SIMPLE SYMMETRIC SETS AND SIMPLE GROUPS

Dedicated to the memory of Dr. Taira Honda

Nobuo NOBUSAWA

(Received December 15, 1975)
(Revised October 12, 1976)

1. Intorduction

A binary system A is called a symmetric set if $a \circ a=a,(b \circ a) \circ a=b$ and $(b \circ c) \circ$ $a=(b \circ a) \circ(c \circ a)$. These conditions imply that the right multiplication by an element a, which we denote by $S_{a}\left(i . e ., b \circ a=b S_{a}\right.$), is an automorphism of A of order 2 leaving a fixed. Note that, if τ is an automorphism of A, then $(b \circ a) \tau=b \tau \circ a \tau$, or $S_{a \tau}=\tau^{-1} S_{a} \tau$. Every group is a symmetric set by $b S_{a}=a b^{-1} a$. Also the subset of involutions in a group is a symmetric set. For more of symmetric sets, see [3] and [4].

The group of automorphisms of A generated by all $S_{a}(a \in A)$ is denoted by G, and the subgroup of G generated by all $S_{a} S_{b}(a, b \in A)$ is denoted by H. The latter is called the group of displacements. It is easy to see that H is generated by $S_{a} S_{e}(e$ is a fixed element and $a \in A)$. H is a normal subgroup of G of index 2. A subset B of A is called a symmetric subset if it is closed under the binary multiplication. Every one-point subset is a symmetric subset, and so is A. All the other symmetric subsets are called proper symmetric subsets. A symmetric subset B is called quasi-normal if $B \tau \cap B=B$ or ϕ (the empty set) for every element τ in G. Now we define a simple symmetric set to be one which has no proper quasi-normal symmetric subset. Theorem and Corollary obtained in 2 state that if A is simple then H is either a simple group or a direct product of two simple groups which are conjugate each other in G. If moreover A is finite, then $|H|=|A|^{2}$ in case H is not simple. Using this fact, we can show a new proof of the simplicity of the alternating group $A_{n}(n \geq 5)$ in 3 by showing that the subset of all transpositions in S_{n} (the symmetric group of n letters) is a simple symmetric set. This idea is carried out in 4 to obtain examples of simple symmetric sets in vector spaces with bilinear symmetric forms over F_{2}, the field consisting of two elements 0 and 1. As special cases, we obtain simple symmetric sets of positive roots of type E_{6}, E_{7} and E_{8} in Lie algebra theory.

Remark. The above definition of a simple symmetric set is stronger than a standard definition which should be based on non-existence of normal symmetric subsets (See [3]) rather than quasi-normal symmetric subsets. However, the main technique used in this note is to show non-existence of quasinormal symmetric subsets. So, we keep our definition.

2. The group of displacements of a simple symmetric set

Theorem. If A is a simple symmetric set, then the group of displacements is either a simple group or a direct product of two simple groups which are conjugate each other in G.

Proof. First we note that if A is simple then it is transitive, i.e., $A=a G$ ($=a H$) for an element a in A. For, $x G$ for any element x in A is seen to be a quasi-normal symmetric subset and $x G$ can not be equal to x for all x in A, and hence $A=a G$ with some element a in A. Then of course $A=x G$ for any element x in A. Now suppose that H is not simple, and let N be a proper normal subgroup of H. Clearly $S_{a} N S_{a}=S_{b} N S_{b}$ for any a and b. Put $N^{\prime}=$ $S_{a} N S_{a} . N N^{\prime}$ and $N \cap N^{\prime}$ are normal subgroup of G contained in H. Generally let J be a normal subgroup of G contained in H. Consider $B=e J$ for an element e in $A . B$ is a symmetric subset. Since $B \sigma=e J \sigma=e \sigma J$ for σ in G, we have $B \sigma \cap B=B$ or ϕ, i.e., B is quasi-normal. Since A is simple by the assumption, $e J=e$ or A. If $e J=e$, then $a J=a$ for every element a in A, because we have $e \sigma=a$ with some element σ in G due to the transitivity of A and then $a J=e \sigma J=e J \sigma=e \sigma=a$. So, if $e J=e$, then $J=1$. If $e J=A$, then, for an arbitrary element a in $A, a=e \sigma$ with some element σ in J. Then $S_{a}=S_{e \sigma}=\sigma^{-1} S_{e} \sigma=\tau S_{e}$ for some element τ in J. This implies that $S_{a} S_{e}$ is contained in J for every element a in A. Since H is generated by $S_{a} S_{e}(a \in A)$, we have $J=H$. Now especially let $J=N N^{\prime}$. Since $N N^{\prime} \neq 1$, we have $N N^{\prime}=$ H. Let $J=N \cap N^{\prime}$. Since $N \cap N^{\prime} \neq H$, we have $N \cap N^{\prime}=1$. Thus H is a direct product of N and N^{\prime}. Lastly, we show that N is simple. If M is a normal subgroup of N, then it is a normal subgroup of H. If $M \neq 1, H$ is a direct product of M and $S_{a} M S_{a}$ as above, which implies $M=N$. Hence N is a simple group.

