -+, v, be the vector space over the field of real numbers with
basis P;. For j=0, -+, v and =0, .-+, , define B;; to be the matrix associated
with the map from W, to W; which takes an i-subset of X to the formal sum of
all j-subsets of X containing it. That is, B,; is the matrix with rows indexed by
the 7-subsets of X and columns indexed .by the j-subsets of X, and with

({xh -",x,-}, {yl, ,J/;}) entry equal to 1 if {xlv "'axi}g{yh '“’yj}) and 0
otherwise.

Theorem 2.1. For j<v/2, there is a decomposition
W, =W, QOW,;,DDW,;,
such that for m=0, -, j,

i) W, ,=W,.B,, and dimW;, = (7’ >_( v 1) ,
m m—
iy W, is an eigenspace for Ai, i=0, .-, ,

iil) the eigenvalue of Aion W, ,, is a¥; = ‘ﬁ (—1)’<m )( - r> j~m—j—r>.
r=0 7 ]

—i—r/\i—m-+r

Proof. We argue by induction on j. For j=0, the statement is trivial.
Suppose that for all j' < j,

W/_ W’O@ @le,m@'“@wj/-j,’
is a decomposition of W, satisfying i), ii) and iii). Define W, =W, ,B,,;,
m=0, -+, j—1.

It can be shown that the rank of B, is equal to <:1) Jor m<j<v/[2 (see
Kantor [5]). Thus, for m=0, ---, j—1, dim W, ,=dim W, , which, by in-
duction, is equal to( ) (m 1)

Then ;

(2) Wj = Wi,0®"'®Wi,f~l@Wi»i

where W, ;= {xeW,|x(B;;)'=0, for all =0, -+, j—1}, and dim Wi,i:(;‘) )'—

(jjl)‘

Therefore (2) satisfies i), for all m=0, -, ;
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We will verify ii) and iii) first for m=0, ---,j—1, and then for m=j.
For 1, j, n=0, ---, [v/2], define C%; to be the matrix with rows indexed by
the i-subsets of X, columns indexed by the j-subsets of X, and with ({x,, -+, x;},
{yy ==, y;}) entry equal to 1 if | {x, ==, 2} N {y,, -, »;} |=n, and O otherwise.
We proceed in several steps to investigate (w,,B,,;)4} for w,eW,, .

Step 1. We show that

(3)  BLalR (S (T e

j—i—r/\i—m-+-r

B,;A} will be a matrix with rows indexed by the m-subsets of X and
columns indexed by the j-subsets of X. If S,, isan m-subset of X and S; is
a j-subset of X, then the (S,,, S;) entry will be equal to the number of j-subsets
of X which contain S,, and meet S; in exactly ¢ points. Thus, if |S,NS;|=

m—r, the (S, S,) entry is (3:{::) ({:Zi: . Then
BM.A{ZE( —J—r)(J m+r>cm r
’ =0 \j—i—r/\Ni—m—+r

Step 2. Similarly, we show that

(4)  arB, =5 (") err

=0\ g m—i

The (S,,, S;) entry of A7B,,; is equal to the number of j-subsets which meet
S, in 7 points and are contained in S;. Thus, if |S, NS;|=m—r, the (S,, S))

entry is (ml—r><] ——m—ljr) . Therefore

m—1

S G Gy =8

Now in Steps 3 and 4, we proceed to show, by induction on j, that, for
m=0, -, j—1, W, =W, ,B,; is an eigenspace for all 47, i=0, -+, 7, and in
particular, the eigenvalues of 4} on W, , is

) an=gCu (M),

The above statement is trivial for j=0. Assume that it holds for j’ <j.

