THE SECOND LOWER LOEWY TERM OF THE PRINCIPAL INDECOMPOSABLE OF A MODULAR GROUP ALGEBRA

Julio P. LAFUENTE and Conchita MARTÍNEZ-PÉREZ ${ }^{\dagger \ddagger}$

(Received March 23, 1999)

1. Introduction

Let G be a finite group and consider a field \mathbb{K} of prime characteristic p. Let P be the projective cover of the trivial $\mathbb{K} G$-module, which we denote by \mathbb{K}, and J the Jacobson radical $\mathrm{J}(\mathbb{K} G)$ of the group algebra $\mathbb{K} G$. Let $e \in \mathbb{K} G$ be a primitive idempotent such that $P=e \mathbb{K} G$. We are concerned with the second term

$$
e J / e J^{2}
$$

of the lower Loewy series of P. It is a completely reducible $\mathbb{K} G$-module, whose composition factors are just the irreducible $\mathbb{K} G$-modules V such that there exists a nonsplit $\mathbb{K} G$-module extension $0 \rightarrow V \rightarrow E \rightarrow \mathbb{K} \rightarrow 0$ (see [7, VII 16.8]).

Gaschütz (see [7, VII §15]) gives a complete description of eJ/eJ J^{2} for $\mathbb{K}=\mathbb{F}_{p}$, the field of p elements, and G a p-soluble group: Its composition factors are precisely the abelian complemented p-chief factors of G, counting the multiplicities. Later Willems shows [12] that for any G each complemented p-chief factor of G appears as a component of $e J / e J^{2}$ with multiplicity not less than that as a (complemented) chief factor of G. Okuyama and Tsushima [10] define a filtration of $e J / e J^{2}$ from a chief series of G, which provides a new proof of these results and makes explicit the relationship between the chief factors of G and the composition factors of $e J / e J^{2}$.

In this paper we give a description of $e J / e J^{2}$ for any G and any field \mathbb{K} of characteristic p, which only depends on the knowledge of what occurs for certain almost simple sections of G, by means of the development of a reduction theorem of Kovács [8]. As an application we obtain the terms of the filtration of Okuyama and Tsushima corresponding to any chief factor of any G.

2. Notations and basic facts

We denote by $\operatorname{Irr}(G, \mathbb{K})$ the set of irreducible $\mathbb{K} G$-modules. If $V \in \operatorname{Irr}(G, \mathbb{K})$, then, as P is the projective cover of \mathbb{K},

[^0]$$
H^{1}(G, V) \cong \operatorname{Ext}_{\mathbb{K} G}(\mathbb{K}, V) \cong \operatorname{Hom}_{\mathbb{K} G}(e J, V) \cong \operatorname{Hom}_{\mathbb{K} G}\left(e J / e J^{2}, V\right)
$$
[5]. Therefore, if we denote by $\ell_{2}^{G}(V)$ the multiplicity of V as component of $e J / e J^{2}$, then
$$
\ell_{2}^{G}(V)=\operatorname{dim}_{\operatorname{End}_{K G}(V)} H^{1}(G, V) .
$$
$\left(\operatorname{End}_{\mathbb{K} G}(V)\right.$ is a division ring, because of Schur's lemma [6, 10.5].) We set
$$
\mathcal{C}(G, \mathbb{K})=\left\{V ; V \in \operatorname{Irr}(G, \mathbb{K}), \quad \ell_{2}^{G}(V) \neq 0\right\}
$$
(here we identify isomorphic modules, that is $\mathcal{C}(G, \mathbb{K})$ consists actually of isomorphism classes of modules). On the other hand, $\operatorname{Ext}_{\mathbb{K} G}(\mathbb{K}, V) \cong \mathrm{E}(\mathbb{K}, V)$ [5], whence if $\xi \in H^{1}(G, V)$, then ξ represents an equivalence class of $\mathbb{K} G$-module extensions
$$
0 \rightarrow V \rightarrow E \rightarrow \mathbb{K} \rightarrow 0
$$

We put then $\mathrm{C}_{G}(\xi)=\mathrm{C}_{G}(E)$ and

$$
\mathcal{C}_{1}(G, \mathbb{K})=\left\{V \in \mathcal{C}(G, \mathbb{K}) ; \exists \xi \in H^{1}(G, V) \text { such that } \mathrm{C}_{G}(\xi)<\mathrm{C}_{G}(V)\right\} .
$$

Recall that $\mathcal{C}_{1}\left(G, \mathbb{F}_{p}\right)$ is the set of the abelian complemented p-chief factors of $G[11$, 2.4(1)].

