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Let G be a 4-fold transitive group on Ω = {1, 2 , , n}, H=G1234

the subgroup of G consisting of all the elements fixing the four letters
1, 2, 3 and 4 and let N be the normalizer of H in G. Let Δ denote
the set of all the letters fixed by H. Then N fixes Δ and it induces
a permutation group JVΔ on Δ. From the Jordan's theorem [5] (cf. [4],
Theorem 5. 8. 1) and the Witt's lemma [8], we have one of the following
four cases :

CASE I. ΛΓΔ - S4 ,

CASE II. N* = S5 ,

CASE III. N* =A6,

CASE IV. JVΔ = Af
u

u

Here Mn denotes the Mathieu group of degree 11. (For the Mathieu
groups we refer to [8].)

The purpose of this paper is to show that, except in CASE I, G
must be one of the known groups. Namely we shall prove the following
theorem.

Theorem. // N* = S59 A6 or M n , then G must be S5, A6 or Af
respectively.

We shall state here the Witt's lemma in full because of its im-
portance in the following.

Lemma (Witt). Let G be a t-fold transitive group on Ω and H the
subgroup of G consisting of all the elements fixing t letters. Suppose that
a subgroup U of H is conjugate in H to every group V which lies in H
and which is conjugate to U in G. Then the normalizer of U in G is
t-fold transitive on the set of the letters left fixed by U.

The typical examples of U satisfying the assumption are H itself
and Sylow ^-subgroups of H.

In the proof of the theorem, we also make use of the fact ([4],
p. 80) that a 4-fold transitive group of degree less than 35 is, except
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the symmetric and alternating groups, one of the four Mathieu groups.

NOTATION. For a set X let | X\ denote the number of the elements
of X. For a set S of permutations on Ω the set of the letters left
fixed by S will be denoted by /(S). If a subset Δ of Ω is a fixed block
of S, i.e. if ΔS = Δ, then the restriction of S on Δ will be denoted by
SΔ. For a permutation group G on Ω the subgroup of G consisting of
all the elements fixing the letters i,j, - ,k will be denoted by G, ,/,.*•
For a premutation x let a^x) denote the number of /-cycles (cycles of
length ί) of x. So a^x) is the number of the letters left fixed by x.

1. CASE III. N*=A6, |Δ | - 6 .

Throughout the remainder of this paper it will be assumed that G
is a 4-fold transitive group on Ω={1, 2 , , n}, H denotes G1 >2 >3 >4, N is
the normalizer of H in G and Δ denotes I(H).

In this section, we treat the case in which N*=A6 and prove the
following

Proposition 1. // N*=A6 then G must be A6.

Proof. Let us first consider the map

φl :i ->G1(2 3 ,

from Ω— {1, 2, 3} into the set of subgroups of G. Let /(G1>2>3>l )
= {1, 2, 3, i,j, k}. Then the inverse image φTl(Glf2>3fi) consists of three
letters i, j and k. Hence we have

( 1 ) n = 0 (mod 3) .

Now let a be an involution of G and let r=\I(a)\. Then, by
Proposition 1 in [6], we have

( 2 ) n = r2 + 2.

Suppose that r > 4. Then we may assume that a fixes the three letters
1, 2 and 3. Consider the map

from 7(Λ) -{1,2,3} into the set of subgroups of G, and let /(G l f 2 f 8 f ί)
= {1, 2, 3, i, y, &} . Since <z normalizes G l f2pS>ί and it is an even permuta-
tion on /(Gj 2 3 , ), / and & belong to /(#). Hence each inverse image of
φz consists of three letters, and we have

( 3 ) r = 0 (mod 3) .
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From (2) and (3) we have

n = 2 (mod 3).

which conflicts with (1).
Thus it is shown that r<3 and n = r2 + 2<ll. Then, by the

remark at the end of the introduction, G must be A6.

2. CASE IV. N*=Mn, Δ = l l .

In this section, we shall prove the following

Proposition 2. // N*=NU then G must be Mn.

We proceed by way of contradiction. From now on it will be as-
sumed that G is a counter-example to the proposition with the least
possible degree and all elements belong to G.