Step 3. We show by induction on # that if m<j and w, €W, ,, then

(6)  w,Crm— (-1)*(’: )(mem,) .
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If n=0, (4) gives Cy;=AnB,,;=B,,;. Assume that the statement is true for

all »’ <n. Since m<j, the first 1nduct10n hypothesis says that the eigenvalue of
Ap_pon W, . is

e = ()Y )

~ ()
Then

(1) (™) waBay = waEo B

o 5 (")

r=0 \m—mn n

Rearranging (7) and applying the second induction hypothesis gives

[ G)-En (G0

w,Cni" = <]—-m—l-n> (0, Ba;) -
n
Then, since (T )(Z:;D:( ;n)( :l ),
v m\[ S ,,_,<n j—m-+tr ]
ORI ol 69 L (Sl Gl PN
)
n
Now, using an inductive argument and the fact that ( Z )z(n;1>+(z:%)’ for

non-negative integers # and g, it can be shown that é (—1)‘1( Z )(x+Z_q>: 1,
q=0
where 7 and x are non-negative integers.
Applying this to the expression in (8) gives,

B ()=

r=0 n n
and

w0, Cl=" — (_1)n< ’”)(w,,,B,,,,.), for w,EW,.,.
n

Step 4. Now combining (3) and (6),
Bt = 2 (7)) ) B

i—m-tr
We now have
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Wj = Wj)o@"'@wj,m@'“EBWJ.J_l@Wj’j ’

where, for m=0, -+, j—1, W, ,=W,, ,B,,; is an eigenspace for all 4}, (=0, .-, ,
(Note 4i=1I), with eigenvalue

ety = Sy n(M) e

It remains to verify ii) and iii) for m=j; that is, we need to show that W, ;
is an eigenspace for all 4f, i=0, ---,j, and to compute the eigenvalues.
For any given j, 7, and m, the matrix (B,,;)’A"B,,; can be expressed as a
linear combination of the matrices A3, n=0, ---, j, as follows. By (4),
o S )
TR m—i e
and thus,
(B arB, =5 (")~ ) By O
I m—
Now, (B,,;)'Cn7’ is a matrix with rows and columns indexed by j-subsets of
X and (S, T) entry equal to the number of m-subsets of X which are contained
in S and which meet 7T in exactly m—r points. Thus, if | SN T |=n, the (S, T)

entry is (J _rn>(mrir>

J F_ R
Therefore, (Bw)Cxi" =33(7")( ™ )i, and

—r
(9) (B,;)'ATB,, — 2 :(m;’)(f;’”_t’)(f—r”)(m”_ r)A{;.
For j=O0, -, [9/2], let

R,- = <A(;, Tt A; = I>R .
Let Ai™ = (B(;_p;)! A7 B(_y; for i =0, --,j—1, and let
R, = A, e, Ao
By (9), R;.,.CR,.

By induction, 447, -+, AiZ] are simultaneously diagonalizable and R;_, is
an algebra of dimension j over R. R, , has dimension j over R and is commuta-
tive and closed under multiplication since B(;_y; (B(;-p,)'=(v—j+1)I. The
identity, 1, is not contained in R;_, since (B(j-p;j)'B(;-p; is singular. Therefore
<A(j;—lv J I,I AJ 1>_

R; is then an algebra of dimension j+1 over R, and A4{, -+, A}=1I are
simultaneously diagonalizable.

m

r

[

W, i=<weW,|w(B-y,)'=0), since B;_,);(B;-p,)' is non-singular. Now,
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since any A}, i=0, ---,j, can be expressed as a linear combination of the
matrices 4;7'=(B(;-p;)'4i'B(;-p;, n=0, ---, j—1, and the identity, W, ; is an
eigenspace for all 4/, i=0, ---, ;.

ij

Setting m=j—1 in (9) gives,

) i .
(10) (B(j—l)j)tAf—lB(j—l)j = a(i, n)A;
n=0

where aC ")zjgi ( j— 1z _r)(jl—lki i)<j_,")<j—1ll—r)'

To determine the eigenvalues of 4, i=0, -+, j, on W, j» consider the matrix
A with rows indexed by 447!, 71=0, .-+, j, (define Ai~'=1I), and columns indexed
by A, i=0, -+, j, with (47", Aj) entry equal to a(i, n).

Since 4 is a non-singular matrix, the equation

%o Yo Xy
A( : >=< : ) has a unique solution ( : )
x, ¥; Xj

J J

Let y;, i=0, -+, j, be equal to the eigenvalues of 44~ on W, . Then
%,y n=0, -+, 7, will be the eigenvalue of 4] on W, . Since W, ,={we W]
‘w(B(j—l)j)‘:O>)

Yo

0
)= b
V. 1

J

We show that xiz(—l)i‘i(]l: ), i=0, ---, j, satisfies

(11) X, 0
A =19 |
X 1 N
Using (10) to expand 4 ( O ), we get a column matrix with -tk entry,
X .

