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Abstract
We give a Turaev-Viro type construction for the LMO invariant. More precisely,

we construct an invariant of closed oriented 3-manifolds from data of their spines
or their simplicial decompositions and the values of Kontsevich invariant of the
unknotted tetrahedron and the Hopf link by using Bar-Natan and Thurston’s
operations.

1. Introduction

Reshetikhin and Turaev [13] gave a rigorous definition of quantum invariants of 3-
manifolds as linear sums of colored Jones polynomials of surgery presentations. They
were extensively generalized by Le, Murakami and Ohtsuki [6]. They constructed a
3-manifold invariant called the LMO invariant with values incertain space of 3-valent
graphs by using their operator on the values of Kontsevich invariant of surgery presen-
tations. It is known for integral homology 3-spheres that the LMO invariant is universal
among quantum invariants coming from simple Lie groups [9, 1, 5, 3, 4].

On the other hand, Turaev and Viro constructed a 3-manifold invariant (Turaev-
Viro invariant) from simplicial decompositions of 3-manifolds [16]. Turaev-Viro in-
variant is constructed by coloring each edge of simplicial decompositions, associating
with each 3-simplex a value called quantum 6j -symbol determined from the colors of
6 edges of it, multiplying all of them and then summing over all admissible colorings.
Although the Turaev-Viro invariant of any closed oriented 3-manifold M is equal to the
Reshetikhin-Turaev invariant ofM # (�M) where�M denotesM with its orientation
reversed (see e.g. [15, 12]), it is useful when a 3-manifold is presented as a simplicial
decomposition.

Knotted trivalent graphs (KTGs) are used in the Turaev-Virotheory. Colored Jones
polynomial of links is extended to KTGs by associating with each 3-valent vertex an
Uq(sl2)-module of invariants HomUq(sl2)(Vk 
 Vl , Vm) (Vk, Vl , Vm: irreducible Uq(sl2)-
modules). Similar extension for the Kontsevich invariant was obtained in [8]. Since the
quantum 6j -symbol can be considered to be the value of the colored Jonespolynomial
of the unknotted tetrahedron , it is natural to expect that the Turaev-Viro theory for
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the Kontsevich invarianťZ is similarly obtained by usinǧZ
� �

. For the definition of

Ž, see e.g. [8].
In this paper we give a Turaev-Viro like construction for theLMO invariant. In

particular, the main result of this paper is the following:
• We construct an invariant from simplicial decompositions of 3-manifolds and the
values Ž

� �
, Ž

� �
, Ž( ) by using some elementary operations.

• The invariant is equal to the LMO invariant ofM # (�M), i.e. even degree part of
the LMO invariant ofM when M is a rational homology sphere.

Such construction is effective whenM is presented as a simplicial decomposition
because if we obtained a surgery presentation directly fromthe simplicial decomposi-
tion, then the presentation itself would be very complicated and moreover its sliced q-
tangle decomposition to compute its Kontsevich invariant would be surprizingly large
if the number of tetrahedra is large. An application of our method that can be con-
sidered is deducing formulas of 3-loop part of the LMO invariant for some family of
spines, for example a sequence of spines that are generated by some patterns. We will
consider this in future work.

We should remark that it is still hard to compute complete values of the LMO
invariants sinceŽ

� �
is determined by using the Drinfel’d associator. We can only

compute the values up to finite order.
We shall mainly explain the way of construction for special spines. Construction

for simplicial decompositions then easily follows as in§5 from the case of special
spines.

2. Preliminaries

2.1. Special spines. Now we shall give a construction of an invariant for special
spines.

We say that a polyhedronX embedded into a 3-manifoldM is a special spineif
X satisfies the following conditions:
• M n X is homeomorphic to an open 3-ball.
• Each small neighborhood of points inX is homeomorphic to one of the following:

• Each area bounded by edges is homeomorphic to a 2-disc.
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Fig. 1. L-move andT-move

An example of a special spine forS3 is depicted in the following picture:

The following proposition due to Matveev and Piergallini is afundamental property
of special spines as representations of 3-manifolds.

Proposition 2.1 ([7, 11]). Two special spines are of the same3-manifold if and
only if they are related by moves L, T shown inFig. 1. Moreover, we can assume all
the intermediate polyhedra are special spines.

2.2. Trivalent graphs. A Trivalent graph (TG) is a vertex oriented, edge ori-
ented trivalent graph with fixed vertex orientation. Let0 be a TG. AJacobi diagram
based on0 is a vertex oriented uni-trivalent graph whose univalent vertices are on0.
We express the edges of TG by solid lines and those of Jacobi diagrams by dotted
lines in pictures. LetA(0) be the vector space spanned by all Jacobi diagrams based
on 0 modulo the following relations:
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wherea1, a2, a3 2 f1,�1g are determined by the orientation of the edge on which the
univalent vertex is landing. If the orientation is right-going then we set the coefficient
to be 1 and otherwise to be�1. Each Jacobi diagram has a degree defined by half the
number of vertices on its dotted part.