A $\mathbb{K} G$-module V can be considered as a (faithful) $\mathbb{K} G / \mathrm{C}_{G}(V)$-module. We put

$$
\mathcal{C}_{0}(G, \mathbb{K})=\left\{V \in \mathcal{C}(G, \mathbb{K}) ; \ell_{2}^{G / C_{G}(V)}(V) \neq 0\right\} .
$$

If $\mathbb{F} \subseteq \mathbb{K}$ is a field extension and M is an $\mathbb{F} G$-module, then we set $M_{\mathbb{K}}=M \otimes_{\mathbb{F}} \mathbb{K}$ for the scalar extension.

If $V \in \operatorname{Irr}(G, \mathbb{K})$, then a unique (up to isomorphisms) $\hat{V} \in \operatorname{Irr}\left(G, \mathbb{F}_{p}\right)$ is determined such that V is a component of $\hat{V}_{\mathbb{K}}$. In this case $H^{1}(G, V) \neq 0$ if and only if $H^{1}(G, \hat{V}) \neq 0, \mathrm{C}_{G}(V)=\mathrm{C}_{G}(\hat{V})$ and $V \in \mathcal{C}_{1}(G, \mathbb{K})$ if and only if \hat{V} is isomorphic to a complemented chief factor of $G[9, \S 1]$. Therefore $V \in \mathcal{C}_{\varepsilon}(G, \mathbb{K})$ if and only if $\hat{V} \in \mathcal{C}_{\varepsilon}\left(G, \mathbb{F}_{p}\right), \varepsilon=\emptyset, 0,1$.

Proposition 2.1. If $\mathbb{F} \subseteq \mathbb{K}$ is a field extension, let $V \in \operatorname{Irr}(G, \mathbb{K})$ and $U \in$ $\operatorname{Irr}(G, \mathbb{F})$ be such that V is a component of $U_{\mathbb{K}}$. Then

$$
\operatorname{dim}_{\operatorname{End}_{K G}(V)} H^{n}(G, V)=\operatorname{dim}_{\operatorname{End}_{F G}(U)} H^{n}(G, U), \quad n=1,2, \ldots
$$

Proof. Let

$$
\mathcal{P}: \cdots \rightarrow P_{n+1} \rightarrow P_{n} \rightarrow \cdots \rightarrow P_{1} \rightarrow \mathbb{F} \rightarrow 0
$$

be a minimal projective resolution of \mathbb{F}. Then $\operatorname{dim}_{\operatorname{End}_{G}(U)} H^{n}(G, U)$ is the multiplicity of U as component of $P_{n+1} / P_{n} \mathrm{~J}(\mathbb{F} G)$.

On the other hand, $\mathrm{J}(\mathbb{F} G)_{\mathbb{K}} \cong \mathrm{J}(\mathbb{K} G)$ [7, VII 1.5]. As \mathbb{K} is of prime characteristic, $U_{\mathbb{K}}$ is a direct sum of pairwise non-isomorphic irreducible $\mathbb{K} G$-modules [7, VII 1.15]. Then we have that the multiplicity of U as component of $P_{n+1} / P_{n} \mathrm{~J}(\mathbb{F} G)$ is equal to the multiplicity of V as component of $\left(P_{n+1} / P_{n} \mathrm{~J}(\mathbb{F} G)\right)_{\mathbb{K}}$. And also we have that $\mathcal{P}_{\mathbb{K}}$ is a minimal projective resolution of \mathbb{K}.

We consider again dimensions in $\mathcal{P}_{\mathbb{K}}$ and have the claim.
Corollary 2.2. Let $V \in \operatorname{Irr}(G, \mathbb{K})$. Then

$$
\ell_{2}^{G}(V)=\ell_{2}^{G}(\hat{V}), \quad \ell_{2}^{G / C_{G}(V)}(V)=\ell_{2}^{G / C_{G}(\hat{V})}(\hat{V})
$$

Denote by $\mathrm{cm}^{G}(V)$ the multiplicity of \hat{V} as complemented chief factor in a chief series of G. As another immediate consequence we have the validity of the following equality, which appears in $[1,2.10(\mathrm{~b})]$ for the case $\mathbb{K}=\mathbb{F}_{p}$:

Corollary 2.3. Let $V \in \operatorname{Irr}(G, \mathbb{K})$. Then we have

$$
\ell_{2}^{G}(V)=\mathrm{cm}^{G}(V)+\ell_{2}^{G / \mathrm{C}_{G}(V)}(V) .
$$

3. The second Loewy term

Recall that a primitive group is a group G with a maximal subgroup H such that $\operatorname{core}_{G}(H)=1, \operatorname{core}_{G}(H)$ being the intersection of all conjugate of H in G. Then G has exactly either one minimal normal subgroup or two nonabelian minimal normal subgroups. If G has a single nonabelian minimal normal subgroup, then we say $G \in$ \mathcal{P}_{2}.

