A GENERALIZATION OF MAGNUS' THEOREM

Yoshikazu NAKAI* and Kiyoshi BABA

(Received May 4, 1976)

Let $f(x, y)$ and $g(x, y)$ be polynomials in two variables with integral coefficients. O.H. Keller raised the problem in [1]: If the functional determinant $\partial(f, g) / \partial(x, y)$ is equal to 1 , then is it possible to represent x and y as polynomials of f and g with integral coefficients? This problem drew many mathematicians' attension and several attempts have been made by enlarging the coefficient domain to the complex number field \boldsymbol{C}. But no success has been reported yet. On the other hand A. Magnus studied the volume preserving transformation of complex planes and obtained a result which is relevant to Keller's problem ([2]). From his results it is immediately deduced that Keller's problem is answered affirmativiely provided one of $f(x, y)$ and $g(x, y)$ has prime degree. For the proof Maguns used recursive formulas. But these formulas are complicated and not easy to handle. In this paper we shall give a simple proof of his theorem based on the notion of quasi-homogeneity for generalized polynomials. Moreover we shall go one step further than he did. Our results ensure that Keller's problem is valid provided one of $f(x, y)$ and $g(x, y)$ has degree 4 or larger degree is of the form $2 p$ with an odd prime p. Since a complete solution of Keller's problem is not found yet our paper will be of some interest and worth-while publication.

1. Quasi-homogeneous generalized polynomials

Let x and y be two indeterminates. We shall set $\tilde{A}=\sum_{i, j \in \boldsymbol{Z}} \boldsymbol{C} x^{i} y^{j}$ where \boldsymbol{C} is the complex number field and \boldsymbol{Z} is the ring of rational integers. \tilde{A} is a graded ring and the polynomial ring $\boldsymbol{C}[x, y]$ is a graded subring. Hereafter we shall call an element $f(x, y)$ of \tilde{A} a generalized polynomial or simply a g-polynomial. We shall denote by $S(f)$ the set of lattice points (i, j) in the real two space \boldsymbol{R}^{2} such that the monomial $x^{i} y^{j}$ appears in $f(x, y)$ with a non-zero coefficient. $S(f)$ will be called the supoprt of $f(x, y)$. A g-polynomial $f(x, y)$ is called a homogeneous g-polynomial or a g-form if $S(f)$ lies in the straight line of the form $X+Y=m$ where $m \in Z$ and is called the degree of the g-form $f(x, y)$.

[^0]We shall use the symbol $S[f]$ to denote the set of monomials $x^{i} y^{j}$ such that the lattice point (i, j) is in $S(f)$.

Proposition 1. Let $f(x, y)$ and $g(x, y)$ be non-constant g-forms of degrees m and n respectively such that the functional deteriminant $\partial(f, g) / \partial(x, y)$ is equal to zero. We shall define an integer d by the rule: (a) d is equal to the GCD of $|m|$ and $|n|$ if one of m and n is postive, (b) d is equal to the negative of GCD $(|m|,|n|)$ if both of m aud n are negative. We shall set $m / d=m^{\prime}$ and $n / d=n^{\prime}$. Then we have the following:
(i) If one of m and n is zero, so is the other and $f(x, y)$ and $g(x, y)$ are g-polynomials in one variable (y / x).
(ii) If $m n<0$, then both of $f(x, y)$ and $g(x, y)$ are monomials and there exist a monomial $h(x, y)$ of degree d such that $f=c_{1} h^{m^{\prime}}$, and $g=c_{2} h^{n^{\prime}}$ where $c_{i}(i=1,2)$ are constants.
(iii) If $m n>0$, there exists a g-form $h(x, y)$ of degree d such that $f=c_{1} h^{m^{\prime}}$ and $g=c_{2} h^{n^{\prime}}$.

