Harada, M.
Osaka J. Math.
2 (1965), 343-350

SUPPLEMENTARY RESULTS ON GALOIS EXTENSION

Manasu HARADA

(Received June 12, 1965)

Recently, Galois theory of commutative ring has been developed by
Auslander, Chase, Goldman, Harrison and Rosenberg in [17], [2] and
many important results in it has been generalized for separable R-
algebra by DeMeyer, Kanzaki and Takeuchi in [3], [8], [9], [10] and
[11]. There are some equivalent definitions of a Galois extension, which
will be given in §1.

Let A be an R-algebra which is a finitely generated R-module and
G a finite group of R-automorphisms of A.

In §2 we consider some relations between AZ and V,(A7) for a
Galois extension A with G and for a subgroup 7, which contains some
results in [3], [10] and [11]. We give a sufficient condition of A being
a central Galois, which is a converse of [107], Theorem 2.

In §3 we study a criterion of the center C of A being a Galois
extension. Let ¢ be a primitive idempotent in C and T={s|<G,
o(e)=¢} and H={s|=T, o induces the identity mapping on the center
of A¢}. Under an assumption that R is indecomposable, we obtain that
C is a Galois extension of R if and only if H is a normal subgroup in
G, which is a generalization of [10], Proposition 10.

The author would like to express his thanks to Professor T. Kanzaki
for many useful suggestions.

1. Definitions and notations.

Let R be a commutative ring with identity and A an R-algebra.
We always assume that every R-algebra is finitely generated R-module.
A group G means a finite group of R-algebra automorphisms of A. We
recall the definition of Galois extension.

Let T" be the fixed ring of G, which we denote by A¢. If A satisfies
one of the following conditions, then we call A a Galois extension of T’
with G:

I. A is a finitely generated projective right I'-module and A(A, G)
is isomorphic to Hom (A, A) by defining (A #,):u=no(u), where A(A, G)
is a trivial crossed product with basis #, and )\, pEA.
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II. There exist clements x;, y; in A such that >3 x,y,=1, > x,0(9:)=0

if o=1.

We call such {x;, y;} a Galois generator.

We know that this definition is symmetric with respect to right
and left. By c¢(A) we menas the center of A and we dente it by C

sometimes.
We note that many results in [2] for a commutative case are valid

with a slight modification for a non-commutative case. So we quote them
without proof.

2. Central Galois extension

Let G be a finite group of automorphism of A as an R-algebra.
We put J,={x|€A, xy=0(y)x for all y in A} for c=G. Then it is
clear that J, is a C-module, J,J.CJ,. and J,=C, where C is the center
of A. First, we give a converse of [10], Theorem 2.

Theorem 1. Let A be a separable R-algebra with automorphism group
G. If Azﬂg@], and J,J,.,=C for any o in G, then A is a Galois

extension of the center C with G.

Proof.® Since A is R-separable, A is central separable by [1],
Theorem 2.3. Hence, Hom (A, A)=~A,QA; by [1] Theorem 2.1, where
c

A, (resp. A;) means the set of multiplications of elements in A from
the right (resp. left) side. A,=>'®(J,),. It is clear that (/,),=(/],).c"
Hence, A,@A;=2O([ )b =2 O(LA)o™ =21A0=A(A, G) since

J.,A=A by the assumption.
The converse of the following corollary was given in [3], [13] and
we shall consider it later.

Corollary. Let A and C be as above. We assume that G consists of
inner-automorphisms whick is induced by wunit elements wu,. If A=
IPBCu,, then A is a Galois extension of C with G.

Proof. It is clear that J,=Cu, and J,J,_,=C.

Proposition 2. Let A be a separable R-algebra with automorphism
group G. If R=A® and J,=0 for o=*1, then A is a Galois extension of
R and A is a commutative ring. The converse is also true.

1) The first proof was a little longer and Prof. Kanzaki pointed out this proof to the

author.
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Proof. We define an automorphism v» of AQA by setting Jr(AQ u)=

A®oao(u). Since A is separable over R, then there exist elements x;, y;
in A such that >x;y,=1and x> x,;Qy;)=Cx;Qy;)x for all r=A. Hence,
x22%:Q0(9:)=22%:Q0(y:)o(x). Therefore, 43 x,0(y;) =2 x:0(y;)o(x), which
means > x;0(y,)E],.,=(0) if o+1. Thus, we can find a Galois generator
{x;, v;}. Hence, A is a Galois extension of R and A=V, (A®)=CPHJ,D---
=C by [10], Proposition 1.

