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1. Introduction. The motivation for the results in this note comes from a

theorem of Macaulay. Let fu . . . , fn be elements of a polynomial ring i?over

a field, and let / be the ideal they generate. Assume I^R and rank (I) ~n.

Then the theorem of Lasker and Macaulay asserts that / is unmixed (all prime

ideals belonging to / have rank n). Macaulay [1, p. 51] proved further that

any power of I is unmixed.

In the modern formulation of the problem we operate in any commutative

ring R with unit, and let /= (ai, . . . , an) where #i, . . . , an is an /^-sequence.

We seek to prove that for any k the homological dimension of R/Ik is n. For

details on how this implies unmixedness in case R is Noetherian, see [2].

In 1959 I noticed that the methods used by Rees in [2] could be adapted

to prove the above theorem. Recently I discovered a still simpler proof that

yields information not just on the powers of 7, but on ideals generated by

monomials in the as. Since there are as yet not too many examples where

homological dimensions can be computed explicitly, the details are perhaps

worthy of public scrutiny.

2. Formulation of results. R will always denote a commutative ring with

unit. Let A be an 2?-module. The homological dimension of A is the smallest

integer m such that there exists an exact sequence

0->Pm-> -*Pi-*P0-*A->0

with Pi projective if no such sequence exists, the homological dimension of

A is co. We write d(A) for the homological dimension, or dpXA) when it is

necessary to call attention to the ring.

The elements aι, . . . , an in R form an Z?-sequence if (aί9 . . . , an) Φ R and
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for i =1, . . . , n, aι maps into a non-zero-divisor in the ring R/(au • . . > tfί-i).

If R is a local ring, it is known that any permutation of an i?-sequence is an

i?-sequence, so that Theorem 1 below is applicable if R is a local ring.

We shall be concerned with an ideal / which is generated by monomials

in the α's. It is easily seen that (even if we allow an infinite number) a finite

number of monomials will suffice to generate /.

The simplest result to state and prove is that d(R/I) ^ n if every per-

mutation of the given i?-sequence is an i?-sequence.

THEOREM 1. Let R be a commutative ring with unit, and Ou . . . , an ele-

ments of R constituting an R-sequence in any order. Let I be an ideal generated

by monomials in the as. Then d(R/I) ^ n .

If we assume only that ai, . . . , an is an /^-sequence in the given order,

then some extra hypothesis is needed even to get d(R/I)<°°. For instance,

it is easily possible to arrange that a2 is a divisor of 0 and d(RjI) = °° with

/ = (a2). If it is assumed that I contains a power of each β, , then d(R/I) can

be proved equal to n. The argument that proves this also yields the extra

information recorded in Theorem 2.

THEOREM 2. Let R be a commutative ring with unit and ah . . . , an an

R-sequence in R. Let I be an ideal generated by monomials in the as. Assume

that I contains a power of at for i = 1, . . . , n — 1. Then d(R/I) ^ n. If further

I contains a power of an then d(R/I) = n.

3. Proof of Theorm 1. In the proofs we will use two basic facts on

homological dimension which are given as Lemmas 1 and 2. Both already rank

as "folk theorems" in this young subject. Lemma 2 is valid for any ring R,

and so is Lemma 1 provided x is central.

LEMMA 1. Let x be a non-zero-divisor in R, and write S=R/(x). Let A

be a non-zero S-module τvith da(A)< °°. Then dκ(A) = 1-f ds(A).

LEMMA 2. Let A be an R-module, B a submodule, C == A/B.

(a) If d(C)<l + d(B)y then d(A)=d(B).

(b) //ΛC)>1 + Λ5), then d{A)=d(C).

(c) // d(C) = 1 + d(B), then d(A) ^ d(C).

In any case d(A) ^ max (d(B),
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The spirit of the next lemma is that the "relative primeness" of the as

that is built into the definition of an i?-sequence can be extended to more

complicated objects.

LEMMA 3. Let au . . . , an be elements constituting an R-sequence in any

order. Let J be an ideal generated by monomials in a2y . . . , an> Then tai^J

implies t<Ej.

Proof. We may suppose that a2 actually occurs in one of the monomials

generating/. Write J-{a2K, L) where K is generated by monomials in a2,

. . . , an and L just by monomials in a$, . . . , α«. We have tax = ua%Λ- v, u& K,

v$=L. We pass to the ring R/(aι), noting that the homomorphic images of

a2, . . . , an constitute an /^-sequence. Writing * for homomorphic image, we

have u*at<ΞL*. By induction on n, U*<ΞL*> whence u<Ξ.{au L), say u-waι

+ x with # e L. Since u e K, this implies wat e (K, L). We make an induction

on the sum of the degrees of the monomials generating /, and deduce κ/-e (K,

L). Next we substitute for u in the equation tai = ua2 4 v, and find {t~-ιva2

)ιa1

ε L Since <zj, <33, a±, . . . , an is also an J?-sequence we have, again by induc-

tion on n, t — waie L. Hence fe ia2K, L) —J.