By a series of steps we shall show that every element of order 4
has no 2-cycles. Then it will be shown that there is a subgroup of H
which satisfies the assumption of the Witt's lemma. From this fact we
have n < 11, which contradicts the assumption for G.

(i) Let x be an involution and r=\I(x)\. Then

For the proof, see Proposition 1 in [6].

(ii) If an element x fixes at least four letters, then

(a, (x) - 2)(al (x) - 3) = 0 (mod 72).

As a special case, the degree n satisfies the relation

(n-2)(n-3) = 0 (mod 72).

Proof. We may assume that {1,2}c/(#). For a subset {iί9 Q of
/(*)—{1,2}, x normalizes G l f 2 f ί l f f 2 . Let Δ' = /(Glf 2> ,lp , 2)= {1,2, *„ ί2 , ,
i j . Since #Δ / is an element of Mn fixing the four letters 1, 2, f\, ί2, it
is the unit. Hence Δ'c/(#). Consider the map

<P {*!> *2} ~*Gl,2,ilti2

from the family of the subsets of /(#)—{!, 2} consisting of two letters
into the set of subgroups of G. By the consideration above, each
inverse image of φ consists of 9C2 subsets.
Hence we have

/ *)-3) Ξ Q ^ m o d ^ ^
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which implies our assertion.
(iii) If an element x has a 2-cycle, then

Proof. Let us first assume that a2(x)>2. We may assume that
* = ( ! , 2)(&, /)••-. Then * normalizes G1>2> k ,. Let Δ' '=/(G l f 2 * /). Since
(jt:Δ/)2 is an element of Mπ fixing the four letters 1, 2, &, /, it is the unit,
and hence x*' is an involution of Mn. Therefore <*!(#)> 3. Now, for a
subset {fj, ί2} of /(*), let Δ" = /(G1<2ff lp ,2). Then, by the same argument
as above, we can see that Λ:Δ// is an involution of Mn and hence it is
of the following form :

* Δ " = (1, 2XιιXι2Xί.X*1, /,)(*„ /2X*,, /,) .

Considering the map

from the family of the subsets of I(x) consisting of two letters into the
family of the sets of three 2-cycles of x different from (1, 2), we have,
in the same way as in the proof of Proposition 1 in [6], the following
relation :

This implies our assertion.
Next assume that a2(x) = l. If al(x}>2y then, in the same way as

above, we can see that a2(x)>3. Hence a^(x) must be 0 or 1 and in
either case our relation holds.

(iv) If x is an element of order 4, then x has no 2-cycles.

Proof. We assume, by way of contradiction, that α2(#)>0. Then
from (iii) we have

( 1 ) CT2θc)== «,(*)(«.(*)-!) + ! .

Let s—a^x) and r=a1(x2). Then from (1)

(2) r = s+2az(x) = s2 + 2.

Let us first assume that s>4. Then by (ii)

(s-2}(s-3) = 0 (mod 72)
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and

( 3 ) (r-2)(r-3) = 0 (mod 72).

Since 5—2 and 5—3 are relatively prime, s—2=0 (mod 9) or s—3=0
(mod 9). If S-2ΞΞO (mod 9), then

(r-2)(r-3) = s\s2-l) =f= 0 (mod 9),

which contradicts (3). Hence s=3 (mod 9). In the same way we have
5 = 3 (mod 8), and hence s = 3 (mod 72). Therefore from (2) we have

( 4 ) r = 11 (mod 72).

On the other hand, since n = r2 + 2 by (i) and (w-2)(»-3) = 0 (mod 72)
by (ii), r2(r2-l)=0 (mod 72). But, by (4),

r\r2-l) = 1Γ(1Γ-1) = 48 ΞJΞ 0 (mod 72),

which is a contradiction.
Next assume that s=a1(x)<3. Then, from (2), r must be one of

the following numbers: 2,3,6 or 11. If r=2 or 3 then n = r2 + 2<ll
and G must be Mίτ which contradicts the assumption for G. If r=6
then

(r-2Xr-3) = 12 =£ 0 (mod 72),

which conflicts with (ii). If r = l l , then w-r 2 + 2-123 and

(«-2)(n-3) =1=0 (mod 72),

which conflicts also with (ii).

