SUPPLEMENTARY RESULTS ON GALOIS EXTENSION

MANABU HARADA

(Received June 12, 1965)

Recently, Galois theory of commutative ring has been developed by Auslander, Chase, Goldman, Harrison and Rosenberg in [1], [2] and many important results in it has been generalized for separable Ralgebra by DeMeyer, Kanzaki and Takeuchi in [3], [8], [9], [10] and [11]. There are some equivalent definitions of a Galois extension, which will be given in §1.

Let Λ be an *R*-algebra which is a finitely generated *R*-module and *G* a finite group of *R*-automorphisms of Λ .

In §2 we consider some relations between Λ^T and $V_{\Lambda}(\Lambda^T)$ for a Galois extension Λ with G and for a subgroup T, which contains some results in [3], [10] and [11]. We give a sufficient condition of Λ being a central Galois, which is a converse of [10], Theorem 2.

In §3 we study a criterion of the center C of Λ being a Galois extension. Let e be a primitive idempotent in C and $T = \{\sigma \mid \in G, \sigma(e) = e\}$ and $H = \{\sigma \mid \in T, \sigma \text{ induces the identity mapping on the center of <math>\Lambda e\}$. Under an assumption that R is indecomposable, we obtain that C is a Galois extension of R if and only if H is a normal subgroup in G, which is a generalization of [10], Proposition 10.

The author would like to express his thanks to Professor T. Kanzaki for many useful suggestions.

1. Definitions and notations.

Let R be a commutative ring with identity and Λ an R-algebra. We always assume that every R-algebra is finitely generated R-module. A group G means a finite group of R-algebra automorphisms of Λ . We recall the definition of Galois extension.

Let Γ be the fixed ring of G, which we denote by Λ^G . If Λ satisfies one of the following conditions, then we call Λ a *Galois extension of* Γ with G:

I. Λ is a finitely generated projective right Γ -module and $\Delta(\Lambda, G)$ is isomorphic to Hom_{Γ}(Λ, Λ) by defining $(\lambda u_{\sigma}) \cdot \mu = \lambda \sigma(\mu)$, where $\Delta(\Lambda, G)$ is a trivial crossed product with basis u_{σ} and $\lambda, \mu \in \Lambda$.

II. There exist elements x_i , y_i in Λ such that $\sum_i x_i y_i = 1$, $\sum_i x_i \sigma(y_i) = 0$ if $\sigma \neq 1$.

We call such $\{x_i, y_i\}$ a Galois generator.

We know that this definition is symmetric with respect to right and left. By $c(\Lambda)$ we menas the center of Λ and we dente it by C sometimes.

We note that many results in [2] for a commutative case are valid with a slight modification for a non-commutative case. So we quote them without proof.

2. Central Galois extension

Let G be a finite group of automorphism of Λ as an R-algebra. We put $J_{\sigma} = \{x \mid \in \Lambda, xy = \sigma(y)x \text{ for all } y \text{ in } \Lambda\}$ for $\sigma \in G$. Then it is clear that J_{σ} is a C-module, $J_{\sigma}J_{\tau} \subseteq J_{\sigma\tau}$ and $J_1 = C$, where C is the center of Λ . First, we give a converse of [10], Theorem 2.

Theorem 1. Let Λ be a separable *R*-algebra with automorphism group G. If $\Lambda = \sum_{\sigma \in \mathcal{G}} \bigoplus J_{\sigma}$ and $J_{\sigma}J_{\sigma-1} = C$ for any σ in G, then Λ is a Galois extension of the center C with G.