Proof. Assume first $m=0$ and $n \neq 0$. It follows from $\partial(f, g) / \partial(x, y)=0$ that we have $\partial f / \partial x=\partial f / \partial y=0$. This is against the assumption. Since a g-form of degree zero is necessarily of the form $\sum_{i \in Z} a_{i}(y / x)^{i}$ we get the assertion (i). To prove (ii) we assume $m>0$ and $n<0$ and let $f_{1}=f^{-n}$ and $g_{1}=g^{m}$. Then $\partial\left(f_{1}, g_{1}\right) / \partial\left(x_{1}, y_{1}\right)=0$. Since the degrees of f_{1} and g_{1} differ only in sign we see immediately that $f_{1} \frac{\partial g_{1}}{\partial x}+g_{1} \frac{\partial f_{1}}{\partial x}=0$, or equivalently, $\partial\left(f_{1} g_{1}\right) / \partial x=0$. Similarly we have $\partial\left(f_{1} g_{1}\right) / \partial y=0$. Hence $f_{1} g_{1}$ must be a constant. But such a case can occur only when f_{1}, hence f, is a monomial because g_{1} is a g-polynomial. The rest follows easily from this. The proof of (iii) will be carried out by a similar device and the detailed proof will be omitted.

Definition. A g-polynomial $f(x, y)$ is called a quasi homogeneous g polynomial (or simply a quasi g-form) if the support $S(f)$ of $f(x, y)$ is contained in the straight line. When the equation of that straight line has the form $Y+\alpha X=\lambda$. We shall say that the quasi g-form $f(x, y)$ is (α)-homogeneous of degree λ.

It should be noticed that if α is an irrational number, monomials only can be (α)-homogeneous g-forms.

Proposition 2. Let $f(x, y)$ and $g(x, y)$ be (α)-homogeneous g-forms of positive degrees λ and μ respectively such that $\partial(f, g) / \partial(x, y)=0$. Assume that α is a rational nnmber q / p with comprime integers $p(>0)$ and q. Let $d=$ $\operatorname{GCD}(p \lambda, p \mu)$. Then there exists an (α)-homogeneous g-form $h(x, y)$ of degree d / p such that $f=c_{1} h^{m^{\prime}}$ and $g=c_{2} h^{n^{\prime}}$ where $m^{\prime}=p \lambda / d, n^{\prime}=p \mu / d$ and $c_{i}(i=1,2)$ are constants.

Proof. Let u, v be new indeterminates and let $x=u^{p}$ and $y=v^{q}$. Then $F(u, v)=f\left(u^{p}, v^{q}\right)$ and $G(u, v)=g\left(u^{p}, v^{q}\right)$ are g-forms of degrees $p \lambda$ and $p \mu$ respectively. The rest follows easily from Proposition 1.

Let γ be an arbitrary real number. Then we can define a grading on \tilde{A} in the following way. Let λ be a real number and let \tilde{A}_{λ} be the vector space over \boldsymbol{C} generated by the set of g-monomials $x^{i} y^{j}$ such that $j+\gamma i=\lambda$. Then we have $\tilde{A}=\underset{\lambda}{\oplus} \tilde{A}_{\lambda}$ where the sum is extended over all real numbers contained in the additive subgroup of \boldsymbol{R} generated by 1 and γ. In case $\gamma=1$ we have the standard grading and its degree function is the ordinary function. The term "homogeneous" is reserved for this standard grading.

Proposition 3. Let $f(x, y)$ and $g(x, y)$ be g-polynomials in x and y such that $\partial(f, g) / \partial(x, y) \in \boldsymbol{C}$. Let α be any real number and fet $f=\oplus f_{\lambda}$ and $g=\oplus g_{\mu}$ be the direct sum decomposition by the (α)-grading. Then we have

$$
\sum_{\substack{\lambda+u=s \\ 1+\alpha \neq s}} \frac{\partial\left(f_{\lambda}, g_{\mu}\right)}{\partial(x, y)}=0
$$

The proof is immediate and will be mitted.

2. Magnus' Theorem

For future reference we shall give Magnus' Theorem in a slightly different formulation from Magnus' original one.

Theorem 1. Let $f(x, y)$ and $g(x, y)$ be polynomials iu two ariables x and y with complex coefficients and let m and n be the degrees of $f(x, y)$ and $g(x, y)$ respectizely. Assume that the functional determinant $\partial(f, g) / \partial(x, y)$ is a nonzero constant. If Min $(m, n)>1$, then we have $\operatorname{GCD}(m, n)>1$.