The author owes the following corollary to Prof. H. Nagao.
Corollary. Suppose that A is a finite simple symmetric set. If H is not simple, then $|H|=|A|^{2}$.

Proof. Suppose that A is finite and simple and that H is not simple. Then $H=N \times N^{\prime}$ (a direct product) as in Theorem. The mapping f of A in G defined by $f(a)=S_{a}$ is a homomorphism of symmetric sets. Therefore we can see that $f^{-1}\left(S_{a}\right)$ is a quasi-normal symmetric subset for every a in A.

From this, we can conclude that $f^{-1}\left(S_{a}\right)=a$ for every element a and hence f is a monomorphism. On the other hand, A is transitive, i.e., $A=a H$. So, $f(A)=\left\{\sigma^{-1} S_{a} \sigma \mid \sigma \in H\right\}$. Then $|A|=|f(A)|=\left|H: C_{H}\left(S_{a}\right)\right|$. Here $C_{H}\left(S_{a}\right)=$ $\left\{\sigma \in H \mid S_{a} \sigma=\sigma S_{a}\right\} . \quad H=N \times S_{a} N S_{a}$ implies that $C_{H}\left(S_{a}\right)=\left\{\sigma S_{a} \sigma S_{a} \mid \sigma \in N\right\}$. Thus, $\left|C_{H}\left(S_{a}\right)\right|=|N|$. Then $|A|=|H| /\left|C_{H}\left(S_{a}\right)\right|=|N|^{2} /|N|=|N|$. Therefore, $|H|=|A|^{2}$.

3. Simple symmetric sets in the symmetric groups $\boldsymbol{S}_{\boldsymbol{n}}(\boldsymbol{n} \geq \mathbf{5})$

Let S_{n} be the symmetric group of n letters where $n \geq 5$. Consider the subset A of S_{n} consisting of all transpositions $(i, j)(1 \leq i \neq j \leq n)$. A is a symmetric set. Here $(i, j) S_{(s, t)}=(p, q)$ where $p=i^{(s, t)}$ and $q=j^{(s, t)}$. We show that A is simple. Let B be a quasi-normal symmetric subset which contains at least two elements a and b. Since $a \neq b$ and $n \geq 5$, there exists an element c in A such that $a S_{c} \neq a$ and $b S_{c}=b$. The latter implies that $B S_{c}=B$ due to the definition of quasi-normality of B. Then $a S_{c}$ is in B. Let $d=a S_{c}$. It is easy to see that $a S_{c}=d, c S_{d}=a$ and $d S_{a}=c$, i.e., a, c and d form a cycle. For example, $a=(1,2), c=(2,3)$ and $d=(1,3)$. In this case, for any element x which is not equal to c, we have that either $a S_{x}=a$ or $d S_{x}=d$. This implies that $B S_{x}=B$ for every element x in A. On the other hand, we can easily see that A is transitive. Therefore, $B=A$ and A is simple. Clearly, $|H| \neq|A|^{2}$, and hence by Corollary H is a simple group. Of course, $H=A_{n}$.