A particular consequence of Kovács reduction theorem [8] is that, if $U \in$ $\operatorname{Irr}\left(G, \mathbb{F}_{p}\right)$ is faithful and $H^{1}(G, U) \neq 0$, then $G \in \mathcal{P}_{2}$ and $p||\mathrm{~S}(G)|$ (where $\mathrm{S}(G)$, the socle of G, is the product of the minimal normal subgroups of G). From the above proposition we have that this is also true for any faithful irreducible module in $\operatorname{Irr}(G, \mathbb{K})$.

Proposition 3.1. The following two assertions are equivalent:
(a) There exists a faithful irreducible $\mathbb{K} G$-module V such that $H^{1}(G, V) \neq 0$.
(b) $G \in \mathcal{P}_{2}$ and $p||\mathrm{~S}(G)|$.

Proof. It suffices to show that $(b) \Longrightarrow$ (a). This follows from the fact that $\mathrm{F}_{p}(G)=\cap\left\{\mathrm{C}_{G}(V) ; V \in \mathcal{C}(G, \mathbb{K})\right\}\left[2\right.$, Theorem 1], as $\mathrm{F}_{p}(G)=1$ and $\mathrm{S}(G)$ is contained in each nontrivial normal subgroup of G.

Corollary 3.2. Set $\mathrm{n}_{0}(G)=\left\{C ; C \triangleleft G, G / C \in \mathcal{P}_{2}, \quad p| | S(G / C) \mid\right\}$. Then

$$
\mathrm{n}_{0}(G)=\left\{\mathrm{C}_{G}(V) ; V \in \mathcal{C}_{0}(G, \mathbb{K})\right\}
$$

Proof. By the definition of $\mathcal{C}_{0}(G, \mathbb{K})$ and Proposition 3.1, it is clear that if $V \in$ $\mathcal{C}_{0}(G, \mathbb{K})$, then $\mathrm{C}_{G}(V) \in \mathrm{n}_{0}(G)$. Assume now that $C \in \mathrm{n}_{0}(G)$. By Proposition 3.1 there exists a faithful irreducible $\mathbb{K} G / C$-module V such that $H^{1}(G / C, V) \neq 0$, that is such that $\ell_{2}^{G / C}(V) \neq 0$. As the inflation map $H^{1}(G / C, V) \rightarrow H^{1}(G, V)$ is a monomorphism [5, VI 8.1], $V \in \mathcal{C}(G, \mathbb{K})$. As $C=\mathrm{C}_{G}(V)$ we conclude that $V \in \mathcal{C}_{0}(G, \mathbb{K})$.

Let $C \in \mathrm{n}_{0}(G)$. Then $\mathrm{S}(G / C)$ is the only minimal normal subgroup of G / C and is nonabelian. Therefore it is the product of isomorphic nonabelian simple groups. Let S / C be a simple component of $\mathrm{S}(G / C), A=\mathrm{N}_{G}(S / C)$ and $B=\mathrm{C}_{G}(S / C)$. In these conditions we say $A / B \in \mathrm{a}(C)$. Observe that A / B is an almost simple group, that is a group in \mathcal{P}_{2} with simple socle (isomorphic to S / C).

If $H \leq G$ and V is a $\mathbb{K} G$-module, then we set

$$
V^{H}=\{v \in V ; v h=v \forall h \in H\}
$$

and write $V \downarrow_{H}$ for the $\mathbb{K} H$-module obtained from V by restricting the action to $\mathbb{K} H$. If W is a $\mathbb{K} H$-module, then we set $W \uparrow^{G}=W \otimes_{\mathbb{K} H} \mathbb{K} G$.