(v) Let P be a 2-subgroup of G and c an arbitrary central involu-
tion of P. If there is an element x of order 4 in P then I(x) = I(c).

Proof. Since x commutes with cy x takes the letters of I(c) into
themselves and it takes also the 2-cycles of c into themselves. If x
fixes a 2-cycle (ί, j) of c, then by (iv) x fixes the two letters i and j .
Then xc is of order 4 and has a 2-cycle (/, j \ which contradicts (iv).
Thus x fixes no 2-cycles of c, and hence I(x)dl(c). On the other hand,
from (iv), it follows that I(x2) = I(x) and, by (i), the two involutions x2

and c fix the same number of letters. Therefore we have I(x) = I(c).
(vi) Let P be a Sylow 2-subgroup of H=G1234. Then P con-

tains an element of order 4.

Proof. Since JVΔ = MU, G contains at least one element x of order
4. If P contains no elements of order 4? then |/(#)(< 3. Since |/(ΛΓ)|
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= |7(jt2)| by (iv) and x2 is an involution, we have «<11. Hence G must
be M n, which contradicts the first assumption for G.

(vii) Let P be a Sylow 2-subgrouρ of H, c a central involution of
P and let I(c)= {1, 2 ,-•-, r}. Then C7= Pj 2 ... r satisfies the assumption
in the Witt's lemma.

Proof. Let a be an element of order 4 in P. Then from (v) I(ά)
= {l,2, ,r} and #<=[/. Now assume that V=x'1UxdH for # e G and
let P' be a Sylow 2-subgroup of H containing V. Then there is an
element h of H such that P' = h~lPh. Let U/ = h~1Uhy a'=h~lah and
7(β /)={Γ,2 /,-,r /}. Then, since 7(0') = I(ά)\ t/' = PV,2',..., r' Since*- 1**
is an element of order 4 in P', we have I(x~^ax) = I(a'} by (v). Hence
V fixes each letter in 7(# ') and we have Va U. Compairing the orders
we have V— U'.

(viii) Let U be as in (vii) and let Γ = 7(C7). Then |Γ | =11.

Proof. Let M be the normalizer of U in G. By (vii) and the Witt's
lemma, MΓ is a 4-fold transitive group on Γ. Since Mx 2 3 4 cί7,

f § 3, 4) Π7(ί7) = 7((MΓ)lf 2, 8. 4)

and hence |7((MΓ) l f 2 ( 3 f 4) | >11. On the other hand, as stated in the in-
troduction, \I((MΓ\ 2 3 4)| is not greater than 11. Therefore |7((MΓ)lf 2> 3§ 4)|
= 11, and by the minimal nature of the degree of G, M Γ must be Mu.
Hence | Γ | = 1 1 .

Now let c be as in (vii) and let \I(c)\ =r. Then by (viii) r < l l . If
r < 3 then n<ll and G must be M n , which contradicts the assumption
for G. If r>4, then by (ii)

( r-2)(r-3) = 0 (mod 72).

Hence r = l l and n = 123. But then

(n-2)(n-3) ^ 0 (mod 72),

which conflicts with (ii)

3. CASE II. N* = S5, Δ | = 5.

In this section, we shall prove the following

Proposition 3. If N* = S5> then G must be S5.

We proceed by way of contradiction. From now on it will be as-
sumed that G is a counter-example to the proposition with the least



MULTIPLY TRANSITIVE GROUPS IV 333

possible degree and all elements belong to G.
The proof in this case is rather involved. As in CASE IV, we shall

first show that every element of order 4 has no 2-cycles.
We first remark that G can not be a symmetric group since N* = S5

and G is not S5.
(i) The degree n is odd.

Proof. Consider the map

from Ω— {1, 2, 3} into the set of subgroups of G. Let /(G l f 2 f 3 f ί )
= {1, 2, 3, ί, /'} . Then the inverse image φ~\Glf23i) consists of two
letters / and /'. Hence n — 3 is even and n is odd.

(ii) Let a be an involution of G. If r = a1(a)>4 then

r = 3 (mod 6) .