]

=0, ---,j—1, given by

AR )ey (),
and j-th entry equal to 1.

Non-zero entries occur in the above sum when i<i—1—7, j—1—i<1+47,
r<j—1 and j—1—r<m; that is, when r=j—i—1 or j—1—2, and #=j—r or
j—r—1. It is then easily verified that the sum is equal to zero.
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Therefore the eigenvalue of 4% on W, is alj=(—1)" ‘( ) 1=0, -+, 7, and
ii) and iii) are satisfied.
This completes the proof of Theorem 2.1.

Let 9=9(X, A) be a t—(v, k, ) design with s intersection numbers
oy M1, ***y ws—1- Define 3 to be the greatest integer in ¢/2. By Ray-Chaudhuri
and Wilson [7], §<s.

For j=0, ---, v, define I, to be the incidence matrix for the incidence
structure (P;, A); that is, I, is the matrix with rows indexed by the j-subsets of
X and columns indexed by the blocks, with the ({x,, ---, x;}, H;) entry equal to
1 if the points xy, *-+, x; are incident with the block H,, and 0 otherwise.

I(1,)" is a matrix with rows and columns indexed by the j-subsets of X
(where (1)) denotes the transpose of I;). If S and T are j-subsets of X, then
the (S, T')-entry of I ()" is equal to the number of blocks B such that SUT'CB.
If j<sand if |SNT|=4, then the (S, T)-entry of I(I,)" is Ny;-;. Therefore,
we have

Proposition 2.1. I(1)= é A, for j=0, .,

For i=0, .-, s—1, define N, to be the adjacency matrix, corresponding to
w;, of Dj; that is, IV, is the matrix with rows and columns indexed by blocks and
with (H, K)-entry equal to 1 if |H NK|=y; and 0 otherwise.

(I,); is a matrix with rows and columns indexed by blocks, and with
(H, K)-entry equal to the number of j-subsets, S, of X such that SCHNK. If

|H (K |=p;, then the (H, K)-entry is (’j) If H=K, then the (H, K)-entry

is (f) Therefore, if I is the (b, b) identity matrix, we have

Proposition 2.2. (/)1 ,= 5‘_, ( )N —{—( )I for j=0, -
We will compute the eigenvalues of I (I)' and ()1}, for j=0, -+, 5, and

show that the equations given in Propositions 2.1 and 2.2 can be rewritten in
terms of eigenvalues.

Lemma 2.1. ( ) g( >< ) v Jor 0Ly, y+m<t.
i~

Proof. From (1), (§Z5)x=n(} %), 0y, it follows that (* 7 ), ..=
))ny. Using the 1dent1ty( " ) z( )( ) we obtain (k;m)

w= B ()G B OGP

/—\
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Applying the definitions and results of Theorem 2.1 to the set of points,
X, of D, gives the decomposition,

Wj = Wj,()@"’@Wj,m@"'@W-

Ji?

such that each W, , is an eigenspace for all 47, i=0, -, j.

Theorem 2.2.
i) For j=0, --+, §=[t[2], and m=0, -+, j, W, is an eigenspace for I (I )
with eigenvalue

_(k—m\ & (™
= () B ()
ii) Let V=R be the vector space over the field of real numbers with basis U.
For m=0, .-, 3, define
Ve=Wpuls, and
Vy =<veV|vly) =0>.