Lemma 3.3. Consider $C \in \mathrm{n}_{0}(G), A / B \in \mathrm{a}(C)$ and assume that W is a faithful irreducible $\mathbb{K} A / B$-module. Then
(a) $W \uparrow^{G} \in \operatorname{Irr}(G, \mathbb{K}), W \cong\left(W \uparrow^{G}\right)^{B}$ and $\mathrm{C}_{G}\left(W \uparrow^{G}\right)=C$.
(b) $\ell_{2}^{A / B}(W)=\ell_{2}^{G / C}\left(W \uparrow^{G}\right)$.
(c) $\ell_{2}^{A}(W)=\ell_{2}^{G}\left(W \uparrow^{G}\right)$ and $\mathrm{cm}^{A}(W)=\mathrm{cm}^{G}\left(W \uparrow^{G}\right)$.

Proof. (a) We may assume that $C=1$. Then $G \in \mathcal{P}_{2}$. Set $N=\mathrm{S}(G)$. Let $V \in$ $\operatorname{Irr}(G, \mathbb{K})$ be a component of the head $\mathrm{H}\left(W \uparrow^{G}\right):=W \uparrow^{G} /\left(W \uparrow^{G}\right) J$ of $W \uparrow^{G}$. By Nakayama's theorem [6, V 16.6], W is a submodule of $\mathrm{S}\left(V \downarrow_{A}\right)$, and so $W \downarrow_{N}$ is a submodule of $V \downarrow_{N}$.

Let $\left\{g_{1}, \ldots, g_{n}\right\}$ be a transversal of A in G, with $g_{1}=1$. Then, by putting $S_{i}=$ $S^{g_{i}}, B_{i}=B^{g_{i}}$, we have $N=S_{1} \times \cdots \times S_{n}, B_{i}=\mathrm{C}_{G}\left(S_{i}\right)$. Set moreover for $1 \leq i \leq n$

$$
V_{i}=V^{B_{i}}, \quad U_{i}=V_{1}+\cdots+V_{i-1}+V_{i+1}+\cdots+V_{n}, \quad M_{i}=V_{i} \cap U_{i}
$$

We have

$$
S_{i} \leq \bigcap_{j \neq i} B_{j} \leq \bigcap_{j \neq i} \mathrm{C}_{G}\left(V_{j}\right)=\mathrm{C}_{G}\left(U_{i}\right), \quad B_{i} \leq \mathrm{C}_{G}\left(V_{i}\right)
$$

and hence $N \leq S_{i} B_{i} \leq \mathrm{C}_{G}\left(M_{i}\right)$. Therefore $M_{i} \subseteq V^{N}$. As V is an irreducible $\mathbb{K} G$ module and $N \unlhd G$, either $V^{N}=V$ or $V^{N}=0$. Assume that $V^{N}=V$. As $W \downarrow_{N}$ is
a submodule of $V \downarrow_{N}, N \leq \mathrm{C}_{A}(W)$. Then $B<B N \leq \mathrm{C}_{A}(W)$, contradicting the fact that W is a faithful A / B-module.

So we have that $V^{N}=0$. In particular $M=0$, that is $V_{1}+\cdots+V_{n}$ is a direct sum. As $W g_{i} \subseteq V_{i}$, we have that also $W g_{1}+\cdots+W g_{n}$ is a direct sum, and hence

$$
W \uparrow^{G} \cong W g_{1} \oplus \cdots \oplus W g_{n} \leq V .
$$

As $\operatorname{dim}_{\mathbb{K}} V \leq \operatorname{dim}_{\mathbb{K}} W \uparrow^{G}$, we have that $V \cong W \uparrow^{G}$. Clearly $W \cong\left(W \uparrow^{G}\right)^{B}$. And $\mathrm{C}_{G}(V)=\operatorname{core}_{G}\left(\mathrm{C}_{A}(W)\right)=\operatorname{core}_{G}(B)=1$.
(b) By Shapiro's lemma [3, 6.3], $H^{1}(A / C, W) \cong H^{1}\left(G / C, W \uparrow^{G}\right)$. By [8, 3.5], $\operatorname{End}_{\mathbb{K} A / C}(W) \cong \operatorname{End}_{\mathbb{K} G / C}\left(W \uparrow^{G}\right)$. Therefore $\ell_{2}^{A / C}(W)=\ell_{2}^{G / C}(V)$.

