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1. Intor auction

A binary system A is called a symmetric set if aoa=a, (boa)oa=b and (W)o
a=(boa)o(coά). These conditions imply that the right multiplication by an ele-
ment a> which we denote by Sa(t.e., boa=bSa), is an automorphism of A of order
2 leaving a fixed. Note that, if T is an automorphism of A, then (boa)τ=bτoaτy

or SaT=r~1Sar. Every group is a symmetric set by bSa=ab~ιa. Also the subset
of involutions in a group is a symmetric set. For more of symmetric sets, see
[3] and [4].

The group of automorphisms of A generated by all Sa (a^A) is denoted by
G, and the subgroup of G generated by all SaSb (a, b^A) is denoted by H.
The latter is called the group of displacements. It is easy to see that H is gene-
rated by SaSe (e is a fixed element and a€ΞA). H is a normal subgroup of
G of index 2. A subset B of A is called a symmetric subset if it is closed under
the binary multiplication. Every one-point subset is a symmetric subset, and
so is A. All the other symmetric subsets are called proper symmetric sub-
sets. A symmetric subset B is called quasi-normal if Bτf]B=B or φ (the
empty set) for every element r in G. Now we define a simple symmetric
set to be one which has no proper quasi-normal symmetric subset. Theorem
and Corollary obtained in 2 state that if A is simple then H is either a simple
group or a direct product of two simple groups which are conjugate each other
in G. If moreover A is finite, then | H \ = | A \2 in case H is not simple. Using
this fact, we can show a new proof of the simplicity of the alternating group
An (n>5) in 3 by showing that the subset of all transpositions in Sn (the sym-
metric group of n letters) is a simple symmetric set. This idea is carried out
in 4 to obtain examples of simple symmetric sets in vector spaces with bili-
near symmetric forms over F2, the field consisting of two elements 0 and 1.
As special cases, we obtain simple symmetric sets of positive roots of type E6,
E7 and Es in Lie algebra theory.
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REMARK. The above definition of a simple symmetric set is stronger
than a standard definition which should be based on non-existence of normal
symmetric subsets (See [3]) rather than quasi-normal symmetric subsets. How-
ever, the main technique used in this note is to show non-existence of quasi-
normal symmetric subsets. So, we keep our definition.

2. The group of displacements of a simple symmetric set

Theorem. If A is a simple symmetric set, then the group of displacements

is either a simple group or a direct product of two simple groups which are conjugate

each other in G.

Proof. First we note that if A is simple then it is transitive, i.e., A~aG
(=aH) for an element a in A. For, xG for any element x in A is seen to be
a quasi-normal symmetric subset and xG can not be equal to x for all x in Ay

and hence A=aG with some element a in A. Then of course A=xG for any
element x in A. Now suppose that H is not simple, and let N be a proper
normal subgroup of H. Clearly SaNSa=SbNSb for any a and b. Put N'=
SaNSa. NN' and N f]N/ are normal subgroup of G contained in H. Gene-
rally let J be a normal subgroup of G contained in H. Consider B=eJ for
an element e in A. B is a symmetric subset. Since Bσ=eJσ=eσJ for cr
in G, we have Bσf)B=B or φ, i.e., B is quasi-normal. Since A is simple by
the assumption, ej=e or A. If ej=e, then aj^=a for every element a in A,
because we have eσ=a with some element σ in G due to the transitivity of
A and then aj=eσj=ejσ=eσ=a. So, if ej=e, then J=l. If eJ=A,
then, for an arbitrary element a in A, a=eσ with some element σ in / . Then
Sa=Seσ=σ~1Seσ=τSe for some element T in J. This implies that SaSe is
contained in / for every element a in A. Since H is generated by SaSe (a^A),
we have J=H. Now especially let J=NN\ Since ΛW'φl, we have NNf=
H. Let J=NΓiN'. Since NnN'ΦH, we have iVniV=l . Thus # is
a direct product of JV and N'. Lastly, we show that N is simple. If M is a nor-
mal subgroup of N, then it is a normal subgroup of H. If M φ 1, H is a direct
product of M and SaMSa as above, which implies M=N. Hence N is a sim-
ple group.

The author owes the following corollary to Prof. H. Nagao.