Remark. In the above, we can take the set consisiting of all $(i, j)(r, s)$ where i, j, r and s are all distinct. The set is also a simple symmetric set, whose order is greater than that of the set given in 3. For example, if we take $n=$ 5, we get two simple symmetric sets. One has order 10 and the other 15 . But both have the same group of displacements which is A_{5}.

4. Symmetric sets of vectors over $\boldsymbol{F}_{\mathbf{2}}$

Let V be a finite dimensional vector space over $F_{2}=\{0,1\}$. Given a bilinear symmetric form $Q(x, y)$ on V with $Q(x, x)=0$, we can give a symmetric structure on V by defining $a S_{b}=a+Q(a, b) b$. In other words, $a S_{b}=a$ or $a+b$ according to $Q(a, b)=0$ or $\neq 0$. A cycle in a symmetric set is defined to be a symmetric subset generated by two elements x and y such that $x S_{y} \neq x$.

Proposition 1. Every cycle in V has order 3. If $\{a, b, c\}$ is a cycle, then, for any element x in V, at least one of a, b and c is left fixed by S_{x}.

Proof. In our case, $c=a+b$. Then $Q(c, x)=Q(a, x)+Q(b, x)$. So at least one of $Q(a, x), Q(b, x)$ and $Q(c, x)$ is equal to 0 .

Proposition 2. Let A be a symmetric subset of V and B a quasi-normal sym-
metric subset of A. If B contains a cycle, then $B S_{x}=B$ for every element x in A.
Proof. Proposition 2 is a direct consequence of Proposition 1 and the definition of a quasi-normal symmetric subset.

Proposition 3. Suppose that A is transitive. Suppose also that, if $x S_{y}=x$, there exists an element u such that S_{u} moves one of x and y and leaves the other fixed. Then A is a simple symmetric set.

Proof. Suppose that all the conditions in Proposition 3 are satisfied. Let B be a quasi-normal symmetric subset containing at least two elements x and y. If $x S_{y} \neq x$, then $B S_{a}=B$ for every element a in A by Proposition 2. So, assume that $x S_{y}=x$. Then we have an element u such that, say, $x S_{u} \neq x$ and $y S_{u}$ $=y$. The latter implies that $B S_{u}=B$. Then $x S_{u}$ is in $B . \quad B$ contains a cycle $\left\{x, x S_{u}, u\right\}$, and hence as in former $B S_{a}=B$ for every element a in A. Since A is transitive, we have $B=A$. So, A is simple.

In the following, we take a special Q as follows. Let $Q(x)=\sum_{i<j} x_{i} x_{j}$, where $x=\left(x_{1}, \cdots, x_{n}\right) . \quad n=\operatorname{dim} V$. Let $Q(x, y)=Q(x+y)-Q(x)-Q(y)$. Then $Q(x, y)$ $=\sum_{i \neq j} x_{i} y_{j}$. Denote by V^{*} the set of all non-zero vectors in V and by V_{1} the set of all vectors x such that $Q(x)=1$. We also denote by $V^{(i)}$ the set of all vectors that have exactly i non-zero components (i.e., i ones and $n-i$ zeros). For the following examples, also see [1] and [2].