Assume that \hat{W} appears as a chief factor of A between C and B. Then $S \leq$ $\mathrm{C}_{A}(\hat{W})=\mathrm{C}_{A}(W)=B=\mathrm{C}_{A}(S / C)$, a contradiction. In particular $\mathrm{cm}^{A / C}(W)=0$. Therefore $\ell_{2}^{A / B}(W)=\ell_{2}^{A / C}(W)$, and hence $\ell_{2}^{A / B}(W)=\ell_{2}^{G / C}(V)$.
(c) Again by Shapiro's lemma, $\ell_{2}^{A}(W)=\ell_{2}^{G}\left(W \uparrow^{G}\right)$. From (b) and [1, 2.10(b)] we have that $\mathrm{cm}^{A}(W)=\mathrm{cm}^{G}\left(W \uparrow^{G}\right)$.

We now deduce the validity of [8] for any field \mathbb{K} of prime characteristic p :
Theorem 3.4 (Kovács Reduction.). Consider $V \in \mathcal{C}_{0}(G, \mathbb{K}), A / B \in \mathrm{a}(C)$ and set $N / C=\mathrm{S}(G / C)$. Let $W=V^{B \cap N}$. Then $W \in \mathcal{C}_{0}(A, \mathbb{K}), \mathrm{C}_{A}(W)=B, \ell_{2}^{G / C}(V)=\ell_{2}^{A / B}(W)$ and $V \cong W \uparrow^{G}$.

Proof. As $V \in \mathcal{C}_{0}(G, \mathbb{K}), \hat{V} \in \mathcal{C}_{0}\left(G, \mathbb{F}_{p}\right)$. Moreover $C:=\mathrm{C}_{G}(V)=\mathrm{C}_{G}(\hat{V}) \in$ $\mathrm{n}_{0}(G)$. By [8], $U:=\hat{V}^{B \cap N} \in \mathcal{C}_{0}\left(A, \mathbb{F}_{p}\right), \mathrm{C}_{A}(U)=B$ and $\ell_{2}^{G / C}(\hat{V})=\ell_{2}^{A / B}(U)$.

Let $U_{\mathbb{K}} \cong W_{1} \oplus \cdots \oplus W_{r}$, where each W_{i} is irreducible. Then $W_{i} \in \mathcal{C}_{0}(A, \mathbb{K})$ and $\mathrm{C}_{A}\left(W_{i}\right)=B$. Let now $\hat{V}_{\mathbb{K}} \cong V_{1} \oplus \cdots \oplus V_{s}$, with each V_{i} irreducible and $V_{1} \cong V$. Then we have

$$
V_{1} \oplus \cdots \oplus V_{s} \cong \hat{V}_{\mathbb{K}} \cong\left(U \uparrow^{G}\right)_{\mathbb{K}} \cong U_{\mathbb{K}} \uparrow^{G} \cong W_{1} \uparrow^{G} \oplus \cdots \oplus W_{r} \uparrow^{G}
$$

By Lemma 3.3 (a) each $W_{i} \uparrow^{G}$ is irreducible. Therefore, by the Krull-Remak-Schmidt theorem [6, I 12.3], we have that $r=s$ and, after rearranging the indices if necessary, $V_{i} \cong W_{i} \uparrow^{G}, 1 \leq i \leq r$. Moreover, as $U=\hat{V}^{B \cap N}, U_{\mathbb{K}} \cong\left(\hat{V}_{\mathbb{K}}\right)^{B \cap N}$, and therefore $W_{i} \cong V_{i}^{B \cap N}$. Finally, by Corollary 2.2, $\ell_{2}^{G / C}(V)=\ell_{2}^{G / C}(\hat{V})=\ell_{2}^{A / B}(U)=\ell_{2}^{A / B}\left(W_{1}\right)$.

This reduction theorem allows us to reduce also the study of $\mathcal{C}(G, \mathbb{K})$ to the almost simple case:

Theorem 3.5. Consider $C \in \mathrm{n}_{0}(G)$ and $A / B \in \mathrm{a}(C)$. Then the map

$$
\uparrow^{G}:\left\{W \in \mathcal{C}_{0}(A, \mathbb{K}) ; \mathrm{C}_{A}(W)=B\right\} \rightarrow\left\{V \in \mathcal{C}_{0}(G, \mathbb{K}) ; \mathrm{C}_{G}(V)=C\right\}
$$

is bijective. Moreover $\ell_{2}^{A / B}(W)=\ell_{2}^{G / C}\left(W \uparrow^{G}\right), \ell_{2}^{A}(W)=\ell_{2}^{G}\left(W \uparrow^{G}\right)$ and $\mathrm{cm}^{A}(W)=$ $\mathrm{cm}^{G}\left(W \uparrow^{G}\right)$.

