ON THE THEORY OF HENSELIAN RINGS
MASAYOSHI NAGATA

Introduction. The notion of Henselian rings was introduced by G. Azuma-
ya [1].” We concern ourselves in the present paper mainly with Henselizations
of integrally closed integrity domains. Chapter I deals with general integrally
closed integrity domains. As a preparation of our studies, we introduce the
notion of decomposition rings analogously as in the case of fields (§1). And
then we definc the notions of (local) Henselian rings and Henselizations of
integrally closed integrity domains, and obtain several results concerning
characterizations of IHenselian rings and the unigeness of Henselizations (§2).

In Chapter II, we restrict ourselves to the case of valuation rings. First
we show that although the definition of Henselian rings are concerned with
monic polynomials and the maximal ideal, thie Iensel lemma holds also for
non-monic polynomials (§3) and even mcdulo not necessarily prime ideals
(with certain conditions) (§5).

Appendix (1) gives a proof of a fundamental lemma concerning extensions
of a valuation, which is quoted in §3 and Appendix (II) shows an example of
a certain type of Henselian, special, discrete valuation ring.

As for the terms, a ring (or an integrity domain) means always commuta-
tive one with identity and a ring which has oniy one maximal ideal is called
quasi-lecal.

We refer to the notations as oy, where 0 is a ring and b is its prime ideal,
the ring of quotients of p with respect to o.

Chapter 1.
General theory of integrally closed Henselian integrity domains.

1. Decomposition rings.

T.emma 1. Let o be an integrally closed integrity domain with quotient
field K. Assume that K'is a normal (algebraic) extension of K and let o/ be
the tofality of o-integers in K'. If p1 and p, are prime ideals in o such that
D;ﬂo =L'§('\o, then p; and ps are conjugate to each other over K.

Froof. When K' is finite over K, our proof is easy,” while the general

Received December 4, 1951,
1) The numbers in brackets refer to bibliography at the end.
2) Cf. [5, Theorem 5] or the proof of [6, Lemma 1].
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case can be proved easily by transfinite induction.

DEeFINITION 1. An over-ring o' of an integrity domain o is called an inte-

gral extension of o if every element of o’ is integral over o and if o' is an inte-
grity domain.

DEFINITION 2. An integral extension o/ of an integrity domain o is said to
be almost finite over o if the quotient field of o/ is finite over that of o.

Now let 0 be an integrally closed integrity domain. Then every integrally
closed integral extension o of p is the totality of o-integers in the quotient
field of o/, We may use the terminologies such as normal extensions, Galois
groups, decomposition groups and decomposition rings as follows:

DerINITION 3. An integral extension o of o is called a normal extension
of o if it is integrally closed and if its quotient field K’ is normal over the
quotient field K of o; and when this is the case, the Galcis group G of K is
called the Galois group of o' over o. (It is evident that G is the totality of
automorphisms of o over o0.) Further if p’ is a prime ideal of ¢/, the totality
H of elements of G which leave )’ invariant is called the decomposition group
of P with respect to o, which forms a subgroup of G. The decomposition ring
of p' with respect to o is the totality of elements of o/ which are left invariant
under every element of H.

Remark. H is a closed subgroup of G. For a proof, assume that an ele-
ment ¢ of G maps p' onto another prime ideal p’°. Let @ be an element of '
which is not in »'°, and consider an almost finite normal extension o of » con-
taining ¢ and contained in 0.* Then clearly (0" Np)°=o"MNP°x0"MNp, which
shows that ¢ is not in the closure of H in G and this proves our statement.

Lemma 2. Let o' be an almost finite, separable normal extension of an
integrally closed integrity domain o with Galois group G. Let p' be a prime
ideal of o and po=1y/, p{, e ooy Dh (pisp} if ix ) be the totality of conjugates
of p'. Let 7 be the decomposition ring of » (with respect to ¢). Then every
element a of § which is not in p’ and is in every b,'- (n>j>1) is a root of an
irreducible monic polynomial f(x) such that f(x)=x"(x —a) (mod. Y No), a
€0, a1 =a (mod. ¥ND).