Murakami-Ohtsuki defined an invariant of KTG with values inA(0) as an exten-
sion of the Kontsevich invarianťZ : KG(0) ! A(0), whereKG(0) = fframed embed-
dings:0 ! S3g. For its precise definition, see [8]. In this paper we assume that any
KTG is integer framed, i.e. it has a blackboard framing presentation.

2.3. TG operations. TG operationsare defined by the following picture:

Connected sum:

Unzip:

Connected sum is defined by band summing two disjoint connected TGs between edges.
Unzip is defined only when the orientation is consistent in the picture. These operations
are well defined and have the following good property.

Proposition 2.2 ([14]). Let G1,G2,G3 be embeddings of connected TGs01,02,03 respectively into S3. Let X, Y be TGs. If we write X#ef Y the connected sum
between edges e in X and f in Y, and UZe(X) the unzip along the edge e in X,
then the following identities hold.

Ž(G1 #e1e2 G2) = Ž(G1) #e1e2 Ž(G2),

Ž(UZe3(G3)) = UZe3(Ž(G3)).
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That is, the following diagrams are commutative.

, .

By using this property, Bar-Natan and Thurston constructedthe Kontsevich in-
variant of links by associatinǧZ

� �
with each crossing of a link diagram and

doing TG operations. It is different from our construction since we do not use link
diagrams. However, the above property is fundamental for ours too.

3. Constructing the invariant

Let M be a closed oriented 3-manifold. We construct the invariantfrom a special
spine X of M by the following procedure. First we shall define a linear map

'n : A
� �
N ! A(;)(deg�n)

where N is the number of 4-valent vertices onX and A(;)(deg�n) is the space of 3-
valent graphs of degree at mostn with no underlying TG (the precise definition will
be given later).

3.1. Step 1: Associating tetrahedra. Let X be a special spine ofM. First we
label each area and each edge ofX so that different area (edges) have different labels.
By the definition of special spine, the singularity set ofX must be a 4-valent graph.
We associate a labeled tetrahedron�Q with each 4-valent vertexQ as follows:

As a result, we get a disjoint union of labeled tetrahedra.

3.2. Step 2: Joining the tetrahedra. Any point in the interior of an edgex
of X joining two 4-valent verticesP, Q, has a neighborhood consisting of exactly 3
sheets meeting at the edge. These sheets determine a bijection hx between the pair of
three edges around vertices each on�P and �Q corresponding tox.
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Let 0, 00 be connected TGs with the labels as follows:

0 = , 00 = .

Then we define their product by

0 �hx 00 :=

so that the edges are glued together byhx. This operation is well defined since it is
realized by connected sum and unzip as follows:

Here we first connect a pair of edges related to each other byhx. Continuing in this
manner, we join the all tetrahedra along a maximal treefx1, x2, : : : , xN�1g in the 1-
skeleton ofX:

Glh(�Q1 
 � � � 
 �QN ) :=
� � � � ���Q1 �hx1

�Q2

� �hx2
�Q3

� � � � � �hxN�1
�QN

to make a connected TG, where the gluing mapsh = (hx1, : : : , hxN�1) are determined
by X.

3.3. Step 3: Contraction among the remaining 3-valent vertices. The con-
nected TG obtained in the last step still has 3-valent vertices. Now we shall contract
them. If we follow Turaev-Viro’s construction, it is natural to replace a pair of re-

maining vertices simply with for a contrac-

tion because in their formula for the contraction, a value ofthe invariant of the Hopf
link is just multiplied (see [16]). However this is not well defined in this case since
the result depends on the positions of dotted legs lying on the three edges incident to
x. But this is just a technical problem that we can avoid by defining the contraction
as follows:
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Dotted parts (1, 3-valent graph parts) are omitted in the picture. In the first picture,
we choose a path on the TG connecting the pair of vertices that we now want to
contract. In the second, disjoint union to it oneŽ( ) and someŽ

� �
s as many

as the number of vertices on . Then we continue unzipping and connect summing
to obtain the last picture. Note that the result is still not uniquely determined but is
uniquely determined when it is considered modulo the Kirby moves, which we will
explain later, along the circle of the Hopf link. Indeed thiswill suffice for our purpose.
We denote by cntrh0(0) the result of all contractions among vertices of0, whereh0 is a
set of bijections used to contract vertices. Then we obtain an element without 3-valent
vertices:

cntrh0 ÆGlh(�Q1 
 � � � 
 �QN ) 2 A( � � � ).