Corollary. Suppose that A is a finite simple symmetric set. If H is not

simple, then \H\ = \A\2.

Proof. Suppose that A is finite and simple and that H is not simple.
Then H=NxN' (a direct product) as in Theorem. The mapping / of A
in G defined by f(a)=Sa is a homomorphism of symmetric sets. Therefore
we can see that f~\Sa) is a quasi-normal symmetric subset for every a in A.
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From this, we can conclude that f~\Sa)=a for every element a and hence/is
a monomorphism. On the other hand, A is transitive, i.e., A=aH. So,
f(A) = {σ-*Saσ| σ €Ξ#}. Then \A\ = \f(A)\ = \H: CH(Sa)\. Here CH(Sa) =
{σ<EΞH\Saσ-=<τSa}. H=NxSaNSa implies that CH(Sa)={σSaσSa\σ^N\.

Ύhusy\CH(Sa)\ = \N\. Ύhen\A\ = \H\l\Cff(Sβ)\ = \N\*l\N\ = \N\. There-
fore, \H\ = \A\2.

3. Simple symmetric sets in the symmetric groups S n ( n > 5 )

Let Sn be the symmetric group of n letters where n>5. Consider the
subset A of *SW consisting of all transpositions (/, j) (1</Φj<w). A is a sym-
metric set. Here (i, j)S(Sjt)=(p, q) where p=i(s>t^ and q=j(SftK We show
that A is simple. Let B be a quasi-normal symmetric subset which contains
at least two elements a and b. Since aφb and n>5, there exists an element
c in A such that aSc^a and bSc=b. The latter implies that BSC=B due to
the definition of quasi-normality of B. Then aSc is in B. Let d=aSc. It
is easy to see that aSc=d, cSd=a and dSa=c, i.e., a, c and d form a cycle. For
example, a=(l> 2), c=(2, 3) and έZ=(l, 3). In this case, for any element x
which is not equal to c, we have that either aSx=a or dSx=d. This implies
that BSX=B for every element x in A On the other hand, we can easily see
that A is transitive. Therefore, B=A and A is simple. Clearly, | i / | =f= |^4|2,
and hence by Corollary // is a simple group. Of course, H=An.

REMARK. In the above, we can take the set consisiting of all (/, j) (r> s)
where /, j , r and s are all distinct. The set is also a simple symmetric set, whose
order is greater than that of the set given in 3. For example, if we take n=
5, we get two simple symmetric sets. One has order 10 and the other 15. But
both have the same group of displacements which is A5.

4. Symmetric sets of vectors over Fz

Let V be a finite dimensional vector space over ^ = { 0 , 1}. Given a
bilinear symmetric form Q(x,y) on V with Q(x, x)=0> we can give a symmetric
structure on V by defining aSb=a+Q(a, b)b. In other words, aSb=a or a+b
according to Q(a, i ) = 0 or Φθ. A cycle in a symmetric set is defined to be
a symmetric subset generated by two elements x and y such that x

Proposition 1. Every cycle in V has order 3. If {a, by c} is a cycle, then, for
any element x in V, at least one of a, b and c is left fixed by Sx.

Proof. In our case, c=a-\-b. Then Q(c, χ)=Q(a, x)+Q(b, x). So at least
one of Q(a, x)> Q(b, x) and Q(c, x) is equal to 0.

Proposition 2. Let A be a symmetric subset of V and B a quasi-normal sym-
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metric subset of A. If B contains a cycle, then BSX=B for every element x in A.

Proof. Proposition 2 is a direct consequence of Proposition 1 and the
definition of a quasi-normal symmetric subset.

Proposition 3. Suppose that A is transitive. Suppose also that, if xSy—x,
there exists an element u such that Su moves one of x and y and leaves the other
fixed. Then A is a simple symmetric set.

Proof. Suppose that all the conditions in Proposition 3 are satisfied. Let
B be a quasi-normal symmetric subset containing at least two elements x and
y. If xSyΦx, then BSa=B for every element a in A by Proposition 2. So,
assume that xSy=x. Then we have an element u such that, say, xSu4=x and ySu

==y. The latter implies that BSU=B. Then xSu is in B. B contains a cycle
{xy xSu, u}, and hence as in former BSa=B for every element a in A. Since
A is transitive, we have B=A. So, A is simple.