Proof.¹⁾ Since Λ is *R*-separable, Λ is central separable by [1], Theorem 2.3. Hence, $\operatorname{Hom}_{C}(\Lambda, \Lambda) \approx \Lambda_{r} \bigotimes_{\sigma} \Lambda_{l}$ by [1] Theorem 2.1, where Λ_{r} (resp. Λ_{l}) means the set of multiplications of elements in Λ from the right (resp. left) side. $\Lambda_{r} = \sum \bigoplus (J_{\sigma})_{r}$. It is clear that $(J_{\sigma})_{r} = (J_{\sigma})_{l}\sigma^{-1}$. Hence, $\Lambda_{r} \bigotimes_{\sigma} \Lambda_{l} = \sum \bigoplus (J_{\sigma})_{l} \Lambda_{l}\sigma^{-1} = \sum \bigoplus (J_{\sigma}\Lambda)_{l}\sigma^{-1} = \sum \Lambda_{l}\sigma = \Delta(\Lambda, G)$ since $J_{\sigma}\Lambda = \Lambda$ by the assumption.

The converse of the following corollary was given in [3], [13] and we shall consider it later.

Corollary. Let Λ and C be as above. We assume that G consists of inner-automorphisms which is induced by unit elements u_{σ} . If $\Lambda = \sum \oplus Cu_{\sigma}$, then Λ is a Galois extension of C with G.

Proof. It is clear that $J_{\sigma}=Cu_{\sigma}$ and $J_{\sigma}J_{\sigma-1}=C$.

Proposition 2. Let Λ be a separable *R*-algebra with automorphism group *G*. If $R = \Lambda^G$ and $J_{\sigma} = 0$ for $\sigma \neq 1$, then Λ is a Galois extension of *R* and Λ is a commutative ring. The converse is also true.

344

¹⁾ The first proof was a little longer and Prof. Kanzaki pointed out this proof to the author.

Proof. We define an automorphism ψ of $\Lambda \bigotimes_{p} \Lambda$ by setting $\psi(\lambda \otimes \mu) =$

 $\lambda \otimes \sigma(\mu)$. Since Λ is separable over R, then there exist elements x_i, y_i in Λ such that $\sum x_i y_i = 1$ and $x(\sum x_i \otimes y_i) = (\sum x_i \otimes y_i)x$ for all $x \in \Lambda$. Hence, $x \sum x_i \otimes \sigma(y_i) = \sum x_i \otimes \sigma(y_i)\sigma(x)$. Therefore, $x \sum x_i \sigma(y_i) = \sum x_i \sigma(y_i)\sigma(x)$, which means $\sum x_i \sigma(y_i) \in J_{\sigma^{-1}} = (0)$ if $\sigma \neq 1$. Thus, we can find a Galois generator $\{x_i, y_i\}$. Hence, Λ is a Galois extension of R and $\Lambda = V_{\Lambda}(\Lambda^c) = C \oplus J_{\sigma} \oplus \cdots$ = C by [10], Proposition 1.

Proposition 3. Let Λ be a Galois extension of R with G and $C = \Lambda^H$ for a subgroup H. Then $H \cap T = (1)$ for a subgroup T of G if and only if $V_{\Lambda}(\Lambda^T) = C$. In this case we have $\Lambda^S = C^S \bigotimes_{T} \Lambda^T$ for $S \subseteq T$.

Proof. We assume $H \cap T = (1)$. Then *T* is isomorphic to the induced automorphism group T | C. Hence, $\Lambda = C\Lambda^T$ by [3], Lemma 2. Therefore, $V_{\Lambda}(\Lambda^T) = V_{\Lambda}(C\Lambda^T) = C$. If $V_{\Lambda}(\Lambda^T) = C$, then $c(\Lambda^T) = C \cap \Lambda^T = C^T$. *C* and Λ are Galois extensions of C^T and Λ^T , respectively. Hence, $C \otimes \Lambda^T$ is a Galois extension of Λ^T . Since $c(C \otimes \Lambda^T) = C$ and $C \otimes \Lambda^T$ is separable, $C \otimes \Lambda^T \approx C\Lambda^T$. Hence, $C\Lambda^T$ and Λ are Galois extensions of Λ^T with *T*. Therefore, $C\Lambda^T = \Lambda$ by [2], Theorem 3.4, which means $H \cap T = (1)$. The last part is clear from [3], Lemma 2.

For a twised group ring the following lemma is well known.