Example 1. Let $n=6$ and $A=V_{1}$. From the definition of $Q(x)$, we can see that $A=V^{(2)} \cup V^{(3)} \cup V^{(6)}$. First of all we note that $V^{(2)}$ is a symmetric subset which is isomorphic with the symmetric set consisting of transpositions in S_{6}. As a matter of fact, if we denote by $1(i, j)$ the vector which has 1 in the i-th and j-th positions and 0 everywhere else, the correspondence $1(i, j) \rightarrow(i, j)$ gives the isomorphism of symmetric sets. Elements in $V^{(3)}$ are denoted by $1(i, j, k)$ as above. Then $1(i, j) S_{1(s, t, u)} \neq 1(i, j)$ if and only if $\{i, j\} \cap\{s, t, u\}=\{r\}$ (one-point set). In this case, $1(i, j) S_{1(s, t, u)}=1(j, t, u)$ if, say, $i=s=r . V^{(6)}$ contains only one element which we denote by $1(1,2, \cdots, 6)$. Then $1(i, j) S_{1(1,2, \cdots, 6)}=1(i, j)$ and $1(i, j, k) S_{1(1.2, \cdots, 6)}=1(r, s, t)$ where $\{i, j, k, r, s, t\}=\{1,2, \cdots, 6\}$. These rules determine the binary operation in A. Now we can show that A is a simple symmetric set. For it, we check the conditions in Proposition 3. A is seen to be transitive. Now let x and y be such that $x S_{y}=x$. If x and y are in $V^{(2)}$, we can easily find u such that $x S_{u} \neq x$ and $y S_{u}=y$. If $x=1(i, j)$ and $y=1(r, s, t)$, then $\{i, j\} \cap\{r, s, t\}=\phi$ or, say, $i=r$ and $j=s$. In the former case, let $u=1(j, k)$ where $k \neq i, j, r, s, t$. In the latter case, let $u=1(i, t)$. If x and y are $V^{(3)}, x S_{y}$ $=x$ implies that, if $x=1(i, j, k)$ and $y=1(r, s, t)$, then $\{i, j, k\} \cap\{r, s, t\}=\{h\}$ (one element). We may assume that $i=h=r$. Then let $u=1(j, g)$ where $\{j, g\}$ $\cap\{r, s, t, k\}=\phi$. When lastly $x=1(1,2, \cdots, 6)$ and y any element such that
$x S_{y}=x$, it is not difficult to find u such that $x S_{u}=x$ and $y S_{u} \neq y$. Thus we have shown that A is simple.

Next, we consider basis or generators of A. Clearly, we have generators $1(1,2)=a_{1}, 1(2,3)=a_{2}, 1(3,4)=a_{3}, 1(4,5)=a_{4}, 1(5,6)=a_{5}$ and $1(1,2,3)=a_{6}$. In a similar sense as Coxeter diagram, we have a diagram

From this fact, we can show that A is isomorphic with the symmetric set of positive roots of type E_{6}. Note $|A|=36$. In this case, $H=\Omega_{6}\left(F_{2}, Q\right)$. In the following examples, we state the results and details are omitted.

Example 2. $n=6$ and $A=V^{*} . \quad A$ is simple and $|A|=63 . A$ is isomorphic with the set of positive roots of type E_{7}. In this case, $H=P S p_{6}\left(F_{2}\right)\left(=S p_{6}\right.$ $\left(F_{2}\right)$).

Example 3. $n=8$ and $A=V_{1}=V^{(2)} \cup V^{(3)} \cup V^{(6)} \cup V^{(7)} . A$ is simple and $|A|=120 . \quad A$ is isomrophic with the set of positive roots of type $E_{8} . \quad H=\Omega_{8}$ $\left(F_{2}, Q\right)$.

Example 4. $n=8$ and $A=V^{*} . ~ A$ is simple and $|A|=255 . \quad H=P S p_{8}\left(F_{2}\right)$.
Example 5. $n=10$ and $A=V_{1}=V^{(2)} \cup V^{(3)} \cup V^{(6)} \cup V^{(7)} \cup V^{(10)} . A$ is simple and $|A|=496$.

Example 6. $\quad n=10$ and $A=V^{*} . \quad A$ is simple and $|A|=1023$.
Example 7. $n=11$ and $A=V^{(2)} \cup V^{(6)} \cup V^{(10)} . \quad A$ is simple and $|A|=528$.
Example 8. $n=12$ and $A=V^{(2)} \cup V^{(6)} \cup V^{(10)} . \quad A$ is simple and $|A|=1056$.
University of Hawait

References

[1] N. Bourbaki: Groupes et algèbres de Lie, Chapts IV, V et VI, Hermann, Paris, 1968.
[2] H.M.S. Coxeter and W.O.J. Moser: Generators and relations for discrete groups. 3rd ed., Springer-Verlag, Berlin, New York, 1972.
[3] M. Kano, H. Nagao and N. Nobusawa: On finite homogeneous symmetric sets, Osaka J. Math. 13 (1976), 399-406.
[4] N. Nobusawa: On symmetric structure of a finite set. Osaka J. Math. 11 (1974) 569-575.