Then V=V ,D--DV,D--- PV PV is a decomposition of V into eigenspaces of
(,)'1;, for all j=0, -+, 5. For m<i, the eigenvalue of (I }'I ;on V,, is

L Ui Do [CR W () PV

Jj—m

and for m>1, f, ,=0.

|V,,,]=(:l>—( v ) for m=0, -+, 5, and j—0, -+, 5,

m—1
and |V | =b—(§ >
Proof.

i) Recall that W ,=W, ,B,,. Letw,eW,,. By Theorem 2.1 (iii)
and Proposition 2.1,

(waBu ) (1)) = ; Noj—i(wnByj) Al
B e e

r/Liso\j—i—r/\i—m—+r

Then applying Lemma 2.1 to the above expression with ¢ replaced by j—i—7,
n by j—m and y by j+7, gives

(waBu ) (1) = (?:Z) é (— 1)’( T)xﬁ,(memj) .

ii) Fix j, j=0, -+, 5. Let mﬁ] Since BMjIjZ(jfm)I"" it follows that
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V,— V://,,,,,,,IF W B =W, I Then V (I, =W,,I(I)],=e, W,.I,
=€,mV m:

Since the rank of 7, is (;) )= [W;|, Val;))=0 for m>i; so V,(I)I,=0

for m>1.
The matrix equations

1=0

(1= 321(;,“)N,.+<;? )1, =0, 3,

can be written in terms of eigenvalues as follows:

Theorem 2.3. There is a decomposition
V = Vo@'"EBVmEB“'EBVf@Vs’ R

of V such that for m=0, ---, 5, §', V,, is an eigenspace for (I)'I;, j=0, ---, s, and
also for N;, i=0, +--,s—1, and

fim= SEJ—I (;.Li)gi,m"r( k )

i=0 ] ‘
where f; ,, is the eigenvalue for (I )l on V,, and g, ,,is the eigenvalue for N;on V.

Proof. Take V,=W,, I, asin the proof of Theorem 2.2. The theorem
can then be easily verified by showing that N,€S=.J, (1,)'I,, -*+, (I;-1)'I ;- g,
for i=0, -+, s (see Cameron [2]).

3. Polynomials associated with designs

Consider the polynomial whose roots are the intersection numbers,
oy s Ws-1, fOr a design, and the polynomial whose roots are the differences,
B—ui, =0, +--, s—1, between each intersection number y;, and the average 3,
of the intersection numbers, for a design, we will compute the coefficients for
these polynomials, for a tight design, in terms of the design parameters and the
coefficients of the polynomial x(x—1)---(x—s+1). This will lead to a proof
of Theorem 4.1. '

Consider the polynomial given by

r=

(12) n! (:) =x(x—1)-(x—n+1) = Zn;)s(n, r)x” .

The coefficients, s(n, 7), =0, -+, n, are called Stirling numbers of the first kind.
It is convenient to define s(0, 0)=1. The following facts are known.,
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Proposition 3.1. For n>1 and r such that n>r>0,
1) s(n, r)=s(n—1, r—1)—(n—1)s(n—1, r)
if) éos(n, 1)=0, for n>2
iii) s(0, 0)=1, s(n, n)=1, s(n, 0)=0
. n
v) s, n—1)=—( " )
v) s(n, n—2)=}(3n—1)< %)

W) st n=3)=—(3)(%)
vii) s(n, n—4)=(1/48)(157°— 30m*+5n+ 2)( 3 )

viii)  s(n, n—5)=—(1/8)(3"2~7”*2)< Z )( Z )

Proof. i) and iii) follow from the definition of s(z, 7). ii) follows from the
fact that 1 is a root of x(x—1)---(x—n+1), for n>2. iv)-viii) can be proved
by inductive arguments using i).

Applying (12) to (x;a) and rearranging according to powers of x yields,

Proposition 3.2. For x—a>n>0

) L8 (e e

n nlizolr=;
If we define s(—1, —1)=1 and s(0, —1)=—1, then

Proposition 3.3. For x>n>0

(x >"( i >= iéS(n—l, r—1)ar.

n n—1 n!7=0
Proof. Follows from (12) using proposition 3.1, i) and ii).

Let D=P(X, A) be a t—(v, k, \) design with s intersection numbers,

Moy **°y Ms-1¢
Let

B )= HVor,

so that (—1)’ o, is the coefficient of x*~/ in the polynomial whose roots are the
intersection numbers of D.