Proof. Assume that $\operatorname{GCD}(m, n)=1$. Let f_{m} and g_{n} be the degree forms of f and g respectively. From proposition 1 , there is a linear form, say h, such that $f_{m}=\varepsilon_{1} h^{m}$ and $g=\varepsilon_{2} h^{n}$. Without loss of generalities we can assume that $h=x$ and $\varepsilon_{i}=1$. We shall pick up a point $P=\left(p_{1}, p_{2}\right)$ in $S(f)$ in the following way. Let L be the line defined by the equation $X=m$ and let L rotate around the point $M=(m, 0)$ counterclockwise until L meets a point in $S(f)$ other than M. Let l be the line thus obtained. The point in $S(f) \cap l$ with the smallest X coordinate is the desired point P . Pick up a point $Q=\left(q_{1}, q_{2}\right)$ in $S(g)$ in a similar way.

Now ssume we have either $(m>) p_{2}>0$ or $(n>) q_{2}>0$. Then we easily verify that one of the following situation takes place.
(1) The lines $M P$ and $N Q$ are not parallel where $N=(n, 0)$.
(2) The three points P, Q and the origin are not collinear.

If the case (a) occurs let

$$
Y+a X=a m, Y+b x=b n
$$

be the equations of the lines $M P$ and $N Q$ respectively. Then we have $a \neq b$. If $a>b$ let γ be a real number such that $a>\gamma>b$. If we choose γ near enough to a, then $x^{p_{1}} y^{p_{2}}$ will have the highest (γ)-degree in $S[f]$ and x^{n} will have the highest (γ)-degree in $S[g]$. Hence by Proposition 3, $\partial\left(x^{p_{1}} y^{p_{2}}, x^{n}\right) / \partial(x, y)=$ $n p_{2} x^{n+p_{1}-1} y^{p_{2}-1}=0$. But this is impossible. Similarly we have a ontradicition if $a<b$.

Now assume the lines $M P$ and $N Q$ are parallel, i.e., $a=b$ then we have the case (2), i.e., $p_{2} q_{1} \neq q_{1} p_{2}$. Let $\gamma=a-\varepsilon$ with $\varepsilon<0$. If we choose ε small enough, then $x^{\phi_{1}} y^{\phi_{2}}$ will have the highest (γ)-degree in $S[f]$ and $x^{q_{1}} y^{q_{2}}$ will have the highest (γ)-degree in $S[g]$. But this contradicts Proposition 3 because we have $q_{1} p_{2} \neq q_{2} p_{1}$.

Thus we have seen that $p_{2}=q_{2}=0$, i.e., $f(x, y)$ and $g(x, y)$ are polynomials in x alone. But this is impossible because $\partial(f, g) / \partial(x, y)$ is a non-zero constant, and the proof of Theorem 1 is complete.

For the sake of reference we shall call the method adopted in this proof "the method of rotation of lines around the points M and N ".

3. A generalization of Magnus' Theorem

Theorem 2. Under the same notations and assumptions as Theorem 1, we hove the following: If $\operatorname{Min}(m, n)>2$, then we have $\operatorname{GCD}(m, n)>2$.

Proof. Assume that $\operatorname{Min}(m, n)>2$ and $\operatorname{GCD}(m, n)=2$ and we shall draw a contradiction. Let f_{m} and g_{n} be degree forms of f and g respectively. From Proposition 2 it follows that there exists a quadratic form $h(x, y)$ such that $f_{m}=$ $a h^{m^{\prime}}$ and $g_{n}=b h^{n^{\prime}}$, where $m=2 m^{\prime}$ and $n=2 n^{\prime}$. There are two possibilites.
(I) h is a product of two independent linear forms. In this case we can assume without loss of generalities that $f_{m}=(x y)^{m^{\prime}}$ and $g_{n}=(x y)^{n^{\prime}}$. Apply the method of rotation of lines around the points $M_{1}=\left(m^{\prime}, m^{\prime}\right)$ and $N_{1}=\left(n^{\prime}, n^{\prime}\right)$. Then we can easily see that any point (i, j) in $S(f)$ satisfies the condition $j \leq \boldsymbol{m}^{\prime}$, and any point (s, t) in $S(g)$ satisfies the condition $t \leq n^{\prime}$.