Lemma 4. Let $\Delta(\Lambda, G)$ be a trivial crossd product of R-algebra Λ and $H = \{\sigma | \in G, \sigma | c(\Lambda) = I_{c(\Lambda)}\}$. If Δ is R-separable then the order |H|of H is a unit in R and $\operatorname{Tr}_{G}(\Lambda) = \Lambda^{G}$.

Proof. Let $\Delta = \Delta(\Lambda, G) = \Lambda \oplus \Lambda \sigma \oplus \cdots$. Since Δ is *R*-separable, there exists an element θ in $\Delta \bigotimes_{R} \Delta$ such that $\varphi(\theta) = 1$ and $\delta \theta = \theta \delta$ for $\delta \in \Delta$, where φ is a natural homomorphism of $\Delta \otimes \Delta$ to Δ . Let $\theta = \sum \bigoplus_{i} a_{\sigma,\tau}(\sigma \otimes \tau)$, where $a_{\sigma,\tau} = \sum_{i} \lambda_t(\sigma, \tau) \otimes \mu_t(\sigma, \tau) \in \Lambda \bigotimes_{R} \Lambda$. Since $\lambda \theta = \theta \lambda$ for $\lambda \in \Lambda$, we can easily see that $\varphi(a_{1,1})$ is in *C*. Furthermore, by the standard argument we has

(1)
$$\varphi(a_{1,1}) = \sum \rho(\lambda_t(\rho^{-1}, \rho) \cdot \mu_t(\rho^{-1}, \rho)) \quad \text{for} \quad \rho \in G.$$

Let $G = H + H\tau_2 + \dots + H\tau_s$. Replacing ρ^{-1} by $\xi\tau_i$ in (1) we have $\tau_i^{-1}\varphi(a_{1,1}) = \sum \lambda_i(\sigma^{-1}, \sigma)\sigma^{-1}(\mu_i(\sigma^{-1}, \sigma))$, where $\sigma = \xi\tau_i$. Therefore, $1 = \varphi(\theta) = |H|(\varphi(a_{1,1})) + \tau_2^{-1}(\varphi(a_{1,1})) + \dots + \tau_s^{-1}(\varphi(a_{1,1})) = |H| \operatorname{Tr}_{G/H}(\varphi(a_{1,1}))$. Hence |H| is a unit in R and $\operatorname{Tr}_G(\Lambda) = \Lambda^G$.

The following is a slight generalization of [10], Proposition 5.

Proposition 5. Let Λ be a Galois extension of Λ^{G} with G and H =

 $\{\sigma \mid \in G, \sigma \mid C = I_C\}$. We assume Λ^G is R-separable. Then $\mid H \mid$ is a unit in R and $\operatorname{Tr}_G(\Lambda) = \Lambda^G$.

Proof. By [8], Proposition 4 we know that $\Delta(\Lambda, G)$ is *R*-separable.

Proposition 6. Let Λ be a Galois extension of an *R*-separable algebra Λ^G with *G*. Let *H* be a subgroup of *G*. Then the center of Λ^H is equal to *C* if and only if $V_{\Lambda}(\Lambda^H)$ is a Galois extension of *C* with *H*.

Proof. We put $\Gamma = \Lambda^H$ and $\Omega = V_{\Lambda}(\Lambda^H)$. If the center of Γ is equal to C, then $\Lambda = \Gamma \bigotimes_{c} \Omega$ by [1], Theorem 3.3. We note that H induces an automorphism group on Ω . Hom_c $(\Omega, \Omega) \bigotimes_{c} \Gamma \approx \text{Hom}_{\Gamma}(\Omega \bigotimes_{c} \Gamma, \Omega \bigotimes_{c} \Gamma) \approx \Delta(\Omega \bigotimes$ $\Gamma, H)$ since Λ is a Galois extension of Γ by [11], Theorem 1 and Ω is C-projective. Furthermore, $\Delta(\Omega \bigotimes_{c} \Gamma, H) \approx \Delta(\Omega, H) \bigotimes_{c} \Gamma$. In the above isomorphism we can easily check that $\Delta(\Omega, H)$ is isomorphic to $\text{Hom}_{c}(\Omega, \Omega)$ Ω by the natural mapping. Hence, $C = c(\text{Hom}_{c}(\Omega, \Omega)) = V_{\text{Hom}_{c}(\Omega,\Omega)}(\Delta(\Omega, H)) = \Omega^{H}$. Therefore, Ω is a Galois extension of C with H. Conversely, it is clear that $c(\Gamma) = c(\Omega)$. Let x be in that center. Then $x \in V_{\Lambda}(\Omega) \cap \Omega$ $= \Lambda^{H} \cap \Omega = \Omega^{H} = C$ by [8], Theorem 2. Hence, C is the center of Γ .

