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Recently, Galois theory of commutative ring has been developed by
Auslander, Chase, Goldman, Harrison and Rosenberg in [1], [2] and
many important results in it has been generalized for separable R-
algebra by DeMeyer, Kanzaki and Takeuchi in [3], [8], [9], [10] and
[11]. There are some equivalent definitions of a Galois extension, which
will be given in §1.

Let Λ be an J?-algebra which is a finitely generated 7?-module and
G a finite group of ./?-automorphisms of Λ.

In §2 we consider some relations between Λ r and VA(A.r) for a
Galois extension Λ with G and for a subgroup T, which contains some
results in [3], [10] and [11]. We give a sufficient condition of Λ being
a central Galois, which is a converse of [10], Theorem 2.

In §3 we study a criterion of the center C of Λ being a Galois
extension. Let e be a primitive idempotent in C and T={σ\<=G,

σ(e) = e} and H= {σ\ e T, σ induces the identity mapping on the center
of Ae}. Under an assumption that R is indecomposable, we obtain that
C is a Galois extension of jf? if and only if H is a normal subgroup in
G, which is a generalization of [10], Proposition 10.

The author would like to express his thanks to Professor T. Kanzaki
for many useful suggestions.

1. Definitions and notations.

Let R be a commutative ring with identity and Λ an 7?-algebra.
We always assume that every Λ-algebra is finitely generated J?-module.
A group G means a finite group of J?-algebra automorphisms of Λ. We
recall the definition of Galois extension.

Let Γ be the fixed ring of G, which we denote by ΛG. If Λ satisfies
one of the following conditions, then we call Λ a Galois extension of Γ
with G:

I. Λ is a finitely generated projective right Γ-module and Δ(Λ, G)
is isomorphic to HomΓ(Λ, Λ) by defining (\uσ) μ=\σ(μ\ where Δ(Λ, G)
is a trivial crossed product with basis uσ and λ, μ<=Λ.
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II. There exist elements xg, y{ in Λ such that Σ^ίJΊ = = l>Σ

if σΦl.
We call such {xf, yt] a Galois generator.
We know that this definition is symmetric with respect to right

and left. By c(Λ) we menas the center of Λ and we dente it by C
sometimes.

We note that many results in [2] for a commutative case are valid
with a slight modification for a non-commutative case. So we quote them
without proof.

2. Central Galois extension

Let G be a finite group of automorphism of Λ as an 7?-algebra.
We put J(T={x\^A, xy = σ(y)x for all y in Λ} for σ<=G. Then it is
clear that Jσ is a C-module, JσJτ^Jσr and Jl = Cy where C is the center
of Λ. First, we give a converse of [10], Theorem 2.

Theorem 1. Let Λ be α separable R-algebra with automorphism group

G. If Λ= Σ ®Λ and /<r/σ-ι = C for any σ in G, then Λ is a Galois
<τee?

extension of the center C with G.

Proof.15 Since Λ is /?-separable, Λ is central separable by [1],
Theorem 2.3. Hence, Homc(Λ, Λ)^Λr(g)Λ, by [1] Theorem 2.1, where

C

Ar (resp. Λ/) means the set of multiplications of elements in Λ from
the right (resp. left) side. Λr = Σθ(Λ)r- It is clear that (Jv)r = (Jσ)tσ-\

Hence, Λr<g)Λ, = Σ®(Λ)/Λ/σ-1 = Σθ(/σΛ) l σ- 1 = ΣΛ/σ = Δ(Λ, G) since
0

/σΛ = Λ by the assumption.
The converse of the following corollary was given in [3], [13] and

we shall consider it later.

Corollary. Let Λ and C be as above. We assume that G consists of
inner-automorphisms which is induced by unit elements uσ. If Λ =
Σ θ C w σ , then Λ is a Galois extension of C with G.

Proof. It is clear that Jσ = Cuσ and /σ/σ_1 = C.