Now consider the (0)-grading in A. The degree forms of f and g are respectively of the forms

$$
\begin{aligned}
& f_{m}^{(0)}=y^{m^{\prime}}\left(a_{0}+a_{1} x+\cdots+a_{m^{\prime}-1} x^{m^{\prime}-1}+x^{m^{\prime}}\right) \\
& g_{n^{\prime}}^{(0)}=y^{n^{\prime}}\left(b_{0}+b_{1} x+\cdots+b_{n^{\prime}-1} x^{n^{\prime}-1}+x^{n^{\prime}}\right)
\end{aligned}
$$

From Propositions 2 and 3 there is a linear form $c+x$ such that

$$
f_{m^{\prime}}^{(0)}=y^{m^{\prime}}(c+x)^{m^{\prime}} \text { and } g_{n^{\prime}}^{(0)}=y^{n^{\prime}}(c+x)^{n^{\prime}}
$$

If we set $x_{1}=c+x$ and consider f and g as polynomials in new variables x_{1} and
$y_{1}=y$, then the support $S_{1}(f)$ have no point (i, j) with $j \geq m^{\prime}$ except the point (m^{\prime}, m^{\prime}). Similarly $S_{1}(g)$ have no point (s, t) with $t \geq n^{\prime}$. Apply again the method of rotation of lines around the points M_{1} and N_{1}. Then we can see finally that no point (i, j) with $i<j$ is in $S(f)$ and no point (s, t) with $s<t$ is in $S(g)$. This means that $f(x, y)$ and $g(x, y)$ lack the terms $y^{s}(s \geq 1)$. This is impossible because of the assumption $\partial(f, g) / \partial(x, y)$ is an element of \boldsymbol{C}^{*}.
(II) h is a power of a linear form: In this case we can assume as before that the degree forms are of the forms $f_{m}=x^{m}$ and $g_{n}=x^{n}$ respectively. Then we can see, following the method of rotations of lines around the point $M=(m$, 0) and $N(n, 0)$, that $S(f)$ is contained in the region defined by the inequality $Y+\frac{1}{2} X \leq \frac{m}{2}$ and (g) is in the region $Y+\frac{1}{2} X \leqq \frac{n}{2}$. Consider (1/2)-grading and apply Propositions 2 and 3. Then we see that degree forms of f and g by this grading are

$$
\left(a y+x^{2}\right)^{m^{\prime}} \text { and }\left(a y+x^{2}\right)^{m^{\prime}}
$$

respectively. If $a=0$ we can proceed further and we see that no point (i, j) with $j>0$ is in $S(f)$ and no point (s, t) with $t>0$ is in $S(g)$. This is a contradiction. Hence we must have $a \neq 0$. Then apply de Jonquiere transformation

$$
Y_{1}=a y+x^{2}, x_{1}=x .
$$

Since we have

$$
f(x, y)=\left(a y+x^{2}\right)^{m^{\prime}}+\sum_{j+i / 2<m^{\prime}} a_{i j} x^{i} y^{j}
$$

and

$$
g(x, y)=\left(a y+x^{2}\right)^{n^{\prime}}+\sum_{j+i / 2<n^{\prime}} b_{i j} x^{i} y^{j}
$$

We easily see that

$$
f_{1}\left(x_{1}, y_{1}\right)=y_{1}^{m^{\prime}}+\sum_{j+i / 2<m^{\prime}} a_{i j}^{\prime} x_{1}^{i} y_{1}^{j}
$$

and

$$
g_{1}\left(x_{1}, y_{1}\right)=y_{1}^{n^{\prime}}+\sum_{j+i / 2<n^{\prime}} b_{i j}^{\prime} x_{1}^{i} y_{1}^{j}
$$

where

$$
f_{1}\left(x_{1}, y_{1}\right)=f\left(x_{1}, a^{-1}\left(y_{1}-x_{1}^{2}\right)\right) \text { and } g_{1}\left(x_{1}, y_{1}\right)=g_{1}\left(x, a^{-1}\left(y_{1}-x_{1}^{2}\right)\right) .
$$

By the method of (clockwise) rotation of lines around the points ($0, m^{\prime}$) and $\left(0, n^{\prime}\right)$ applied to the pair of polynomials $f_{1}\left(x_{1}, y_{1}\right)$ and $g_{1}\left(x_{1}, y_{1}\right)$, we see that
$S\left(f_{1}\right)$ is in the half plane $X+Y \leq m^{\prime}$ and $S\left(g_{1}\right)$ is in the half plane $X+Y \leq n^{\prime}$. This means that $f_{1}\left(x_{1}, y_{1}\right)$ is of degree m^{\prime} and $g_{1}\left(x_{1}, y_{1}\right)$ is of degree n^{\prime}. Moreover $\frac{\partial\left(f_{1}, g_{1}\right)}{\partial\left(x_{1}, y_{1}\right)}=a^{-1} \frac{\partial(f, g)}{\partial(x, y)}$ is in C^{*}. Since $\operatorname{Min}(m, n)>2$, we have Min $\left(m^{\prime}, n^{\prime}\right)>1$. Moreover $\operatorname{GCD}\left(m^{\prime}, n^{\prime}\right)=1$. This is the situation negated in Theorem 1 .