Note that in general, vertex orientations of vertices on thepath connecting two
vertices labeledx may not be as in the picture. For example, it may be as

In such cases, it suffices to disjoint unionŽ
� �

for y insteaed ofŽ
� �

.
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3.4. Step 4: Replacing solid lines with dotted graphs. We then replace solid
lines with dotted graphs by the map�n : A( � � � ) ! A(;)(�n) defined by Le-
Murakami-Ohtsuki. HereA(;)(�n) denotes the vector space spanned by all Jacobi di-
agrams without univalent vertices with degree at mostn quotiented by the IHX, AS
relation in the following picture.

The spaceA(;)(�n) has an algebraic structure with a product defined by disjointunion.
For the explicit description of�n, see [6]. The map�n has the following remarkable

property.

Proposition 3.1 ([6]). �n Æ Ž is invariant under the second Kirby move. That is,

�n Æ Ž

0
�

1
A = �n Æ Ž

0
�

1
A.

Through the Steps 2 to 4, we have obtained a well defined map

'n : A
� �
N ! A(;)(�n)

defined by

'n(�Q1 
 : : :
 �QN ) := �n Æ cntrh0 ÆGlh(�Q1 
 � � � 
 �QN ) 2 A(;)(�n).

Let g be the number of̌Z( )s used in Step 3 and let

jXjn := �n(Ž( ))�g'n
�
Ž
� �
 � � � 
 Ž

� �� 2 A(;)(�n).

Note that �n(Ž( )) is invertible, which can be verified by direct computations. The
details about such computations are found in [10].

Then we have

Theorem 3.2. jXjn does not depend on the choice of the special spines of M.
So it is an invariant of M.

The proof of this theorem will be given in the next section.
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4. Background and invariance proof

Let 0i , 1� i � k be copies of . Then the construction until Step 3 is summa-
rized as in the following diagram.

More precisely, we go at first from the upper-left corner to thelower-left corner. Then
go to the right until getting to the lower right corner. By thecommutativity of the dia-
gram, we can obtain the same result by passing the upper-right corner. So the result of
Step 3 is equal to the Kontsevich invariant of some framed link. Such obtained framed
links have been first studied by Roberts [12]1. He showed the following strong claim.

Proposition 4.1 ([12]). The framed link obtained above is a surgery presentation
of M # (�M).

This can be proved by using the technique of handle decomposition in 4 dimension.
From this proposition, it follows thatjXjn is equal to then-th part of the LMO in-
variant of M # (�M) and hence is an invariant ofM. The main point in this paper
is that we give a way to compute the LMO invariant for the framedlink by using the
data of spines and the TG operations and a few�n.

Now we shall give an alternative elementary proof of the invariance by using the
Matveev-Piergallini theorem (Proposition 2.1) without using Roberts’ result.

Proof of Theorem 3.2. By the Matveev-Piergallini theorem, itsuffices to show thatjXjn is invariant under theL, T-moves in Fig. 1.
We prove only for theL-move since for theT-move is similar. The left hand side

of the L-move in Fig. 1 yields the following framed link.

1He obtained such framed links, which he calls ‘chain mail links’, from Heegaard diagrams. They
are equivalent to those obtained now.
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On the other hand, the right hand side of theL-move yields the following framed link.

Lemma 4.2 below allows one to claim that the Hopf links in the picture vanish by the
correction term, and hence the both sides of the move are equal.

Lemma 4.2. �n�Ž
� ��

= �n�Ž
� ��

.

Proof. By applying the second Kirby moves, one has the following sequence:

By Proposition 3.1, one has

�n�Ž
� ���n�Ž

� ��
= �n�Ž

� t ��
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= �n�Ž
� t ��

= �n�Ž
� ���n�Ž

� ��

Since �n�Ž
� ��

is invertible, the result follows.

5. Construction from simplicial decomposition

Let X be the 2-skeleton of dual of a simplicial decomposition ofM. Note that in
this case the same procedure as in§3 does not work since disjoint union of 0-framed
unknots may occur (this corresponds to connected sum ofS2 � S1s). To construct an
invariant from X, we make a special spine fromX. Since X has at least one closed
chamber, we need to join them into a single chamber to make a special spine. This is
done as follows.

Let A,B be two vertices of the simplicial decomposition such that they are con-
nected by an edgeAB. Let the label of the area dual toAB be a. After we apply
Step 1, we do the following modifications to the tetrahedron including an edge la-
belled by a.

This process corresponds to the following picture. We continue this process until we
obtain a special spine. This construction of a spine is due toCasler [2]. Then we
apply subsequent steps and get the invariant.
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