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Let R be an integral domain, Q its quotient field. For any i?-module A

we write d(A) for its homological dimension (minimal length of a protective

resolution), or dR(A) if it is necessary to call attention to R.

The number d(Q) is pertinent to several questions concerning /^-modules

DO, [4]. We summarize what is known about it. It is an easy exercise that

d{Q)^l if Q is a countably generated i?-module. Also [3, Lemma 3.2], d(Q)

= 1 if R is Noetherian of Krull dimension one and this result is generalized

in [4]. In 1957 I noted a result in the converse direction (mentioned on page

386 of [3]) : if R is a valuation ring and d(Q) = 1, then Q is countably generated.

In the present note I prove a more general converse: if d{Q) = 1 and R

is quasi-local (i.e. has exactly one maximal ideal) then Q is a countably gene-

rated i?-module. The basic device is similar to the artifice used in [1] and is

simpler than my 1957 treatment of the valuation ring case.

We begin the discussion by letting R be any integral domain, Q its quotient

field. Let S denote the set of all elements a"1, a ranging over the elements of

R that are not zero and not units. Of course S spans Q as an /?-module, and

we choose to resolve Q extravagantly by mapping a free module F onto Q, F

having a basis {ua} indexed by the elements of R not zero or units, the map-

ping / : F-+Q being given by Ua-^a'1. Let the kernel of / be G. We assume

that G is free (this will be the case if R is quasi-local and d(Q)^l, since all

projectives over R are then free [1]). Let {υ*} be a basis of G.

Let So be a countable semigroup in S (i.e. a countable subset closed under

multiplication). We describe a procedure that will be iterated ad infinitum.

Let Fo be the submodule of F spanned by the basis elements corresponding to

So. Let Go = GΠFo (i.e. the kernel of/ when restricted to Fo). It is easily
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seen that Go is countably generated. (One way to do this : number the elements

of So, let bn be the product of the first n, and let un be the basis element with

f(un)=bn'y then the elements un~ (bn/bn+i)un+1 span Go). Pick a countable

generation of Go, write each generator as a linear combination of v's, write

each resulting v as a linear combination of u's, and assemble the elements f(u)

for these u's. Together with So, these f(u)fs will generate a new countable

semi-group Si.

Iteration of the above procedure yields an increasing sequence of countable

semigroups So, Si, S2, . . . . Let S* denote their union. Then S* is again a

countable sub-semi-group of S. When we (as done above for So) write F* for

the submodule of F spanned by the basis elements corresponding to S*, and

G* = F* n G, we find that G* is a free direct summand of G, being spanned

by the totality of v's that arose in the construction.

Let A be the i?-submedule of Q spanned by S*. Let B be any i?-module

lying between A and Q that is spanned by reciprocals of elements of R. Denote

by C the submodule of F spanned by the elements ua corresponding to all ele-

ments a'1 lying in B. Let D = G Π C. The exact sequence

furnishes a short free resolution of B. In the application shortly to be made,

the module B will be non-projective hence we will have

(1) d(D)=d{B)~l.

Next we note the induced free resolution of B/A:

In the forthcoming application it will also be the case that B/A is non-projeotive.

But even if B/A is projective we always have the inequality

(2) d(D/G*)>d{B/A)-l.

Since G* is a direct summand of G, it is also a direct summand of the in-

termediate D. Thus D is the direct sum of D/G* and the free module G*.

Hence

(3)

On putting together (1), (2), and (3) we find
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(4)

The analysis up to this point may be useful in future generalizations,

but we turn specifically now to the proof of our main result.

THEOREM 1. Let R be a quasi-local integral domain with quotient Held Qy

and assume d(Q)^l. Then Q is a countably generated R-module.

Proof. We construct S* and A as above. (An intial So is needed; it can

be taken to consist of the powers of any element of S). We shall prove A = Q

by deriving a contradiction from the contrary assumption. If A # Q we pick

q^R (not 0 or a unit) such that q~ι is not in A. Our choice for B is q~λA,

We have that B properly contains A, and also that B is isomorphic to A. The

module A is spanned by a sequence of elements each of which is a proper

multiple of the succeeding one. From this we readily deduce d{A) = 1, and

so we likewise have d{B) = 1. In particular, B is not projective the discussion

above is thus applicable and we have that (4) holds. Hence d(B/A)^l. But

we now argue that d{B/A) = 2.

The argument is based on two lemmas on homological dimension which

are perhaps most easily quoted from [2]. Let T denote the ring R/{q). We

note that B/A = B/qB. Then [2, Th. 1. 7] dAB/A)^dR{B) = 1. The possibility

that d'AB/A) = 0 is readily excluded. For suppose that B/A is free as a T-

module. We have a sequence u% of generators of B/A with the property Ui ~

λiUi+u where λi is a non-unit in T. For large enough i it must be the case

that Ui has (in its expression in terms of a T-basis of B/A) a unit for one of

its coefficients. But then the equation uι = λiUi+i is impossible at that coordinate.

Hence dAB/A) = l. The hypotheses of [2, Th. 1.3] are fulfilled and we

deduce d(B/A) = 2. With this contradiction the proof of Theorem 1 is complete.

Theorem 1 cannot be extended automatically to the global case, as is shown

by the case of Noetherian domains of Krull dimension one. Perhaps in some

sense this is the only exception. We can at any rate handle the case of poly-

nomial rings over a field.

THEOREM 2. Let K be an uncountable field and R a polynomial ring over

K in n indeterminates, n>2. Let Q be the quotient field of R. Then d(Q)~>2.

If w =
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Proof. Let M denote the maximal ideal of R at the origin. We have that

Q is also the quotient field of the localization RM, and that Q = QM. Thus

dRM(Q)^dR(Q). Now Ru is a unique factorization domain which has uncountably

many primes (if x and y are two of the indeterminates and cc ranges over K,

the elements x-\-ay are distinct primes in RM). This means that the quotient

field of RM is not a countably generated ^-module. By Theorem 1, dRM(Q)^

2, and so dR{Q)>2. The final statement of the theorem is evident since for

n = 2 the global dimension of R is 2.

I am indebted to H. Bass for a spirited discussion that resulted in several

significant improvements.
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