Proof. Let G=H+ Hoi+ ...+ Hon (6i€G), where H is the decomposition
group of p'. Then every conjugate of a is of the form @™ or a itself. By our
assumption &€y (i=1,..., n). Therefore the irreducible monic equation
2" —ax”— ... —an1=0 (a;E0) satisfied by @ satisfies the following con-
dition: e1=a (mod. 1'), g, if j=2. This proves our assertion.

THEOREM 1. Let o' be a separable normal extension of an integrally closed
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integrity domain v. Let Y be a maximal ideal of o' and set p=y'(\o. Let 7 be
the decomposition ring of ¥ and set 5=y (5. Then (1) V is the unique maxi-
mal ideal of o which contains P, (2) T is the primary component of p5 belong-
ing to D and (3) /P =0o/p.

Proof. (1) follows immediately from Lemma 1 and the remark just above.
To prove the others, we first assume that o' is almost finite over 0. Let G be
the Galois group of o/ over o and let H be the decomposition group of p’. De-
note by q the primary component of po belonging to p. Let G=H 4+ Ho1+ . ..
+ Hoy. Then ¢, ', ..., P’ is the totality of maximal ideals of o containing
p. We show that if an element @ of T is in none of pi=p*N7 (i=1,..., 7)

.
then a is in g. Indeed, b=1II14" is not in 5, for since @’ is in none of p/™%,
i=

..., V"% and since P%xp (i=1,..., 7) P is one of P2%, ..., P we
have @’ (i=1). On the other hand, ab is in p whence in P which shows

our statement. This being said, we have ¢2n = ﬂo Pi, where Ho=9: For, let a

be as above, and let ¢ be an arbitrary element of n, then ¢+ ¢ is in § and in
none of P; (j=1), whence @, a+cEq. Therefore cEq. Now we see that q=7
if we observe that 3/n is a direct sum of fields. As for (3), if r=0, we see
that 7 =o, whence (3) is evident. Therefore we may assume that r>1. Set a

= (1P;. Then P+ a=0. This shows that for every element a of 0 there exists
i=1

an element a; of a such that @y =a (mod. §). Then there exists an element a;
of o such that @, =a (mod. ) by virtue of Lemma 2. The almost finite case
being disposed of, we consider the general case. Let @ be an element of 7.
Let o* be an almost finite normal extension of 0 containing ¢ and contained
in o'. Then there exists an element a; of o such that a; =a (mod. §),” which
proves (3). If aE7¥, there exists an element & of 0¥ which is not in ¥ such
that ebep(o* M), which proves (2). Thus our proof is complete.

CoroLLARY. Let 0 and o/ be as in Theorem 1. Assume that ¢’ is a prime
ideal of o' and let § be the decomposition ring of ¢/ with respect to 0. Then
we have (1) ¢ is the unique prime ideal of o/ whose intersection with 7 coin-
cides with ¢/\5=7, (2) § is the primary component of (¢'(\o)7 belonging to q
and (3) the quotient field of 3/ coincides with that of o/(¢’MNo).

2. Henselizations.

DerINITION 4. Let 0 be a ring and let p be a prime ideal in 0. o is called
a locally Henselian ring at p if the following condition is satisfied:

If 2 monic polynomial f(x) with coefficients in o factors into a product of
monic polynomials g(x) and he(x) modulo b and if the resultant 7(g, &) of

3) Observe that o* N7 is the decomposition ring of p’ No* with respect to o.
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(%) and ho(x) is not in p (i.e., k(%) and g(x) have no common root medule
p), then f(x) factors into a product of monic polynomials g(x) and k(x) such
that g(x) = g(x), k(x) = ho(x) (mod. p).

DEFINITION 5. A ring o is called Henselian, if it is quasi-local and if it is
locally Henselian at its maximal ideal.

LLEmMa 3. Let o be an integrally closed integrity domain with unique
maximal ideal p. Then o is Henselian if and only if every integral extensicn
of o is quasi-local.