Proposition 3. Let A be a Galois extension of R with G and C=A"
for a subgroup H. Then HNT=(Q) for a subgroup T of G if and only
if Vi(AT)=C. In this case we have AS=CS Q AT for SCT.

CT

Proof. We assume HNT=(1). Then T is isomorphic to the induced
automorphism group 7|C. Hence, A=CA7 by [3], Lemma 2. Therefore,
VAAT)=V(CAT)=C. If V,(AT)=C, then (AT)=CNAT=CT. C and
A are Galois extensions of CT and A7, respectively. Hence, C®AT is a

Galois extension of A7. Since ¢(CQAT)=C and CRQAT is separable
CRAT~CAT. Hence, CAT and A are Galois extensions of A7 with 7.
Therefore, CAT=A by [2], Theorem 3.4, which means HN T=(1). The
last part is clear from [3], Lemma 2.

For a twised group ring the following lemma is well known.

Lemma 4. Let A(A, G) be a trivial crossd product of R-algebra A
and H={c| =G, o |c(A)=In}. If A is R-separable then the order |H|
of H is a unit in R and Try(A)=AC.

Proof. Let A=A(A, G)=ADPAcD ---. Since A is R-separable, there
exists an element 6 in AQA such that @(@)=1 and 8=05 for €A,
R

where o is a natural homomorphism of AQA to A. Let §=2>Pa, (cQ®1),
where a,.=2\(0, T)Qulo, VEAQA. Since N0=0\ for A=A, we can
t R

easily see that ¢(e,,) is in C. Furthermore, by the standard argument
we has

1) o(a,,) = ZP(M(P", P)ulph p) for peG.

Let G=H+Hr,+ -+ Hr,. Replacing p~* by &7, in (1) we have 77 ¢p(a, ,)=
2N (o7 o) (pla™!, o), where o =E7;. Therefore, 1=9(0)=|H|(p(a, )
+r7(@(a, )+ -+ (@(a,,)) = | H| Trgu(p(a, ). Hence |H|is a unit in R
and Trg(A)=AC.

The following is a slight generalization of [10], Proposition 5.

Proposition 5. Let A be a Galois extension of A® with G and H=
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{o1€G, o|C=1}. We assume AC is R-separable. Then |H| is a unit in
R and Trg(A)=A°C.

Proof. By [8], Proposition 4 we know that A(A, G) is R-separable.

Proposition 6. Let A be a Galois extension of an R-separable algebra
A€ with G. Let H be a subgroup of G. Then the center of A¥ is equal
to C if and only if V,(AH) is a Galois extension of C with H.

Proof. We put I'=A¥ and Q=V,(Af). If the center of T is equal
to C, then A=T®Q by [1], Theorem 3.3. We note that H induces an
4

automorphism group on Q. Hom (Q, Q)QT'~Hom (QRXT, QRQT)~AQQ
4 c c

I, H) since A is a Galois extension of I" by [11], Theorem 1 and Q is
C-projective. Furthermore, AQXT, H)=~A(Q, H)QT. In the above
4 [

isomorphism we can easily check that A(Q, H) is isomorphic to Hom/(Q,
Q) by the natural mapping. Hence, C=c(Hom(Q, Q))= Viom.a aAQ,
H))=Qf. Therefore, Q is a Galois extension of C with H. Conversely,
it is clear that ¢(I")=c(Q2). Let x be in that center. Then x€ V,(Q)NQ
=APNQ=0F=C by [8], Theorem 2. Hence, C is the center of T.

Corollary. Let A be as above and T a separable C-subalgebra. Let
H={s|€G, o(x)=x for x€V,()}. Then H induces an automorphism
group of T'. If TH=C, then A and T are Galois extensions of V(') and
C with H, respectively.

Proof. Since V, (V. (I'))=T, the first part is clear. Let x be in
the center of A#”. Since A2V, ("), x€T NA¥=T#=C. Hence V,(A¥)
is a Galois extension of C with H by Proposition 6. Furthermore,
VA(AE)CT. If we apply [2], Theorem 3.4 to the inclusion map, we
have I'=V,(A¥). Hence, V,(T')=A~

Corollary. Let A be a Galois extension of A¢ with G. We assume
A€ is R-separable. Let H be an inner-subgroup of G which is induced by
unit elements u, and A=>Cu,. Then the following conditions are
equivalent.