Corollary. Let Λ be as above and Γ a separable C-subalgebra. Let $H = \{\sigma \mid \in G, \sigma(x) = x \text{ for } x \in V_{\Lambda}(\Gamma)\}$. Then H induces an automorphism group of Γ . If $\Gamma^{H} = C$, then Λ and Γ are Galois extensions of $V_{\Lambda}(\Gamma)$ and C with H, respectively.

Proof. Since $V_{\Lambda}(V_{\Lambda}(\Gamma)) = \Gamma$, the first part is clear. Let x be in the center of Λ^{H} . Since $\Lambda^{H} \supseteq V_{\Lambda}(\Gamma)$, $x \in \Gamma \cap \Lambda^{H} = \Gamma^{H} = C$. Hence $V_{\Lambda}(\Lambda^{H})$ is a Galois extension of C with H by Proposition 6. Furthermore, $V_{\Lambda}(\Lambda^{H}) \subseteq \Gamma$. If we apply [2], Theorem 3.4 to the inclusion map, we have $\Gamma = V_{\Lambda}(\Lambda^{H})$. Hence, $V_{\Lambda}(\Gamma) = \Lambda^{H}$.

Corollary. Let Λ be a Galois extension of Λ^G with G. We assume Λ^G is R-separable. Let H be an inner-subgroup of G which is induced by unit elements u_{σ} and $A = \sum C u_{\sigma}$. Then the following conditions are equivalent.

1)
$$c(\Lambda^H) = C.$$

2) $\Lambda = A \otimes \Lambda^{H}$.

3) A is a Galois extension of C with H.

In this cases $A = \Sigma \oplus Cu_{\sigma}$.

Proof. It is clear that A is C-algebra and $V_{\Lambda}(A) = \Lambda^{H}$. Since |H| is a unit by Lemma 4, A is C-separable by [5], Lemma 4. Hence,

 $V_{\Lambda}(\Lambda^{H}) = A$ by [8], Theorem 2. Therefore, we have the first part by Proposition 6, since $c(A) = c(\Lambda^{H})$. Since $A_r \otimes \Lambda_I \approx \Delta(\Lambda, H) A = \sum \bigoplus C u_{\sigma}$.

3. Central subgroup.

Let Λ be a Glois extension of R with G and C the center of Λ . Let $H = \{\sigma \mid \in G, \sigma \mid C = I_C\}$. We call H the central subgroup of G.

In this section we study a criterion of C being the fixed ring of H.

First, we consider a criterion of a separable subalgebra Γ of Λ being a fixed subalgebra of a subgroup T.

In commutative case we know a condition "strongly distinct" (see [2], p. 16) and it was shown in [2] that this condition gives a criterion of the above. We shall generalize this condition to a case of non-commutative ring.

Let f, g be homomorphisms of R-algebra Γ to Λ $(f \neq g)$. We consider a condition:

(*) For any $x \neq 0$ in Λ we can find y in Γ such that

$$x\Lambda(f(y)-g(y)) \neq (0).$$

If Λ and Γ are commutative and (*) is satisfied, then f and g are strongly distinct. Conversely, we assume $\Lambda = \Gamma$ and Λ is *R*-separable. If f, g are strongly distinct two automorphisms of Λ , then there exist elements x_i , y_i in Λ such that $\sum_i x_i y_i = 1$ and $\sum x_i f^{-1}g(y_i) = 0$ by [2], Lemma 1.2. Hence, $1 = \sum x_i(y_i - f^{-1}g(y_i)) = \sum f(x_i)(f(y_i) - g(y_i))$. Therefore, (*) is satisfied.