Let y=x—/, where B=a,/s is the average of the intersection numbers.
Then substituting into (13) yields
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) (y—(n,—8) = 9+, where

i s—r i
15 2= =1ya (7).
r=0 ]——r

Thus p, is the coefficient of y*~7 in the polynomial whose roots are the differences
(.“'j_B)’ J=0, -, s—1L

If the intersection numbers of © have the property that 8—a is an inter-
section number whenever B-a is an intersection number, where 8 is the ave-
rage of the intersection numbers, then we will say that the intersection numbers
of D are symmetric. It is easy to show the following.

Proposition 3.4. If D has symmetric intersection numbers, then p.=0
for odd j.

We will use the systems of eigenvalue relations of section 2 to compute
o, 1=0, «-+, s, in terms of design parameters and Stirling numbers. Then
using (15) and Proposition 3.1 we will obtain expressions for p, and p; in
terms of the design parameters. These, along with Proposition 3.4 will be
used in proving the main result in section 4.

The following result will be needed in the proof of lemma 3.2.

Lemma 3.1 (Generalized Vandermonde Determinant).
Let D,, r=0, 1, :-,n—1, be the (n, n)-matrix with (i, j)-entry defined as
follows, for 0<z, j<n—1,

(x,) for i<r and (x,)* for r<i.

Then D,=a,_ (%, -+, X,) f[ (%n—2x,)
m>j=1
where a,_ (%, -+, x,) is defined by

jl;Il (x——xj) = ,Eo G (%15 *o0s xn)(__ l)rxn—r .

In the rest of this section we will assume that D is a tight 2s-design. Then
§=s, where 5=#/2 and s is the number of intersection numbers.

If hjm:fjm—(? ), then Theorem 2.3 becomes

s—1
(16) D (’;')g,-,,, = h for j=O0, -+, s, and m=0, .-+, ;.

i=0
Lemma 3.2. é (=158 ihiin;=0, j=0, -+, s,
i=0

where S,_.=o,, and for i=0, --- s—1,
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i—1
Ses = (= (<ot T (10 B sl o)
ol y=s—g

...5(13, 12)3(12, ll)o_ll] M

Proof. For fixed m, 0<m<s, the s+1 equations in the s variables
ZBim» 1=0, +--, s—1, given in (16) are dependent. Therefore, the determinant,

(&) - - ()
B e
(%) ()

Then by multiplying by constants and performing row operations on (17),
we get

P T

18 Ho * Mgy klm 0
(18) (ol + - LV
(o) (o) o

where

(19) k=il t Dtk S (=1l L)es(ly B)s(h 1) -
r=1 7 n=t

=Il<...<l
Now, applying Lemma 3.1 in computing the above determinant, we have
(20) SV (—1ykyo =0, for j=0,--,s.
i=0
The proof is then completed by using (19) to rewrite (20) in terms of the 4, ’s.

Another expression for S,_; will be given in Lemma 3.5. 'The following two
lemmas will be needed in the proof. The first may be verified by a straightfor-
ward manipulation.

remmazs, (g ) lenn)())
GE)CT6™) (e )CEY)
(:4a)a 1)

(Fu)(g07)
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(1))
(7))

(i%1)
Proof. Using the fact that \;,, = 1tn b, along with Lemma 3.3, we get

(1)
S-u(f) ,+,=bn=2j0(—1)”(’,;)<lf_i5’€2( (;L)n))

)

Lemma 3.4. 2( 1)"( ) Nty =20

n=0

7n=0

(3)C7)

. s!
Lemma 3.5. Ss—iz(_l)s—‘%Ks—h fOf iZO!"',Sy
A

b1y (1' 9) (ﬁ 5,6)(”?2))

where K = H (kR—s+r)(k—s+r—1)

ret (v—2s+7) ,  for j=1,-,s, and K,=1.

Proof. Consider the s+1 equations given in Lemma 3.2,
,-_Zé (—=1)Sh; =0, j=0, s
Subtracting the (j=s)-equation from the (j=s—1) equation gives
(21) mZ;lo(_1)s_is—mf(s—m)(s—i)_(_l)sfssSs =0.

d

Let L,= > (—1)"( Z ))\cﬂ. Then f,,— <k Z) L., by Theorem 2.3.
n=0

By Lemma 3.2, S,=(—1)s!. Using this and rearranging (21), we get
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_ 1 [ a5 H) )
(22) Ss—i - L(s_,-)(s_i)[( fi—l:’( l) i_q L(s—q)(s—q)Ss—q
_(__1);‘—1+ss!Lss]

for i=0, -, s.
Now using Lemma 3.4 in (22) and arguing inductively (on ),

S,_,.=(—1)s—ij,_:1<,., for i=1, -5, and S,—(—1ys!.