1) «AH)=C.

2) A=ARQA".

c

3) A is a Galois extension of C with H.

In this cases A=3PCu,.

Proof. It is clear that A is C-algebra and V,(A)=Af. Since|H|is
a unit by Lemma 4, A is C-separable by [5], Lemma 4. Hence,
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Vi(AH)=A by [8], Theorem 2. Therefore, we have the first part by
Proposition 6, since ¢(A)=c(A¥). Since A,QA,~A(A, H) A=>®Cu,.

3. Central subgroup.

Let A be a Glois extension of R with G and C the center of A.
Let H={c|€G, o|C=1I.}. We call H the central subgroup of G.

In this section we study a criterion of C being the fixed ring of H.

First, we consider a criterion of a separable subalgebra T" of A
being a fixed subalgebra of a subgroup 7.

In commutative case we know a condition “strongly distinct” (see
[2], p. 16) and it was shown in [2] that this condition gives a criterion
of the above. We shall generalize this condition to a case of non-
commutative ring.

Let f, g be homomorphisms of R-algebra T to A (f=*g). We
consider a condition :

(*) For any x+0 in A we can find y in T such that
*A(f(9)—g(y) *(0).

If A and T are commutative and () is satisfied, then f and g are
strongly distinct. Conversely, we assume A=T and A is R-separable.
If 7, g are strongly distinct two automorphisms of A, then there exist
elements x;, y; in A such that >x,y,=1 and >\x;f'g(y;)=0 by [2],

Lemma 1. 2. Hence, 1=>x(y;,—f7'8(3:))=2f(x:)(f(y:)—&(»:)). There-
fore, (%) is satisfied.

We note that if A is a Galois extension of R with G and T a
subgroup, then AT is R-separable (see, [9]).

Theorem 7. Let A be a Galois extension of R with G and T a
separable R-subalgebra of A. We put T={c|EG, o|T'=1I3}. Then T'=
AT if and only if distinct two elements o, v in G satisfy the above
(x) on T condition.

Proof. We assume I'=A7. Then there exist x;, y; in T" such that
S'x;y;=1 and >lx7(y;)=0 if 7T by [2], p. 23. Hence, T satisfies (x).
Conversely, we assume I' satisfies (¥). a=Homg(A, A)=~A(A, G)=X1D
A;-r and Hom%i(A, A) = Vi(T',). Let x be in V,(T,). x= x(1),+
x(c)o+--+. Since v, x=zxv, for any yET, we have «v,x(c),=x(c)y,=
x(a);0(v),. Hence, x(c)A(y—o(y))=(0). Since T satisfies (), if o T,
x(c)=0. Therefore, Homp(A, A)=T§EBA,=A(A, T). Since c¢(a)=R and
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T', is sepapable R-algebra, T',=V,(V,(T',))=V.(A(A, T)=(AT), by [8],
Theorem 2.

Corollary. Let A, T, G and T be as above. We assume that R is
a hereditary ving. Then T'=A7 for a subgroup T if and only if T is
G-strong, (see the definition in [2], p. 22).

Proof. It is sufficient to show that the condition “G-strong” implies
the above condition (x), if R is hereditary. We note that if xA is A-
projective, then xA=e¢A for an idempotent e. Hence, if xA(y—o(»))=0 for
all yeT and o& 7, then ¢eA(y—o(y))=(0). Hence, e=0 and x=0. Thus,
we may show that A is right hereditary. Since A(A,, G)=~Homi(A, A)
and A is R-projective, A(A,, G) is right hereditary by [5], Lemma 1. 2.
Hence, A, is right hereditary by [4], Proposition 10.

REMARK. We can easily extend the same argument of [2], §2 to
a non-commutative case except Theorem 2.2 in [2]. Theorem and its
corllary are concerned with that theorem.

Finally, we consider the problem mentioned in the beginning of
this section. Namely we consider the case in which T is the central
group and I'=C in Theorem 7.

We always assume that C is a direct sum of indecomposable ideals
(e.g. if R is indecomposable, then C is as above, see [7], Theorem 7).

Let e, ¢, -, e, be the set of primitive idempotents in C. Let T;=
{o| =G, ole;)=e}. We call T; a decomposition group of e;. We can
classify e; by a relation ¢;=e; if ¢;=o(e;) for some s=G. Let ¢; be one
of the classes. Then E;= > ¢, is an idempotent and E,=A®=R. In

ee
this case A=>IPAE; and e\;velcan easily see that if A is a Galois exten-
sion of R with G, then each AE; is a Galois extension of RE; with G,
which implies that each element of G operates faithfully on each AE;.
The converse is clear.