Proof of Theorem 1. We may suppose that aι actually occurs in one of

the monomials generating /. Let 70 = (#i, /). We study the module R/Γm the

two steps i?//0, /o/7.

(l) R/IQ is annihilated by aL and so may be regarded as an S-module where

S = R/(ai). As such, it has the same form relative to a sequence of length

n — 1 (the images of # > , . . . , an) which is an /^-sequence in any order, as R/I

does relative to βi, . . . , an. By induction on ny ds(R/ΐo) ^ n - 1. By Lemma

(2) hi I is a cyclic module, generated by aι. The annihiiator is the set of

all s with sai^L Write 7= (aiP, J) where / is generated by monomials in

a2, . . . , an> Now if saλ e /, then saι=yai-\-zf y^Γ, Z'e/. Thus (s-y)aί^J.

By Lemma 3, s~-y<Ej, whence s e (/', / ) . Hence hi I is isomorphic to i?/(/', /).

By induction on the sum of the degrees of the monomials generating /, d(Rl(Γ>

J))£n. Hence d(h/I)^n.

To complete the proof of Theorem 1 it remains only to put these two

pieces together with the aid of Lemma 2.
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4. Proof of Theorem 2. The plan of proof is the same as soon as we have

the appropriate analogue of Lemma 3.

LEMMA 4. Suppose au . . . , an is an R-sequence and tai^J where J is

generated by monomials in a%> . . . , an and contains a power of aι for * = 2,

. . . , n - 1. Then t e /.

It turns out that to give a smooth inductive proof of Lemma 4 it is advisable

to prove simultaneously a companion lemma.

LEMMA 5. Suppose au . . . , an is an R-sequence and tan^J where J is

generated by monomials in aif . . . , an-\ and contains a power of each. Then

Proof of Lemmas 4 and 5. We assume both to be true for n - 1. Further-

more for the given n we make an induction on the sum of the degrees of the

monomials generating /.

We first treat Lemma 4. if an does not occur in a generating monomial,

induction applies at once. Otherwise write / = (K, anL) here K is generated

by monomials in a^ . . . , an-\ and contains a power of each. Say tai = u + anv,

u<=K% υ^L. We pass to the ring R/(ax)y using * for homomorphic image.

Then υ*at eϋί*, whence υ* e K* by our inductive assumption of Lemma 5 for

n — 1. Thus υ e (aϊy K), say v = wax + x(x e K). This implies waλ e (if, L)

whence w e (K, L) by our second induction. Now tax = u +an(wai +x),

(t~wan)aι = uΛ-xan^K, t - wan^K by Lemma 4 for n— 1, f e (/iί, α«L) =/.

We proceed to the proof of Lemma 5. This time we write / = (aiK, L),

where L is generated by monomials in «>, , . . , an-i and contains a power of

each. Say tan = uai 4- v, u^Ky v^L. We look at this equation mod (#i), and

apply Lemma 5 for n — 1. The result is t^(ai), t = wau Then (wan — u)ai

= ί/el. By the case n — 1 of Lemma 4, wan ~ ue. L, so wans (/Γ, Z), and

tv^(K, L) by the induction on the sum of the degrees of the monomials.

Finally t = axw e Uitf, L) =/.

Proof of Theorem 2. That d(R/I) ^ is proved verbatim as in Theorem 1

(except for citing Lemma 4 in place of Lemma 3), and we shall not repeat the

proof.

If / contains a power of an> then by induction we get both d(Rlh) and
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d(IJI) to be n, whence d(R/I) = n by Lemma 2. (To be absolutely accurate

we should distinguish the case a,ι e /; but then 70 = / and we are finished when

we show d(R/IQ) = w).

5. Further remarks. We append three concluding remarks.

1. If R is Noetherίan, it is possible to sharpen Theorem 2 by showing that

diRlI) = n - 1 or n and that d(RlI) = n if an "actually occurs" in / (in a sense

easily made precise). Whether this holds in the non-Noetherian case I have

been unable to determine.

2. Let us say that a module A has a finite free resolution if there exists

an exact sequence

0->Frt-» ->Fo--»A-*O

with the modules F, free and finitely generated. It is known that the analogues

of Lemmas 1 and 2 are valid in the context of finite free resolutions. By trac-

ing through the proofs we then see that under the hypothesis of either Theorem

1 or Theorem 2, R/I has a finite free resolution.

3. Lemma 4 has a corollary of some interest. Let tnu Mz, . . . be monomials

in the as and suppose we have a relation tinti-h tom>+ =0 . Suppose

further that mx is not a formal multiple of any other of the rris. Then:

fi G («i, . . . , an). The deduction of this form Lemma 4 is simple and is left

to the reader.

Here is a further consequence which shows that the resemblance between

/^-sequences and independent indeterminates is more than a resemblance. Let

R be a commutative ring with unit containing a field F (with the same unit).

Let au , ctn be an /^-sequence in R. Then F[_au . . . , aft] is a polynomial

ring, i.e. the as are independent indeterminates over F.
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