Proposition 2. Let Λ be a separable R-algebra with automorphism
group G. If R = A° and Jσ = 0 for σ Φl, then Λ is a Galois extension of
R and Λ is a commutative ring. The converse is also true.

1) The first proof was a little longer and Prof. Kanzaki pointed out this proof to the
author.
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Proof. We define an automorphism ψ< of Λ®Λ by setting
R

λ®σ(μ). Since Λ is separable over R, then there exist elements xi9yi
in Λ such that Σ # ί Λ = l a n d Λ(Σ^®Λ) = (Σ^i®^ί)Λ Γ f° r all *^Λ. Hence,
#Σ*ί®σ(jv) = Σ#*®<K,yίM*) Therefore, xΣxiσ(yi) = ̂ Σxiσ(yi)σ(x\ which
means Σ^oO,-) £/„._! = (()) if σ-Φl. Thus, we can find a Galois generator
{#*, # } . Hence, Λ is a Galois extension of R and Λ= ^Λ(ΛG) = C 0 / σ 0
= C by [10], Proposition 1.

Proposition 3. Let Λ be a Galois extension of R with G and C = AH

for a subgroup H. Then HΓi T=(l) for a subgroup T of G if and only
if VΛ(ΛT) = C. In this case we have AS = CS ® Λ τ for S^T.

cτ

Proof. We assume HΓ\ T=(l) . Then T is isomorphic to the induced
automorphism group T\C. Hence, Λ = CΛT by [3], Lemma 2. Therefore,
FΛ(ΛT)=FΛ(CΛT) = C. If FΛ(ΛT) = C, then c(Λτ) = CΓΊΛ τ=C τ . C and
Λ are Galois extensions of Cτ and Λr, respectively. Hence, C®ΛT is a

cτ

Galois extension of Λτ. Since c(C<g)Λτ) = C and C®ΛT is separable,
C(g)Λτ^CΛr. Hence, CΛT and Λ are Galois extensions of Λ r with T.
Therefore, CΛT = Λ by [2], Theorem 3.4, which means HΓ\ T=(l) . The
last part is clear from [3], Lemma 2.

For a twised group ring the following lemma is well known.

Lemma 4. Let Δ(Λ, G) be a trivial crossd product of R-algebra Λ
and H={σ\<=G, σ|c(Λ) = /CCΛD}. // Δ is R-separable then the order \H\
of H is a unit in R and βTrG(Λ) = ΛG.

Proof. Let Δ = Δ(Λ, G) = Λ 0 Λ σ 0 ••• . Since Δ is .R-separable, there
exists an element θ in Δ®Δ such that φ(θ) = ί and SΘ = ΘS for SeΔ,

R

where φ is a natural homomorphism of Δ®Δ to Δ. Let (9=Σθ^σ,τ(cr®τ),
where aστ=^\t(σ, τ)®μt(σ, τ)eΛ®Λ. Since \θ = θ\ for λeΛ, we can

t R

easily see that φ(alfl) is in C. Furthermore, by the standard argument
we has

(1) φ(a^ = ΣtfλΛp-1, Pϊ μfr'1, P)) for
t

Let G = H+Hτ2-\ ----- \-Hτs. Replacing p' 1 by ξτέ in (1) we have ττlφ(aίfί) =
-1, σ)σ-\μt(σ-1

9 σ\ where σ = ξτt. Therefore, l = φ(θ)=\H\(φ(altl)
φ(aι !))+•••+ r7l(φ(al l))= \H\ TrG/H(φ(a1 ,)). Hence 1 7/ 1 is a unit in 1?

and TrG(Λ)-ΛG.
The following is a slight generalization of [10], Proposition 5.

Proposition 5. Let Λ be a Galois extension of KG with G and H=
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{σ| eG, cr|C = /c}. We assume AG is R-separabίe. Then \H\ is a unit in
R and TrG(Λ)-ΛG.

Proof. By [8], Proposition 4 we know that Δ(Λ, G) is ^-separable.

Proposition 6. Let A be a Galois extension of an R-separabίe algebra
AG with G. Let H be a subgroup of G. Then the center of AH is equal
to C if and only if VA(AH) is a Galois extension of C with H.