Proof. We may assume that {1, 2, 3} c/(#). Consider first the map

from I(ά)— {1,2,3} to the set of subgroups of G. Let /(G l f 2 f 3 f ί )
= {1, 2, 3, /, /'}. Then a normalizes G1 2 3 , and hence /' lies in /(#).
Therefore each inverse image of φ1 consists of two letters. Hence r—3
is even and r is odd.

For a 2-cycle (ky /) of <z, consider next the map

from the family of the subsets of I(ά) consisting of two letters into the
set of subgroups of G. Let I(Gk / ^ >f 2) = {k, /, ι\, i2, /3}. Then, since #
normalizes GΛ / ̂  /2, /3 lies in I(ά) and the inverse image φΐl(Gk / ^ , 2)
consists of three subsets {ιΊ, ι2}, {ίΊ, /3}, {ί2,/3}

Hence we have

r(r~1^ = 0 (mod 3),

( 1 ) r(r-l)ΞΞ 0 (mod 6).

In the same way, considering the map

from the family of the subsets of I(a)— {1, 2} consisting of two letters
into the set of subgroups of G, we have
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( 2 ) ( r _2)(r-3) = 0 (mod 6).

From (1) and (2) it follows that r=0 (mod 6) or r=3 (mod 6). But,
since r is odd, we have

r = 3 (mod 6).

(iii) If u is an element of order 3, then u fixes just two letters.

Proof. Assume first that s = a1(u)^0. For a 3-cycle (kyl,m) of u,
consider the map

?>!: i -» Gk / m i

from I(u) into the set of subgroups of G. Then u normalizes Gk / m ,
and, in the same way as in the proof of (ii), we have

( 1 ) s = 0 (mod 2).

Let us assume now that s>3. Then, by (1), 5 is not less than 4. We
may assume that {1, 2, 3} c/(w). Consider the map

φz: i - > G l f 2 f 3 f ί

from /(«)—{!, 2, 3} into the set of subgroups of G. Then, in the same
way as above, we have

s-3 ΞΞ 0 (mod 2),

which conflicts with (1). Thus it is shown that s<2. By (1) 5 is not
1. Hence s = 0 or 2 and n = 0 (mod 3) or n = 2 (mod 3) according as
s = 0 or s = 2.

Since N* = S5 there is an element x of the following form :

* = (1X2X3,4, 5 ) - .

Let the order of x be 3km, where m is prime to 3. Then k>ί and
v = x*k~lm is an element of order 3 fixing two letters 1 and 2. Hence
n = 2 (mod 3) and 5 must be equal to 2.

(iv) Let u be an element of order 3 fixing the two letters 1 and
2. If an involution a commutes with u then a has the 2-cycle (1,2).
The order of NG(u)Γ\G1>2 is odd.

Proof. If a does not have the 2-cycle (1, 2), then a fixes 1 and 2.
Let the 3-cycles of u fixed by a be
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Then I(ά)= {1, 2, i19jί9 9 kt} and hence r=a1(ά) = 3t + 2. Since n is odd,
r is odd and hence / must be odd. Let t = 2t' + l. Then

r = 6/' + 5 = 5 (mod 6),

which contradicts (ii). Therefore a is of the form # = (1, 2) , and this
shows also that NG(u)Γ\Glf2 is of odd order.

(v) Let x be an element which has a 3-cycle. Then the order of
x is 3m, where m is prime to 3. Every cycle of x with length greater
than 2 has a length divisible by 3. Further a1(x) = 2 or 0 and if
a1(x) = 2 then x is of odd order and if a1(x) = 0 then a2(x) = ~L.

Proof. Let the order of x be 3km, where m is prime to 3. Then,
by the assumption, k>l and u = x3k~lm is of order 3. If k>l then
#ι(w)>3, which contradicts (iii). Hence k = l. If x has a cycle of length
/ which is greater than 2 and prime to 3, then a^u^l, which contra-
dicts (iii). Therefore every cycle of x with length greater than 2 has
a length divisible by 3. By the similar reason, a2(x)<l and if α^^ΦO
then ctι(x)<2 and a2(#) = 0. Therefore if α ^ ^ Φ O then «!(#) = 2 since
w^2 (mod 3) by (iii), and then x is of odd order by (iv). If a1(x) = 0
and I(u)={i,j} then x has a 2-cycle (/,./). Hence a2(x) = l.