Proof. By Lemma 3.3, (a) (b) we have a well-defined injective map. It is surjective by Theorem 3.4.

Now we can give the following first explicit description of $e J / e J^{2}$.
Theorem 3.6. Let $C \in \mathrm{n}_{0}(G)$ and $A / B \in \mathrm{a}(C)$. Let $\left\{W_{1} \cdots W_{m}\right\}$ be a complete set of representatives of the isomorphism classes of faithful modules in $\mathcal{C}(A / B, \mathbb{K})$. We set:

$$
\begin{aligned}
\mathrm{M}(C) & :=\ell_{2}^{A / B}\left(W_{1}\right) \cdot W_{1} \uparrow^{G} \oplus \cdots \oplus \ell_{2}^{A / B}\left(W_{m}\right) \cdot W_{m} \uparrow^{G} \\
\mathrm{R}(C) & :=\ell_{2}^{A}\left(W_{1}\right) \cdot W_{1} \uparrow^{G} \oplus \cdots \oplus \ell_{2}^{A}\left(W_{m}\right) \cdot W_{m} \uparrow^{G} .
\end{aligned}
$$

Then we have:

$$
\begin{aligned}
e J / e J^{2} & \cong\left(\bigoplus_{V \in \mathcal{C}(G, \mathbb{K})} \mathrm{cm}^{G}(V) \cdot V\right) \oplus\left(\bigoplus_{C \in \mathrm{n}_{0}(G)} \mathrm{M}(C)\right) \\
& \cong\left(\underset{V \in \mathcal{C}(G, \mathbb{K}) \backslash \mathcal{C}_{0}(G, \mathbb{K})}{ } \mathrm{cm}^{G}(V) \cdot V\right) \oplus\left(\bigoplus_{C \in \mathrm{n}_{0}(G)} \mathrm{R}(C)\right) .
\end{aligned}
$$

Proof. By Corollary 2.3,

$$
\begin{aligned}
e J / e J^{2} & \cong \bigoplus_{V \in \mathcal{C}(G, \mathbb{K})} \ell_{2}^{G}(V) \cdot V \\
& \cong\left(\bigoplus_{V \in \mathcal{C}(G, \mathbb{K})} \mathrm{cm}^{G}(V) \cdot V\right) \oplus\left(\bigoplus_{V \in \mathcal{C}(G, \mathbb{K})} \ell_{2}^{G / C_{G}(V)}(V) \cdot V\right) .
\end{aligned}
$$

Now,

$$
\bigoplus_{V \in \mathcal{C}(G, \mathbb{K})} \ell_{2}^{G / \mathrm{C}_{G}(V)}(V) \cdot V \cong \bigoplus_{V \in \mathcal{C}_{0}(G, \mathbb{K})} \ell_{2}^{G / \mathrm{C}_{G}(V)}(V) \cdot V
$$

(by the definition of $\mathcal{C}_{0}(G, \mathbb{K})$)

$$
\cong \bigoplus_{C \in \mathrm{n}_{0}(C)}\left(\bigoplus_{\substack{V \in \mathcal{C}_{0}(G, \mathrm{KK}) \\ G_{G}(V)=C}} \ell_{2}^{G / C}(V) \cdot V\right)
$$

$\left(\right.$ as $\mathcal{C}_{0}(G, \mathbb{K})=\bigcup_{C \in \mathrm{n}_{0}(G)}\left\{V ; V \in \mathcal{C}_{0}(G, \mathbb{K}), \mathrm{C}_{G}(V)=C\right\}$ by Corollary 3.2)

$$
\cong \bigoplus_{C \in \mathrm{n}_{0}(G)} \mathrm{M}(C)
$$

X(by Theorem 3.5).
On the other hand, if $V \in \mathcal{C}(G, \mathbb{K}) \backslash \mathcal{C}_{0}(G, \mathbb{K})$, then $\ell_{2}^{G}(V)=\mathrm{cm}^{G}(V)$. Therefore

$$
e J / e J^{2} \cong\left(\bigoplus_{V \in \mathcal{C}(G, \mathbb{K}) \backslash \mathcal{C}_{0}(G, \mathbb{K})} \mathrm{cm}^{G}(V) \cdot V\right) \oplus\left(\bigoplus_{V \in \mathcal{C}_{0}(G, \mathbb{K})} \ell_{2}^{G}(V) \cdot V\right)
$$

and

$$
\bigoplus_{V \in \mathcal{C}_{0}(G, \mathbb{K})} \ell_{2}^{G}(V) \cdot V \cong \bigoplus_{C \in \cap_{0}(G)}\left(\bigoplus_{\substack{V \in \mathcal{C}_{O}(G, \mathbb{R}) \\ C_{G}(V)=C}} \ell_{2}^{G}(V) \cdot V\right) \cong \bigoplus_{C \in \cap_{0}(G)} \mathrm{R}(C) .
$$