Proof. We put Γ = AH and Ω = VA(AH). If the center of Γ is equal
to C, then Λ = Γ®Ω by [1], Theorem 3.3. We note that H induces an

C

automorphism group on Ω. Homc(Ω, Ω)®Γ^HomΓ(Ω(S)Γ, Ω®Γ)^Δ(Ω®
C C C

Γ, H) since Λ is a Galois extension of Γ by [11], Theorem 1 and Ω is
C-projective. Furthermore, Δ(Ω®Γ, # ) ^ Δ ( Ω , H)®Γ. In the above

C C

isomorphism we can easily check that Δ(Ω, H) is isomorphic to Homc(Ω,
Ω) by the natural mapping. Hence, C = c(Homc(Ω, Ω)) = VHomccΩ,Ω)(Δ(Ω,
H)) = ΩH. Therefore, Ω is a Galois extension of C with H. Conversely,
it is clear that c(Γ) = c(Ω). Let x be in that center. Then x<= FΛ(Ω)nΩ
- Λ ^ Π Ω - Ω ^ - C by [8], Theorem 2. Hence, C is the center of Γ.

Corollary. Let A be as above and Γ a separable C-subalgebra. Let
H= {σ\ eG, σ(x) = x for x<=VA(Γ)}. Then H induces an automorphism
group of Γ. // YH=Cy then Λ and Γ are Galois extensions of VΛ(Γ) and
C with H, respectively.

Proof. Since FΛ(FΛ(Γ)) = Γ, the first part is clear. Let x be in
the center of Λ". Since AH^ VA(Γ), XCΞΓ Γ}Λ.H=TH=C. Hence VA(AH)
is a Galois extension of C with H by Proposition 6. Furthermore,
F Λ (Λ H )cr . If we apply [2], Theorem 3.4 to the inclusion map, we
have Γ=VA(AH). Hence, VA(Γ} = AH.

Corollary. Let A be a Galois extension of AG with G. We assume
AG is R-separable. Let H be an inner -sub group of G which is induced by
unit elements uσ and A = ̂ ΣίCuσ. Then the following conditions are
equivalent.

1) c(Λ*) = C.
2) A = A®AH.

C

3) A is a Galois extension of C with H.

In this cases A =

Proof. It is clear that A is C-algebra and ^(^4) = ̂ . Since \H\ is
unit by Lemma 4, A is C-separable by [5], Lemma 4. Hence?
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) = A by [8], Theorem 2. Therefore, we have the first part by
Proposition 6, since c(A) = c(ΛH). Since 4r(g)Λ/«Δ(Λ, H) A =

3. Central subgroup.

Let Λ be a Glois extension of R with G and C the center of Λ.
Let H={σ\<=Gy σ C = IC}. We call H the central subgroup of G.

In this section we study a criterion of C being the fixed ring of H.

First, we consider a criterion of a separable subalgebra Γ of Λ
being a fixed subalgebra of a subgroup T.

In commutative case we know a condition "strongly distinct9' (see
[2], p. 16) and it was shown in [2] that this condition gives a criterion
of the above. We shall generalize this condition to a case of non-
commutative ring.

Let /; g be homomorphisms of ί?-algebra Γ to Λ (/Φg"). We
consider a condition :

(*) For any #ΦO in Λ we can find y in Γ such that

If Λ and Γ are commutative and (*) is satisfied, then / and g are
strongly distinct. Conversely, we assume Λ = Γ and Λ is /^-separable.
If /, g are strongly distinct two automorphisms of Λ, then there exist
elements xi9yf in Λ such that Σ*ίΛ = l a n d Σ^ί/" 1^(Λ) = 0 bY [2],

Lemma 1.2. Hence, l = Σ ^ ( Λ - / " 1 ί ( Λ ) ) = Σ / ( ^ X / ( Λ ) - 5 ( ^ ) ) . There-
fore, (#) is satisfied.