The values, o;, i=0, -+, s, are the coeflicients of the polynomial whose
roots are the intersection numbers of ®. Each o; is a function of 7 and the
design parameters v, k, A, and s. The next theorem shows that, in fact, o,
depends only on 9, k, and s (in addition to 7).

Theorem 3.1.
o= g(_l).--@ )s(sﬂ', s—i)K,, 0<i<s,

K. — IlI (k—s+r)(k—s+r—1)
Tora (v—2s+7)

and K,=1, and s(s—j, s—i), j=0, -+, 1, is a Stirling number of the first kind.

) fOT ]Zly S,

Proof. This is trivial for i=0. Assume it holds for all ¢ such that
0<7#<i. Combining Lemmas 3.2 and 3.5, we have

(1)K = =) [~ )= 5 (~17Q@ el

for =0, -, s,

0(g )= (—=1)s(L,y 1,_1)e++s(lsy L)s(Lyy 1) .

O Py o P
Then, solving for o; and applying induction to ¢, ¢=0, 1, :--,i—1,
i-1 .
o= () K~ D00 D,
s i—1 q s . .
=(1)5= 2 20§ )t 00 0K,

=0 j=0

For a given partition of the form, s—i=]<.-<[,_=s—q<l,=s;, we
have a pair of terms in the sum which are identical except for opposite sign:

(1757 5 oo 5= )(5—g, o+l DK,

and
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(— 1)"‘f+”<;_ )s(s—j, s—7)s(s—7, s—q)s(s—q, 1,-5)**-s(L, ll)K]. .

For a partition of the form, s —i=/ <l,=s—j, there is only one term
that occurs in the sum:

(=172 3 ) sts—j, s—)s(s—i» s—) K.
J
Therefore,
_ —1yi-if S i oeq
o-;—j;])( 1) J(J_)s(s 7, s—1) K.

This result can be used to obtain expressions for the coefficients, Pjs of
the polynomial whose roots are, 8—pu;, =0, -+, s—1.

Theorem 3.2.
) p— —(s+ 1)s(s—1)_< s )(k——s+ 1)(k—s)(v—k—s+1)(v—k—s)
’ 24 2 (v—25+2) (v—2s+1)

i) py— _( ) )(k—s—{—l)(k——s)(v—k~—s—{—1)(v—k——s)('v—2k+1)(7)——2k—1)
? 3 (v—25+3)(v—2s+2)(v—2s+1)?

Proof. Recall that

=RV (TNT) T =0
7=0 j—1/\ s
Using Proposition 3.1, iii)-vi), and Theorem 3.1, we can compute
o, 1=0,1,2,3, in terms of the design parameters, and then obtain expres-
sions for p, and p,.

4. A general result on the existence of tight ¢-design, and the non-
existence of non-trivial tight 6-designs

Lemma 4.1. If D is a non-trivial tight 6-design, then v==2k+1.

Proof. Since the complementary design of a non-trivial tight ¢-design is
also a tight z-design, it suffices to show that v+2k+1. If s=3 and v=2k-}1,
then

o — FE—1)(k—2)(k—3)
: 4(2k—3)

is not an interger, contradicting the definition of o,.

The following lemma is due to E. Bannai.
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Lemma4.2 (Bannai[l]). IfDisa tight 2s-design, with s>2, then v=2k-+1.
Proof. The following result of Schur [8, Satz I] is crucial in the proof.

(Schur): Let 2 be an integer and let m be an odd number greater
than 24+41. Then m(m+2) (m+4)---(m+2(h—1)) is divisible by a prime
Pp>2h+1 except for the cases (i) A=2, m=25 and (ii) A=1 and m=3".

Since the complementary design of a non-trivial tight design is also tight,
it suffices to show that v=+2k+1. Assume that v=2k-}1.