If $H \leq G$, then we put

$$
\mathrm{h}_{G}(H)=e \mathrm{I}(H) \mathbb{K} G+e J^{2},
$$

where $\mathrm{I}(H)=\left\{\sum_{h \in H} a_{h} h ; \sum_{h \in H} a_{h}=0, a_{h} \in \mathbb{K}\right\}$ is the augmentation ideal of $\mathbb{K} H$.
Observe that $\mathrm{h}_{G}(H)$ is a $\mathbb{K} G$-module and $e J^{2} \subseteq \mathrm{~h}_{G}(H) \subseteq e J$ since $e \mathrm{I}(G)=e J$.
The filtration of $e J / e J^{2}$ given by Okuyama and Tsushima [10] for $\mathbb{K}=\mathbb{F}_{p}$ and p soluble G is a particular case of the following second description we give of $e J / e J^{2}$:

Theorem 3.7. Let $1=G_{0} \leq G_{1} \leq \cdots \leq G_{n-1} \leq G_{n}=G$ be a chief series of G and consider the associated filtration of eJ/eJ ${ }^{2}$:

$$
e J^{2}=\mathrm{h}_{G}\left(G_{0}\right) \subseteq \mathrm{h}_{G}\left(G_{1}\right) \subseteq \cdots \subseteq \mathrm{h}_{G}\left(G_{n-1}\right) \subseteq \mathrm{h}_{G}\left(G_{n}\right)=e J .
$$

Then we have:

$$
\begin{aligned}
& \mathrm{h}_{G}\left(G_{i}\right) / \mathrm{h}_{G}\left(G_{i-1}\right) \\
& \cong\left\{\begin{array}{l}
0 \text { if } G_{i} / G_{i-1} \text { is a } p^{\prime} \text {-chief factor or a frattini p-chief factor } \\
\left(G_{i} / G_{i-1}\right)_{\mathbb{K}} \text { if } G_{i} / G_{i-1} \text { is a complemented } p \text {-chief factor } \\
\mathrm{M}\left(\mathrm{C}_{G}\left(G_{i} / G_{i-1}\right)\right) \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Proof. We proceed with the induction on n. If $n=0$, the result is trivial. Assume $n>0$, take $N=G_{1}$ and consider $\bar{G}=G / N$.

As $e J / e J^{2}$ is completely reducible, $e J / e J^{2} \cong e J / \mathrm{h}_{G}(N) \oplus \mathrm{h}_{G}(N) / e J^{2}$. Now

$$
e J / \mathrm{h}_{G}(N)=\mathrm{h}_{G}(G) / \mathrm{h}_{G}(N) \cong \mathrm{h}_{\bar{G}}(\bar{G}) / \mathrm{h}_{\bar{G}}(\bar{N})=\bar{e} \bar{J} / / \bar{e} \bar{J}^{2}
$$

Therefore

$$
\begin{equation*}
e J / e J^{2} \cong \bar{e} \bar{J} / \bar{e} \bar{J}^{2} \oplus \mathrm{~h}_{G}(N) / e J^{2} \tag{*}
\end{equation*}
$$

As $\mathrm{h}_{\bar{G}}\left(\bar{G}_{i}\right) / \mathrm{h}_{\bar{G}}\left(\bar{G}_{i-1}\right) \cong \mathrm{h}_{G}\left(G_{i}\right) / \mathrm{h}_{G}\left(G_{i-1}\right)$, the result is true by the inductive hypothesis for the factors $G_{i} / G_{i-1}, i>1$.

Assume that N is a p-group or a p^{\prime}-group. Then $N \leq \mathrm{F}_{p}(G) \leq \mathrm{C}_{G}(V)$ for each $V \in \mathcal{C}(G, \mathbb{K})$, and hence $\mathcal{C}(G, \mathbb{K})=\mathcal{C}(\bar{G}, \mathbb{K})$ and $\mathrm{n}_{0}(G)=\mathrm{n}_{0}(\bar{G})$.