We note that if Λ is a Galois extension of R with G and T a subgroup, then Λ^T is R-separable (see, [9]).

Theorem 7. Let Λ be a Galois extension of R with G and Γ a separable R-subalgebra of Λ . We put $T = \{\sigma | \in G, \sigma | \Gamma = I_{\Gamma}\}$. Then $\Gamma = \Lambda^{T}$ if and only if distinct two elements σ, τ in G satisfy the above (*) on Γ condition.

Proof. We assume $\Gamma = \Lambda^T$. Then there exist x_i , y_i in Γ such that $\sum x_i y_i = 1$ and $\sum x_i \tau(y_i) = 0$ if $\tau \notin T$ by [2], p. 23. Hence, Γ satisfies (*). Conversely, we assume Γ satisfies (*). $\mathfrak{a} = \operatorname{Hom}_R(\Lambda, \Lambda) \approx \Delta(\Lambda, G) = \sum \bigoplus \Lambda_l \cdot \tau$ and $\operatorname{Hom}_{\Gamma}^r(\Lambda, \Lambda) = V_\mathfrak{a}(\Gamma_r)$. Let x be in $V_\Lambda(\Gamma_r)$. $x = x(1)_l + x(\sigma)_l \sigma + \cdots$. Since $\gamma_r x = x\gamma_r$ for any $\gamma \in \Gamma$, we have $\gamma_r x(\sigma)_l = x(\sigma)_l \gamma_r = x(\sigma)_l \sigma(\gamma)_r$. Hence, $x(\sigma)\Lambda(\gamma - \sigma(\gamma)) = (0)$. Since Γ satisfies (*), if $\sigma \notin T$, $x(\sigma) = 0$. Therefore, $\operatorname{Hom}_{\Gamma}(\Lambda, \Lambda) = \sum_{\tau \in T} \bigoplus \Lambda_l = \Delta(\Lambda, T)$. Since $c(\mathfrak{a}) = R$ and

 Γ_r is sepapable *R*-algebra, $\Gamma_r = V_{\Lambda}(V_{\Lambda}(\Gamma_r)) = V_{\Lambda}(\Delta(\Lambda, T)) = (\Lambda^T)_r$ by [8], Theorem 2.

Corollary. Let Λ , Γ , G and T be as above. We assume that R is a hereditary ring. Then $\Gamma = \Lambda^T$ for a subgroup T if and only if Γ is G-strong, (see the definition in [2], p. 22).

Proof. It is sufficient to show that the condition "G-strong" implies the above condition (*), if R is hereditary. We note that if $x\Lambda$ is Λ projective, then $x\Lambda \approx e\Lambda$ for an idempotent e. Hence, if $x\Lambda(y-\sigma(y))=0$ for all $y \in \Gamma$ and $\sigma \notin T$, then $e\Lambda(y-\sigma(y))=(0)$. Hence, e=0 and x=0. Thus, we may show that Λ is right hereditary. Since $\Delta(\Lambda_r, G) \approx \operatorname{Hom}_{\mathbb{R}}^i(\Lambda, \Lambda)$ and Λ is R-projective, $\Delta(\Lambda_r, G)$ is right hereditary by [5], Lemma 1.2. Hence, Λ_r is right hereditary by [4], Proposition 10.

REMARK. We can easily extend the same argument of [2], §2 to a non-commutative case except Theorem 2.2 in [2]. Theorem and its corllary are concerned with that theorem.

Finally, we consider the problem mentioned in the beginning of this section. Namely we consider the case in which T is the central group and $\Gamma = C$ in Theorem 7.