Lemma 8. Let C be a commutative separable R-algebra as above, and
R=CC. C is a Galois extension of R with G if and only if for o=+1
in G there exist no idempotents e such that o|Ce=1I.,.

Proof. Let o=1. If there exists ¢ such that o|Ce=1I_,, then o(C(1
—e))=C(1—e). Hence, & is not strongly distinct from 1. Conversely,
if o is not strongly distinct from 1, then there exists an idempotent e
such that o(x)e=xe for all x=C. We may assume that ¢ is primitive.
Then o(e¢)=e. Hence, o |Ce=1I,,.

Proposition 9. Let A be a Galois extension of R with G. We assume
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R=Re, PRe,. Then Ae; is a Galois extension of Re; with group G and
A=Ae,PAe, Let H, H; be central subgroup of G in A and A;, respectively.
Then C=A" if and only if (e,AYi=Ce; and H=H,=H,.

Proof. We note tnat C=A¥ if and only if C is a Galois extension
of R with G/H (see [3], and [11]). It is clear that HC H,NH,. We
assume C=A#, Then if o€ H, o|Ce;+1.,; by Lemma 8. Hence, H2H,;
and H=H,=H,. (Ae,)*:=C. Therefore, (A¢,)¥i=Ce;. The converse is
clear.

Thus, we may assume that R is indecomposable and there exists
only a finite number of primitive idempotents e¢; in C. Since o(e;)
is also primitive, Ae; is isomorphic to each other and a decomposition
group 7T; induces the group of automorphism of Ae;. It is clear that
Ae; is a Galois extension of Re; with T, (cf. [3]).

Theorem 10. Let R be indecomposable and A a Galois extension of
R with G. Then A¥=C if and only if the central group H, in T, is a
normal subgroup in G.

Proof. As above we have A=>'PAe¢; and Ae; is a Galois extension
of Re; with T,;. Since Ce; is indecomposable, Ce;=(Ae;)"i. by [11],
Theorem 2. Let G=T,+r,T,+-+7,T,. Then it is clear that T;=+,Tr;*
by rearranging e¢; and H;=t;H ;. By the same argument as the above
proof we have A¥=C if and only if H=H,=r,Hr;'="---.

We conclude this section with the following.

Proposition 11. Let A be a separable R-algebra with group G. We
assume that R= A€ is indecomposable. Then A is a Galois extension of
R with G if and only if an indecomposable component Ae; of A is a Galois
extension of Re; with T;, where T; is the decomposition group of e;.

Proof. The “only if” part is clear. We assume that Ae, is a Galois
extension of Re, with 7,. Let A=AeP---PAe,. We use the same
argument as in [6], p. 70. Let 7, be the decomposition group of ¢
and G=T;+0;,T;++o;; T;=T;+Tio;,++Tio;,. We may assume
P Au,=A(A, G)2A(A,;, T,), where A;=Ae;.

A(A’ G) = A(l\l) Tl)@A(AU Tl)uu-l,z@ o @A(AU Tl)uo'l_t
@A(AZ! TZ) @A(AZ) Tz)uo'z,z,@ tee @A(AZ) Tz)ua-z‘t

.................................

®A(At’ Tt)®A(AI) Tt)ua;,zea @A(An Tt)uo-,_,

as a module.
From the assumption we have A(A,, T))=~Homg(A,, A,). We have



350 M. HARADA

a natural homomorphism @ of A(A, G) to Homg(A, A)=Homgx(Ae,P---D
Ae,, Ae,D---BAe,). We consider an operation of @(A(A;, T))u,;;) on
Ae,. If o; fer)=e;, p(A(A;, Ti)”a;,j)(Aek):<P(A(Ai, T;))(Ae;). Since A, is
a Galois extension of Re; @(A(A;, T)~A(A;, T;)=Hompg(Ae;, Ae,).
Hence, A(A;, Tou,; ;~ p(A(A;, T)u,; ;)=Homg(Ae,, Ae;) and  @(A(A;,
Tu,; ;J(Aer)=(0) if k+F. Conversely, we can find, for Hom(Ae;, Ae;),
A(A; Tou, such that @(A(A,, T,)u,)~Hompg(Ae;, Ae;). Hence, @ is
isomprphic. Therefore, A is a Galois extension of R with G.
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