(vi) All involutions of G are conjugate.

Proof. Let a and δ be two given involutions, and assume that
I(Gιt 2, 3, 4)= {!> 2, 3, 4, 5} for simplicity. Taking a conjugate if necessary,
we may assume that #=(1, 2)(3, 4) . Then <z normalizes G1>2>3>4 and
hence it fixes the letter 5. Thus a is of the form

* = (1,2)(3,4)(5) .

In the same way we may assume that b is of the form

* = (1,2)(3)(4,5) . .

Then te = (l)(2)(3,4,5) and, by (v), it is of odd order. Therefore, by
[4], Lemma 5. 8. 1, a and b are conjugate.

(vii) If a is an involution, then α 1(^)>3.

Proof. Since N* = S5, there is an element of the form (1)(2)(3)
(4, 5) . Now (vii) follows at once from (vi).

(viii) All involutions of G12 are conjugate in G1 2.

Proof. Let a and b be two given involutions of Gl 2. As in the
proof of (vi) we may assume that a and b are of the following forms :



336 H. NAGAO

α = (l)(2X3)(4,5) .,

b = (1X2X3, 4)(5) . .

Then ba = (l)(2)(3, 4, 5) is of odd order and hence a power of ba
transforms a into b.

(ix) For a given invalution a, there is an element of order 3 such
that a~lua=u~l. And then ua is an involution.

Proof. Assume that 7(G1§ 2 3> 4) = {1, 2, 3, 4, 5} . Then we may assume
that a is of the form

* = (1)(2)(3,4)(5) .

By the quadruple transitivity of G, there is an involution b of the form
(2X3X4,5) — . Then b normalizes G2 3 4 5 and hence b fixes /(G2 3 4 5).
By the assumption 7(G2 3> 4§ 5) - 1(0, 2> 3> 4) - {1, 2, 3, 4, 5} . Therefore b
must be of the form

* = (1X2X3X4,5)-.

Now, by (v), te = (l)(2)(3,4, 5)— is of order 3m, where m is prime to 3.
Since a~l(bά)a = ab = (baY\ u = (bά)m is a desired element. The rest of
the statement is clear.

(x) All elements of order 3 are conjugate. If u is an element of
order 3, then NG(u) is transitive on Ω — I(u).

Proof. We first remark that, since G is 3-fold transitive, the follow-
ing follows from the results of Frobenius [2], [3] :

( 1 ) Σ « . ( * ) = -f | G | .
*e<? 3

In the following, we shall consider the sum above. By (v), an element
x with 3-cycle is expressed uniquely as a product of an element u of
order 3 and a 3-regular element (i. e. an element of order prime to 3)
y which commute with each other. It is then easy to see that α3(#)

equals _ .af(y\ where a?(y) denotes the number of the fixed letters of
o

« = (1)(2)(3,4,5)

y belonging to Ω—
Let us assume that

is a fixed element of order 3 and let Γ = Ω — I(u)= {3, 4 , , n}. Then
NG(u) induces a permutation group NG(u)Γ on Γ. Since G is not a
symmetric group, NG(u} is isomorphic to NG(u)Γ. Let af(y) denotes
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αι(.yr) for y^NG(u) and let t be the number of the sets of transitivity
of NG(u)Γ. If £ is a 3-singular element (i. e. an element of order divi-
sible by 3) of NG(u\ then, by (v), a?(x) = Q. If y is a 3-regular element
of NG(u), then, as remarked above,

(2) at(uy) = -i

Now, by [4], Theorem 16. 6. 13,

Since α?(*) vanishes for a 3-singular element x, we have, from (2),

(3) Σ /

where in the left y ranges over all 3-regular elements of NG(u).
Now let the conjugate classes of G consisting of elements of order

3 be {wj, {u2} , , {uk}. Then, from (3), we have

(4) Σ*»(*) = Σ . .(Σ'
' 3

where in the second y ranges over all 3-regular elements of NG(ug) and
in the last t{ is the number of sets of transitivity of NG(uί) which are
cantained in Ω — /(«*)• From (1) and (4), we have k = \ and tl = l.