If N is a frattini p-chief factor or a p^{\prime}-factor, then $\mathrm{cm}^{G}(V)=\mathrm{cm}^{\bar{G}}(V)$ for each $V \in \operatorname{Irr}(G, \mathbb{K})$. Then, by Theorem 3.6, we have in this case that $e J / e J^{2} \cong \bar{e} \bar{J} / \bar{e} \bar{J}^{2}$. From (*) we conclude that $\mathrm{h}_{G}(N) / e J^{2}=0$.

If N is a complemented p-chief factor, from Theorem $3.6 \mathrm{eJ} / e J^{2} \cong \bar{e} \bar{J} / \bar{e} \bar{J}^{2} \oplus N_{\mathbb{K}}$, and by $(*)$ we have that $\mathrm{h}_{G}(N) / e J^{2} \cong N_{\mathbb{K}}$.

Assume that N is nonabelian and p is a divisor of $|N|$. Let $C=\mathrm{C}_{G}(N)$. Then $G / C \in \mathcal{P}_{2}$, as $N C / C$ is the only minimal normal subgroup of G / C. We have that, if $i>1$, then $N \leq G_{i-1} \leq \mathrm{C}_{G}\left(G_{i} / G_{i-1}\right)$, and hence $C \neq \mathrm{C}_{G}\left(G_{i} / G_{i-1}\right)$, as N is nonabelian. Therefore $\mathrm{n}_{0}(G)=\mathrm{n}_{0}(\bar{G}) \cup\{C\}$. On the other hand $\mathcal{C}(\bar{G}, \mathbb{K}) \subseteq \mathcal{C}(G, \mathbb{K})$, as the inflation map $H^{1}(\bar{G}, V) \rightarrow H^{1}(G, V)$ is injective, and $\mathrm{cm}^{G}(V)=\mathrm{cm}^{\bar{G}}(V)$ for each $V \in \operatorname{Irr}(G, \mathbb{K})$. Consequently $e J / e J^{2} \cong \bar{e} \bar{J} / \bar{e} \bar{J}^{2} \oplus \mathrm{M}(C)$ and so $\mathrm{h}_{G}(N) / e J^{2} \cong \mathrm{M}(C)$.

As $\mathrm{h}_{G}(N) / e J^{2}=\mathrm{h}_{G}\left(G_{1}\right) / \mathrm{h}_{G}\left(G_{0}\right)$, this completes the proof.

References

[1] M. Aschbacher and R. Guralnick: Some Applications of the First Cohomology Group, J. Algebra, 90 (1984), 446-460.
[2] R.L. Griess and P. Schmid: The Frattini module, Arch. Math. 30 (1978), 256-266.
[3] K. Gruenberg: Cohomological Topics in Group Theory, LNM 143, Springer-Verlag, Berlin, 1970.
[4] K. Gruenberg: Groups of non-zero presentation rank, Symposia Math. 17 (1976), 215-224.
[5] P.J. Hilton and U. Stammbach: A Course in Homological Algebra, GTM 4, Springer-Verlag, Berlin, 1971.
[6] B. Huppert: Endliche Gruppen I, Springer-Verlag, Berlin, 1970.
[7] B. Huppert and N. Blackburn: Finite Groups II, Springer-Verlag, Berlin, 1982.
[8] L.G. Kovács: On the first cohomology of a finite group with coefficients in a simple module, The Australian National University, Research Report, 43 (1984).
[9] J. Lafuente: On the second Loewy term of projectives of a group algebra, Israel J. Math. 67 (1989), 170-180.
[10] T. Okuyama and Y. Tsushima: On the theorems of Gaschütz and Willems, Osaka J. Math. 24 (1987), 391-394.
[11] U. Stammbach: On the principal indecomposables of a modular group algebra, J. Pure Appl. Algebra, 30 (1983), 69-84.
[12] W. Willems: On p-Chief Factors of Finite Groups, Comm. in Algebra, 13 (1985), 2433-2447.
J. P. Lafuente Departamento de Matemática
e Informática
Universidad Pública de Navarra
31006 Pamplona, Spain
e-mail: lafuente@unavarra.es
C. Martínez-Pérez

Departamento de Matemáticas
Universidad de Zaragoza,
50009 Zaragoza, Spain
e-mail: conmar@posta.unizar.es

[^0]: ${ }^{\dagger}$ Supported in part by D.G.A. grant B143.
 ${ }^{\ddagger}$ Both authors were supported in part by DGICYT, PB97-0674-C02-01.