We always assume that C is a direct sum of indecomposable ideals (e.g. if R is indecomposable, then C is as above, see [7], Theorem 7). Let e_1, e_2, \dots, e_n be the set of primitive idempotents in C. Let $T_i = \{\sigma | \in G, \sigma(e_i) = e_i\}$. We call T_i a decomposition group of e_i . We can classify e_i by a relation $e_i \equiv e_j$ if $e_j = \sigma(e_i)$ for some $\sigma \in G$. Let e_i be one of the classes. Then $E_i = \sum_{e_i \in e_1} e_i$ is an idempotent and $E_i \in \Lambda^G = R$. In this case $\Lambda = \sum_i \bigoplus \Lambda E_i$ and we can easily see that if Λ is a Galois extension of R with G, then each ΛE_i is a Galois extension of RE_i with G, which implies that each element of G operates faithfully on each ΛE_i .

Lemma 8. Let C be a commutative separable R-algebra as above, and $R=C^{G}$. C is a Galois extension of R with G if and only if for $\sigma \pm 1$ in G there exist no idempotents e such that $\sigma | Ce = I_{Ce}$.

Proof. Let $\sigma \neq 1$. If there exists e such that $\sigma | Ce = I_{Ce}$, then $\sigma(C(1 - e)) = C(1 - e)$. Hence, σ is not strongly distinct from 1. Conversely, if σ is not strongly distinct from 1, then there exists an idempotent e such that $\sigma(x)e = xe$ for all $x \in C$. We may assume that e is primitive. Then $\sigma(e) = e$. Hence, $\sigma | Ce = I_{Ce}$.

Proposition 9. Let Λ be a Galois extension of R with G. We assume

348

 $R = Re_1 \oplus Re_2$. Then Λe_i is a Galois extension of Re_i with group G and $\Lambda = \Lambda e_1 \oplus \Lambda e_2$. Let H, H_i be central subgroup of G in Λ and Λ_i , respectively. Then $C = \Lambda^H$ if and only if $(e_i \Lambda)^{H_i} = Ce_i$ and $H = H_1 = H_2$.

Proof. We note that $C = \Lambda^H$ if and only if C is a Galois extension of R with G/H (see [3], and [11]). It is clear that $H \subseteq H_1 \cap H_2$. We assume $C = \Lambda^H$. Then if $\sigma \notin H$, $\sigma | Ce_i \neq I_{Ce_i}$ by Lemma 8. Hence, $H \supseteq H_i$ and $H = H_1 = H_2$. $(\Lambda e_i)^{H_i} \subseteq C$. Therefore, $(\Lambda e_i)^{H_i} = Ce_i$. The converse is clear.

Thus, we may assume that R is indecomposable and there exists only a finite number of primitive idempotents e_i in C. Since $\sigma(e_i)$ is also primitive, Λe_i is isomorphic to each other and a decomposition group T_i induces the group of automorphism of Λe_i . It is clear that Λe_i is a Galois extension of Re_i with T_i (cf. [3]).

Theorem 10. Let R be indecomposable and Λ a Galois extension of R with G. Then $\Lambda^{H} = C$ if and only if the central group H_{1} in T_{1} is a normal subgroup in G.

Proof. As above we have $\Lambda = \sum \bigoplus \Lambda e_i$ and Λe_i is a Galois extension of Re_i with T_i . Since Ce_i is indecomposable, $Ce_i = (\Lambda e_i)^{H_i}$. by [11], Theorem 2. Let $G = T_1 + \tau_2 T_1 + \cdots + \tau_s T_1$. Then it is clear that $T_i = \tau_i T_1 \tau_i^{-1}$ by rearranging e_i and $H_i = \tau_i H_1 \tau_i^{-1}$. By the same argument as the above proof we have $\Lambda^H = C$ if and only if $H = H_1 = \tau_2 H_1 \tau_2^{-1} = \cdots$.

We conclude this section with the following.

Proposition 11. Let Λ be a separable R-algebra with group G. We assume that $R = \Lambda^G$ is indecomposable. Then Λ is a Galois extension of R with G if and only if an indecomposable component Λe_i of Λ is a Galois extension of Re_i with T_i , where T_i is the decomposition group of e_i .