First suppose that s>4. Then the result of Schur shows that there is
a prime p>2[s/2]+1 (=>s) which divides the product of [s/2] consecutive odd
numbers,

(2k—2s+2[s/2]4-1)---(2k—2s+5)(2k— 25+ 3) ,
which appears in the denominator of K, unless [s/2]=2 (i.e., s=4 or 5) and
2k—3s+3=25 (i.e., either (i) A=15, v=31 or (ii) =16, v=33 according as
s=4 or 5). But, these exceptional cases do not occur, because o, is not an
integer in these cases.

Therefore, we can choose the smallest even integer j (less than 2[s/2]) such
that

(2k—254-3)(2k—25+-5)-+-(2k—2s+j+41)
has a prime factor p>2[s/2]+1. Now, we want to show that o, is not an
integer. Since the G.C.D. (2k—2s+j+1, k—(s—7)), with 0<r<j, which is
equal to G.C.D. (2k—2s+j+1, 2r—(j+1)), is less than p, we get that (]s )K].

is not a p-adic interger. On the other hand,
0'.——( L ’jl( $ )(—1)f—1s(s_1 —j)K
] ] j = l ) [

and the right side is a p-adic integer. Hence, o; is not an integer, which is
a contradiction.

The case s=2 has been shown by Ito [4], and the case s=3 has been shown
in Lemma 4.1.

Theorem 4.1. If D is a tight 2s-design (s>3) with the coefficient p,=0,
then D is trivial. In particular, if D is a tight 2s-design (s>3) with symmetric
intersection numbers, then D is trivial.

Proof. By Theorem 3.2.

P ( s )(k—s—}—l)(k—s)(v—k—.H—1)(v—k—s)(v—2k+1)(v—2k—1)
T\3 (v—25+43)(v— 254 2)(v—25+1)?
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Since k>t=25>s5, k=%s and ks—1. Since ® must have s distinct in-
tersection numbers, v£k+s—1. By Lemma 4.2, v=2k+41. Therefore if
ps=0, then v=~k-+sand Dis trivial. If the intersection numbers are symmetric
then p;=0 by Proposition 3.4.

Theorem 4.2. If D is a tight 6-design, then D 1is trivial.

Proof. By Theorem 4.1, it suffices to show that p,=0.
Assume p;3=0. By Theorem 3.2,

-~ 13 (k=2)k=3)o—k=2)(v—k=3)
(o—4)o—5)
= —(k=2)(k=3)(o—k—2)(v—k—3)(v—2k+ 1)(v—2k—1)

p

?
v—3)v—4)(v—5)®
Then (v—=3)(v—4)(v—5)
0< —3p, = (—p,—1 (v—(2k—1))(v—(2k+1)) —1.
<=3p;=(—p.—1) (0—3)(v—5) <—p

Let di=B_”'i and e,'= |d,", i=0, 1, 2.
Now, p, is the constant term of the polynomial whose roots are d;, i=0, 1, 2.
Thus

(23) pa=ddd, = —egee;.
Similarly, p, is the coefficient of the linear term of this polynomial. Thus
P = dyd\+dd,+dd, .
Since dy+d,+d,=0 we get,
(24) p: = —i(di+di+-df) = —Y(ef+ei+ed) .

Since 0> p,=dd\d, and d,+d,+d,=0, we may assume that d,<0 and
0<d,<d,<|d,|. Then since d;+d,+d,=0,

(25) ete =e,.
Also,
(26) 13<e,<e,<e,,

because 0+¢,=5— Mo:@lglL#Z_ o

and wg, p,, u, are integers.

Then by (23)-(26),
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2
ef(ete) <3eeie, = —3p;<—p,—1= W—l

= (e+e)—ee;—1.

Then e, <<ey-+e,— (M)
ete

eper+1
et-e;

<e, ee+1 <ejtee, 1<ef, 1<e.
Now, since 1 <eg,<<e,,
2 2
3ei4-3e,< 380491(@:0—}—el)<e°—_}—ﬁiz—($e‘)2 —1
= ej+eltee—1
< 3e2-1.
Therefore 0<e,<<—1/3. This contradiction proves that p,=0.
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