In the following, we take a special Q as follows. Let £?(#)= Σ xixjy where
*</

x=(xl9-,xn). n=dimV. Let Q(x, y)=Q(x+y)-Q(x)-Q(y). Then Q(χ, y)
= Σ xiJr Denote by F * the set of all non-zero vectors in V and by Vγ the set
of all vectors x such that Q(χ)=l. We also denote by V{i) the set of all vectors
that have exactly i non-zero components (i.e., i ones and n—i zeros). For the
following examples, also see [1] and [2].

EXAMPLE 1. Let n=6 and A=VV From the definition of Q(x), we can see
that A=V(2)DV^[jV^. First of all we note that F ( 2 ) is a symmetric subset
which is isomorphic with the symmetric set consisting of transpositions in S6.
As a matter of fact, if we denote by l(ί, j) the vector which has 1 in the z-th and
y~th positions and 0 everywhere else, the correspondence l(z, j)-*(i, j) gives the
isomorphism of symmetric sets. Elements in F ( 3 ) are denoted by l(i,j, k) as
above. Then l(z',i)£l(s>ί>ίί)Φl(z,y) if and only if {i,j} fl {*, t> u} = {r} (one-point
set). In this case, l(i, j)S1(StttU)=l(J, t, ύ) if, say, i=s=r. F ( 6 ) contains only one
element which we denote by 1(1,2, •••, 6). Then l(iy j)S1(lt2t...t6)=l{iy j) and
!(*>/> k)S1(lt2,...t6)= !(*"> s, t) where {/, j , k, r> s, t} = {1, 2, •••, 6}. These rules
determine the binary operation in A. Now we can show that A is a simple
symmetric set. For it, we check the conditions in Proposition 3. A is seen to
be transitive. Now let x and y be such that xSy=x. If x and y are in F ( 2 ) , we
can easily find u such that xSuΦx and ySu=y. If x=l(i,j) and y=l(r> s,t)y

then {iyj} Π {*% s>t}=φ or, say, i=r and j=s. In the former case, let u—l(j, k)
where kΦi,j, r, s, t. In the latter case, let w=l(i, t). If x and y are F ( 3 ) , xSy

=x implies that, if x=l(i,j, k) and y=l(r, s, t), then {i,jf k} fl {̂ , s> t) = {h}
(one element). We may assume that i=h=r. Then let u=l(j, g) where {jy g}
Π {ry sy ty k) = φ. When lastly x= 1(1, 2, •••, 6) and y any element such that
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xSy—xy it is not difficult to find u such that xSu=x and ySu^y. Thus we
have shown that A is simple.

Next, we consider basis or generators of A. Clearly, we have generators
1(1, 2)=al9 1(2, 3)=<72, 1(3, 4)=α3, 1(4, 5)=a4> 1(5, 6)=a 5 and 1(1, 2, 3)=a6.
In a similar sense as Coxeter diagram, we have a diagram

a\ — a2 — <*3 — ai — as

From this fact, we can show that A is isomorphic with the symmetric set of
positive roots of type E6. Note |-4 |=36. In this case, H=Ω,6(F2) Q). In
the following examples, we state the results and details are omitted.

EXAMPLE 2. n=6 and A~V*. A is simple and | i4 |=63. A is isomor-
phic with the set of positive roots of type E7. In this case, H=PSp6(F2) (=Sp6

EXAMPLE 3. n=8 and A=V1=V^[J V™\J F<6>U F<7>. ^ is simple and
I =120. A is isomrophic with the set of positive roots of type E%. i / = Ω 8

EXAMPLE 4. n = 8 and A=V*. A is simple and |̂ 4 | =255. H=PSp8(F2).

EXAMPLE 5. n= 10 and A= V,= V™ \j V™ \j v™ U F ( 7 ) U V™. A is simple
and | i4 |=496.

EXAMPLE 6. n= 10 and ^4= K*. A is simple and | A \ = 1023.

EXAMPLE 7. n = 11 and i ί = 7 ^ U V™U F^10). 4̂ is simple and \A\ =528.

EXAMPLE 8. n = 12 and ^4= F<2> U 7® U F(10>. A is simple and | A \ = 1056.
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