(xi) Let u be an element of order 3 and suppose that I(u) = {1, 2} .
Then the order of NG(u} is divisible by 2 to the first power, and NG(u)

j 2 is transitive on {3, 4, •••,«}.

Proof. Since N* = S5, there is an element of the form

This shows that, for some element v of order 3, the order of NG(υ) is
even. Hence, by (x), the order of NG(u) is also even. Now, by (iv),
NG(u)Γ\Glt2 is of odd order. Hence NG(u)*NG(u)Γ\Glt2 and \NG(u):
NG(u)Γ\GΪt2\=2. This proves the first half.

Since NG(u) is transitive on Γ = {3, 4 , , n} by (x), if NG(u)ΠGlf2

is intransitive on Γ, then Γ is the union of the two sets of transitivity
of ΛfG(w)ΠG1>2 and hence |Γ | is even. This contradicts (i).

(xii) Let a be an involution of G. Then Λ̂ G (a) is 3-fold transitive
on I(ά).

Proof. We may assume that {1, 2}c/(0). Since G is doubly tran-
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sitive and, by (viii), the cyclic subgroup <α> of G± 2 satisfies the as-
sumption for U in the Witt's lemma, NG(ά) is doubly transitive on I(ά).
To prove the 3-fold transitivity, let u be an element of order 3 such
that a'1ua=u~1. We may assume that

iί = (l)(2)(3,4,5) .

Let N%(u} be the subgroup of G consisting of all the elements x such
that x~lux = u or u'1 and let K*=N%(u}Γ\G1>2 and K=NG(u)Γ\Glt2. Then
\K*:K\=2 and K is of odd order, and hence <#> is a Sylow 2-
subgroup of /f*. Let Γ= {3, 4, — , «}. Then /f* and /Γ fix Γ and, since
ίΓΓ is transitive, (K*)τ is also transitive. Therefore, by the Witt's
lemma, NG (a) Π K* is transitive on I(ά) - {1, 2} . Since Λ^ (a) Π K"*
c 7VG (a) Π G! > 2 , J/VG (0) Π Glf 2 is transitive on I(ά) — {1, 2} . This shows
that NG(ά) is 3-fold transitive on I(ά).

(xiii) An element of order 4 has no 2-cycles.

Proof. Let x be an element of order 4 and assume that x has a
2-cycle. Since w is odd, we may assume that

Then x2 is an involution and {1, 2, 3} c I(x2). Let r=«1(Λ:2). Then, by
(ii), r=Q (mod 3).

Now, by (xii), there is an element z in NG(x2} such that

/123

* = (312.

Let y = z~lxz. Then

j = (l,2)(3)

and / = #2. Since

^ = (1,2,3)-,

we can apply (v) to xy. If xy fixes a letter of /(r2), then, since
al(xy)<2 and all cycles of xy are of length divisible by 3, we have
r=l or 2 (mod 3). This is a contradiction. If xy has a 2-cycle in
7(jt2), then in the same way we have r=2 (mod 3), which is also a con-
tradiction. Therefore the fixed letters or the letters of 2-cycle of xy
appear in some 4-cycles of x.

Let as first assume that xy fixes letter il and x = (iί9 ι"2, ιa, i4) .
Then, since xy fixes ί\ and X2=y2

y y must be of the form

y = (iz, *Ί> «4, ϋ
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and xy fixes the four letters ily i2y i3 and /4. This conflicts with (v).
Next assume that xy has a 2-cycle (i19 k^. Then we may assume

that x and y are of the forms

x = (/!, ι'2, ι3, i4) ,

If &j lies in {ί\, ι'2, /3, ί'J then ^x and &3 must be /3 and i1 respectively.
Then xy has the two 2-cycles (ily ί3) and (/2, i4), which conflicts with (v).
Hence ^ must appear in another 4-cycle and we may assume that

X \ ^ ι , ^ 2 9 ^3> ^4/\™l> ™2 > ™3 > *M/ *" *

Then, since jry takes &x to il9 y must be of the form

y = (^2, /?!, 2 4 , K^)\K2y 119 « 4 , ^ J ' "

and jςy has the two 2-cycles (i19 kj, (iz, k2\ which conflicts with (v).

Next we shall consider a relation between the degree n and the
number of the fixed letters of an involution. In this part we make
use of the celebrated theorem of Feit and Thompson and a theorem of
Brauer.