We note that if Λ is a Galois extension of R with G and T a
subgroup, then Λ τ is J?-separable (see, [9]).

Theorem 7. Let Λ be a Galois extension of R with G and Γ a
separable R-subalgebra of Λ. We put T= {σ\ eG, σ|Γ = /Γ}. Then Γ =
Λ τ if and only if distinct two elements σ, T in G satisfy the above
(*) on Γ condition.

Proof. We assume Γ = ΛT. Then there exist xi9y{ in Γ such that
Σ * ί Λ = l an<i Σ**τ(.yί) = 0 if T $ T by [2], p. 23. Hence, Γ satisfies (*).
Conversely, we assume Γ satisfies (*). α = Hom#(Λ, Λ)^Δ(Λ, G ) = Σ θ
Λ/ τ and HomJ,(A, Λ) = Vα(Γ,). Let * be in VA(Γr). * = *(!)/ +
#(σ)/σH — . Since tγrx = xrγr for any γ e Γ , we have 7r#(σ)/ = x(σ)ί

fyr =
(̂σ )/σ(γ)r. Hence, jt(σ)Λ(γ — σ(γ)) = (0). Since Γ satisfies (*), if σφT,

Λr(σ) = 0. Therefore, HomΓ(Λ, Λ ) - Σ 0Λ/ = Δ(Λ, T). Since c(ά)=R and
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Γ r is sepapable tf-algebra, Γr= VA(VA(Γr»= VΛ(Δ(Λ, Γ)) = (Λ τ) r by [8],
Theorem 2.

Corollary. Let A, Γ, G and T be as above. We assume that R is
a hereditary ring. Then Γ = AT for a subgroup T if and only if Γ is
G-strong, (see the definition in [2], p. 22).

Proof. It is sufficient to show that the condition "G-strong" implies
the above condition (*), if R is hereditary. We note that if xA is Λ-
projective, then xA^eA for an idempotent e. Hence, if xA(y—σ(y)) = 0 for
all JEEP and σφT, then eA(y-σ(y)) = (Q). Hence, e = Q and x = Ό. Thus,
we may show that Λ is right hereditary. Since Δ(Λr, G)«Homs(Λ, Λ)
and Λ is 7?-projective, Δ(Λr,G) is right hereditary by [5], Lemma 1.2.
Hence, Ar is right hereditary by [4], Proposition 10.

REMARK. We can easily extend the same argument of [2], § 2 to
a non-commutative case except Theorem 2. 2 in £2], Theorem and its
corllary are concerned with that theorem.

Finally, we consider the problem mentioned in the beginning of
this section. Namely we consider the case in which T is the central
group and Γ = C in Theorem 7.

We always assume that C is a direct sum of indecomposable ideals
(e.g. if R is indecomposable, then C is as above, see [7], Theorem 7).

Let e19 e2, •••, en be the set of primitive idempotents in C. Let T, =
{GΓ| eG, σ(ei) = ei}. We call Tf a decomposition group of ei. We can
classify et by a relation £,-=£y if ej = σ(ei} for some σ<=G. Let cf be one
of the classes. Then £ f = $] et is an idempotent and E^AG=R. In

β,eeι
this case Λ^ΣφΛZ?,- a^d we can easily see that if Λ is a Galois exten-

I

sion of R with G, then each ΛjEf is a Galois extension of ΛE, with G,
which implies that each element of G operates faithfully on each Λl?, .
The converse is clear.

Lemma 8. Let C be a commutative separable R-algebra as above, and
R = C°. C is a Galois extension of R with G if and only if for σΦl
in G there exist no idempotents e such that σ\Ce = ICe.

Proof. Let σΦl. If there exists e such that σ\Ce = ICey then σ(C(l
— e)) = C(l — e). Hence, σ is not strongly distinct from 1. Conversely,
if σ is not strongly distinct from 1, then there exists an idempotent e
such that σ(x)e = xe for all x<=C. We may assume that e is primitive.
Then σ(e) = e. Hence, σ\Ce-=ICe.