4. Application to Keller's problem

Theorem 3. Let $f(x, y)$ and $g(x, y)$ be polynomials of degrees m and n respectively with complex coefficients and assume that the functional determinant $\partial(f, g) / \partial(x, y)$ is a non-zero constant. Then we have $\boldsymbol{C}[x, y]=\boldsymbol{C}[f, y), g(x, y)]$ in the following three cases:
(1) m or n is a prime number;
(2) m or n is 4;
(3) $m=2 p \geqq n$ where p is an odd prime.

Proof. In any case it follows from Theorems 1 and 2 that smaller degree, say n, divides larger degree m. Then from Proposition 2 and 3 the degree forms f_{m} and g_{n} are related like this, $f_{m}=\varepsilon g_{n}^{m / n}$. Then

$$
f_{1}=f-\left(\varepsilon^{n / m} g\right)^{m / n}
$$

has lower degree than f and $\partial\left(f_{1}, g\right) / \partial(x, y)=\partial(f, g) / \partial(x, y)$ is a non-zero constant. Thus we can use induction on the sum $m+n$ of degrees to get the conclusion.
q.e.d.

Keller's Original problem is also settled in these three cases cited in Theorem 3 because of the following

Proposition 4. Let $f(x, y)$ and $g(x, y)$ be the polynomials in x and y with integer coefficients such that the functional determinant is equal to 1 and $\boldsymbol{C}[f, g]$ $=\boldsymbol{C}[x, y]$. Then we hove necessarily $\boldsymbol{Z}[f, g]=\boldsymbol{Z}[x, y]$.

Proof. It suffices to prove that x and y are in $\boldsymbol{Z}[f, g]$. By assumption we have

$$
x=\sum c_{i j} f^{i} g^{j}, c_{i_{j}} \in \boldsymbol{C}
$$

If we set

$$
\begin{aligned}
& f(x, y)=f_{10} x+f_{01} y+\cdots \\
& g(x, y)=g_{10} x+g_{01} y+\cdots
\end{aligned}
$$

then the assumption implies that $f_{10} g_{01}-f_{01} g_{10}=1$. Apply the unimodular transformation of variables

$$
\begin{aligned}
& x^{\prime}=f_{10} x+f_{01} y \\
& y^{\prime}=g_{10} x+g_{01} y .
\end{aligned}
$$

Then $\boldsymbol{Z}[x, y]=\boldsymbol{Z}\left[x^{\prime}, y^{\prime}\right]$ and $f=x^{\prime}+$ (higher degree terms) and $g=y^{\prime}+$ (higher degree terms). Hence to prove the assertion we can assume without loss of generalities that linear parts of f and g are x and y respectively. We shall define a linear order in the set (i, j) of lattice points in \boldsymbol{R}^{2} by the way: $(i, j)>$ $\left(i^{\prime}, j^{\prime}\right)$ if (i) $i+j>i^{\prime}+j^{\prime}$ or (ii) $i+j=i^{\prime}+j^{\prime}$ and $i>i^{\prime}$. We shall show that every $c_{i j}$ is in Z by induction on the linear order just defined. Assume every $c_{i^{\prime} j^{\prime}}$ with $\left(i^{\prime}, j^{\prime}\right)<(i, j)$ is integer. Then the coefficients of the polynomial

$$
c_{i j} f^{i} g^{j}+c_{i+1 j-1} f^{i+1} g^{j-1}+\cdots+c_{0 i+j+1} g^{i+j+1}+\cdots
$$

are integers. In this polynomial $x^{i} y^{j}$ appears once with the coefficient $c_{i j}$. Hence $c_{i j}$ must be an integer. Similarly y is in $\boldsymbol{Z}[f, g]$ and the assertion in proved completely.

Osaka University

References

[1] O.H. Keller: Ganze Cremona-Transformationen, Monatsh. Math. und Phys. 47 (1939), 299-306.
[2] A. Magnus: On polynomial solutions of a differential equation, Math. Scand. 3 (1955), 255-260.

[^0]: *) Supported by Takeda Science Foundation.