(xiv) The order of H=G1 2 3 ^ is prime to n — 2.

Proof. Let ^ Φ l be a common prime divisor of n — 2 and \H\ and
P a Sylow ^-subgroup of H. Let N' denote the normalizer of P in G
and let Δ' denote /(P). Then, by the Witt's lemma, C/V')Δ/ is a 4-fold
transitive group and the number of the fixed letters of (Λ^/)Δ/ι>2,3,4 is not
less than 5. Hence, by Proposition 1 and 2 and by the minimal nature
of the degree of G, (N'Y* must be one of the following groups: S5, A6

or M n . Since every set of transitivity of P in Ω — Δx is of length divi-
sible by p, we have that one of the numbers n — 5, n — 6 or n — ίί is
divisible by p. On the other hand, n — 2 is also divisible by p. There-
fore p must be 2 or 3. But, by (i), p can not be 2. If p = 3, then H
contains an element of order 3, which conflicts with (iii).

(xv) Let r be the number of the fixed letters of an involution.
Then

Proof. Let us assume that « = (1)(2)(3, 4, 5) is an element of order
3. Let L=NG(u\ ϋΓ=LΓlG l f2 and let L*=N%(u} be the subgroup con-
sisting of all the elements x such that x~1ux = u or u"1. Then, by (xi),
K is a normal subgroup of odd order in L* and \L:K\=2, and, by
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(ix), |L* :L\ =2. It is now easy to see that a Sylow 2-subgroup of L*
is a four group. By the theorem of Feit and Thompson [1] K is
solvable. Let W=KnGlf2t3. Since every element of W commutes
with u, WdH=G1234. By (xi), \K:W\=n-2 and, by (xiv), it is
prime to the order of W. Hence there is a Hall subgroup U of order
n — 2 in Ky and then U is regular on {3, 4, •••,»}. By the fundamental
theorem of P. Hall, we have L* = NL*(U}K. Let V be a Sylow 2-
subgroup of NL*(U). Then V is also a Sylow 2-subgroup of L* and
hence it is a four group. Now we may assume that V consists of the
unit and the three involutions of the following forms :

^ = (1,2X3X4X5)-,

*, = (1X2X3X4, 5). ,

Λ8 = Λ A = (l,2)(3)(4,5) - ,

where a1 commutes with u, and a2 and #3 transform u into its inverse.
The four group V induces a group of automorphism of U, and

hence we can apply a theorem of Brauer ([7], (1. 1)). Let /,- be the
number of the elements of U left invariant by at (ί = l, 2, 3), and let /0

be the number of the elements of U left invariant by V. Then we
have

/S|ϋΊ =fl(n-Z).

Now U is regular on {3, 4, ,w} and each #,- fixes the letter 3. Hence
ft is equal to the number of the fixed letters of a{ belonging to
{3, 4, •••,»}. Therefore we have / 1 = / 3 = r and f2 = r— 2. On the other
hand, /0 is a divisor of \U\=n — 2 and hence it is odd. Furthermore
it is a common divisor of f1 = r and f2 = r—2. Hence we have /0 = 1
and r2(r-2) = n-2.

The rest of the proof is similar to (v)— (viii) in the proof of Pro-
position 2.

Let P be a Sylow 2-subgroup of 11=0, 234ί c a central involution
of P and let /(£)= {1, 2, , r}. If P contains no elements of order 4,
then r<3 and n = r\r-2) + 2<ll. Then G must be SB. Hence P con-
tains an element of order 4 and then U=P1 2 ... r satisfies the assump-
tion of the Witt's lemma. Let M=NG(U) and Γ = I(U). Then MΓ is
a 4-fold transitive group and (M 1 ^ 2 3 4 fixes at least five letters.
Therefore, by Proposition 1 and 2 and by the minimal nature of the
degree of G, | Γ | must be 5, 6 or 11. Thus we have r < l l . Since r=3
(mod 6), r = 3 or 9. If r = 9 then MΓ = MU and the involution cr is a 2-
cycle. But this is impossible. Hence r = 3 and « = 11. Then G = Mn,
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which contradicts the first assumption for G.
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