Proposition 9. Let A be a Galois extension of R with G. We assume
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R=Rel®Re2. Then Ae{ is a Galois extension of Ref with group G and
Λ = Λ01φΛ02. Let Hy Hi be central subgroup of G in A and Aiy respectively.
Then C = AH if and only if (eίA)Ht = Cei and H=H1 = H2.

Proof. We note tnat C = AH if and only if C is a Galois extension
of R with G/H (see [3], and [11]). It is clear that H^H^H2. We
assume C = AH. Then if σ<£/f, σ C^ Φ/ C e ί by Lemma 8. Hence, H^Hi
and H=H1 = H2. (Ae^i^C. Therefore, (Aei)

Hi = Cei. The converse is
clear.

Thus, we may assume that R is indecomposable and there exists
only a finite number of primitive idempotents e{ in C. Since σ(e^)
is also primitive, Λ0, is isomorphic to each other and a decomposition
group Tg induces the group of automorphism of Λef . It is clear that
Aβt is a Galois extension of Re{ with Tf (cf. [3]).

Theorem 10. Let R be indecomposable and A a Galois extension of
R with G. Then AH=C if and only if the central group H1 in 7\ is a
normal subgroup in G.

Proof. As above we have Λ = Σ θ Λ e , and Λ0, is a Galois extension
of Re{ with Tf . Since Cef is indecomposable, Cei = (Aei)

Hi. by [11],
Theorem 2. Let G=T1+τ2T1+ - + τsT1. Then it is clear that T^TfT.rT1

by rearranging et and Hi = τiHlτTl. By the same argument as the above
proof we have AH=C if and only if H=H1 = τ2H1τzl = ' '.

We conclude this section with the following.

Proposition 11. Let Λ be a separable R- algebra with group G. We
assume that R = AG is indecomposable. Then Λ is a Galois extension of
R with G if and only if an indecomposable component Λ^ of Λ is a Galois
extension of Re{ with T{ , where Tg is the decomposition group of e{ .

Proof. The "only if" part is clear. We assume that Ae1 is a Galois
extension of Re1 with Tλ. Let Λ = Λ01® φΛ0 ί. We use the same
argument as in [6], p. 70. Let Tt be the decomposition group of e{

and G = T ί + σff2TίH ----- VσitTi = Ti-
]rTiσi2Λ ----- hT f σ ί f ί. We may assume

')3Δ(Λ,., TV), where Λ,-Λ^ .

Δ(Λ, G) = i

ΦΔ(Λ2, T2)ΘΔ(Λ2, T 2 K 2 i 2 θ - ΦΔ(Λ2,

ΘΔ(Λ,, T,)ΘΔ(Λ,, T,K^2® ... θΔ(Λ ί f Tt)uσft

as a module.
From the assumption we have Δ(Λi, T^Hom^A^ ΛJ. We have
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a natural homomorphism φ of Δ(Λ, G) to Hom^Λ, Λ) =

Λ0,, ΛgiΦ φΛtf,). We consider an operation of £>(Δ(ΛZ , T t )wσ< y) on

Λ ^ . If σij(ek} = ei, φ(A(A.t, T ίK ί,y)(Λ^) = 9>(Δ(Λί, T.OXΛ*,)- Since Λ, is

a Galois extension of /?0t 9>(Δ(Λ, , T t ))^Δ(Λ ί , T,-)=-Hom^(Λ^, Λ^ )

Hence, Δ(Λ, , T K ^ « ^(Δ(Λf , T K ^ ) - Ή.omR(Aek, Λβf ) and ^(Δ(Λ, ,

^ α<rf ,y)(Λ0Λ/) = (0) if &Φ&'. Conversely, we can find, for Homj>(Λ^, Λ0y),

Δ(ΛsTs)uσ such that 9?(Δ(Λ5, Ts>O^Hom/?(Λ£z ,
 Λ ^ y ) . Hence, ^ is

isomprphic. Therefore, Λ is a Galois extension of R with G.
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