Proof. The "only if" part is clear. We assume that Λe_1 is a Galois extension of Re_1 with T_1 . Let $\Lambda = \Lambda e_1 \oplus \cdots \oplus \Lambda e_t$. We use the same argument as in [6], p. 70. Let T_i be the decomposition group of e_i and $G = T_i + \sigma_{i,2}T_i + \cdots + \sigma_{i,t}T_i = T_i + T_i\sigma_{i,2} + \cdots + T_i\sigma_{i,t}$. We may assume $\Sigma \oplus \Lambda u_{\sigma} = \Delta(\Lambda, G) \cong \Delta(\Lambda_i, T_i)$, where $\Lambda_i = \Lambda e_i$.

as a module.

From the assumption we have $\Delta(\Lambda_1, T_1) \approx \operatorname{Hom}_R(\Lambda_1, \Lambda_1)$. We have

M. HARADA

a natural homomorphism φ of $\Delta(\Lambda, G)$ to $\operatorname{Hom}_{R}(\Lambda, \Lambda) = \operatorname{Hom}_{R}(\Lambda e_{1} \oplus \cdots \oplus \Lambda e_{i}, \Lambda e_{1} \oplus \cdots \oplus \Lambda e_{i})$. We consider an operation of $\varphi(\Delta(\Lambda_{i}, T_{i})u_{\sigma i,j})$ on Λe_{k} . If $\sigma_{i,j}(e_{k}) = e_{i}, \varphi(\Delta(\Lambda_{i}, T_{i})u_{\sigma i,j})(\Lambda e_{k}) = \varphi(\Delta(\Lambda_{i}, T_{i}))(\Lambda e_{i})$. Since Λ_{i} is a Galois extension of $Re_{i} \quad \varphi(\Delta(\Lambda_{i}, T_{i})) \approx \Delta(\Lambda_{i}, T_{i}) = \operatorname{Hom}_{R}(\Lambda e_{i}, \Lambda e_{i})$. Hence, $\Delta(\Lambda_{i}, T_{i})u_{\sigma i,j} \approx \varphi(\Delta(\Lambda_{i}, T_{i})u_{\sigma i,j}) = \operatorname{Hom}_{R}(\Lambda e_{k}, \Lambda e_{i})$ and $\varphi(\Delta(\Lambda_{i}, T_{i})u_{\sigma i,j})(\Lambda e_{k'}) = (0)$ if $k \neq k'$. Conversely, we can find, for $\operatorname{Hom}_{R}(\Lambda e_{i}, \Lambda e_{j})$, $\Delta(\Lambda_{s}, T_{s})u_{\sigma}$ such that $\varphi(\Delta(\Lambda_{s}, T_{s})u_{\sigma}) \approx \operatorname{Hom}_{R}(\Lambda e_{i}, \Lambda e_{j})$. Hence, φ is isomprphic. Therefore, Λ is a Galois extension of R with G.

OSAKA CITY UNIVERSITY

References

- [1] M. Auslander and O. Goldman: The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960) 337-409.
- [2] S.U. Chase, D.K. Harrison and A. Rosenberg: Galois theory and Galois cohomology of commutative ring, Mem. Amer. Math. Soc. no. 52 (1965).
- [3] F. R. DeMeyer: Some note on the general Galois theory of ring, Osaka J. Math. 2 (1965) 117-127.
- [4] M. Harada: Note on dimension of modules and algebras, J. Inst. Polyt. Osaka City Univ. 7 (1956) 17-27.

- [7] D. K. Harrison: Abelian extension of commutative rings, Mem. Amer. Math. Soc. no. 52, (1965).
- [8] T. Kanzaki: On commutor ring and Galois theory of separable algebras, Osaka, J. Math. 1 (1964) 103-115.

- [11] Y. Takeuchi: On Galois extensions over commutative rings, Osaka J. Math. 2 (1965) 137-145.

350