Proof. If an integral extension of o is not quasi-local, we can find an irre-
ducible monic polynomial x"-+ax" '+ ... +ar over o such that aieEp, ajED
(722), r=2, by virtue of Lemma 2; therefore o is not Henselian. Conversely
if 0 is not Henselian, there exists an irreducible monic polynomial f(x) which
factors into a product of two monic polynomials g(x) and A(x) modulo p such
that g(x) and k(x) have no common root modulo p. Then clearly the integral
extension of o which is obtained by adjoining a root of f(x) is not quasi-local.

THEOREM 2. An integrally closed integrity domain o with a prime ideal b
is locally Henselian at b if and only if oy is Henselian.

TueorReM 3. An integrally closed integrity domain o with a prime ideal p
is locally Henselian at v if and only if every integral extemsion of o has only
one pri:ne ideal whose intersection with o coincides with p.

Proof. By virtue of Lemmma 3, Theorems 2 and 3 are equivalent to each
other. First we assume that 0, is Henselian and that a monic polynomial f(x)
€o[x] factors into a product of monic polynomials gu(x) and ho(x) modulo p
such that g(x) and %(x) have no common root modulo p. Then f(x) factors
into a product of two monic polynomials g(x) and k(x) in op[x] such that g(x)
=g(x), h(x) = ho(x) (mod. pop). Then since f(x)=g(x)h(x), every coefficient
of g(x) and h(x) is integral over o, and therefcre g(x), h(x)&olx]. There-
fore o is locally Henselian at p. The converse follows from Lemma 2.

Further we see at the same time, by virtue of Lemma 2, a note-worthy

THEOREM 4. An integrally closed integrity domain o with a prime ideal p
is locally Henselian at p if and only if every monic polynomial f(x) = x" + aix”
+ ...+ ar such that 02Da1sEDp, a;i€p (i=2. ..., r) has a linear factor x+a
with a = a; (mod. p).

DEFINITION 6. Let o be an integrally closed integrity domain with a prime
ideal p. Let © be the totality of separably integral elements over o (in an alge-
braic closure of the quotient field of o) and let § be a prime ideal of ? such that
PNo=p. Then the decomposition ring § of p with respect to o is called the
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local Henselization of o at p. Further 85,5 is called the Henselization of o at p.

In case b is a unique maximal ideal of o, the term “at b” should be omitted in
each case.

TueoreM 5. The local Henselization and the Henselization of an integrally

closed integrity domain o at its prime ideal p are uniquely determined within
isomorphisms over o.

Proof. Immediate from Lemma 1.

TuEOREM 6. Let o™ be the Henselization of an integrally closed integrity
domain o at a prime ideal p. Then (1) 0" is a Henselian ring, (2) po* is the
maximal ideal of o* and (3) 0*/po* is the quotient field of o/p.

Proof. (1) is evident by virtue of Lemma 3 and the corollary to Theorem
1, while the others are immediate consequences of the corollary to Theorem 1.

‘THEOREM 7. Let o be an integrally closed integrity domain with a prime
ideal p. If o' is an integrally closed integrity domain with a prime ideal Y such
that (1) o =20, (2) YNo=1D and (3) o is locally Henselian at V', then o con-
tains the local Henselization of o at v (up to an isomorphism over o).

Proof. Let o' be the totality of separably integral elements over o in o
Then ¢" is locally Henselian at p” =p'No”." Let © be the totality of separably
integral elements over ¢ (in an algebraic closure which contains 0”) and let d
be a prime ideal of § such that Do =p”. Then since o' is locally Henselian
at v”, this D is uniquely determined. Therefore 0" contains the decomposition
ring of T with respect to o, which proves our assertion.

CoroLLARY. Under the same assumption as in the preceding theorem,
suppose further that o is Henselian and that o’ is its maximal ideal. Then v’
contains the Henselization of o at p,

Chapter II.
Henselian valuation rings.

3. Hensel’s lemma for Henselian valuation rings.

We cite here

Fundamental lemma on the extensions of valuations.” Let o be a valu-
ation ring with quotient field X and let a field Z be an algebraic extension of
K. Let b be the totality of o-integers in Z. Then, for every maximal ideal p
of b, dp is a valution ring.

As corollaries to this lemma, we have the following two theorems:

4: Cf. the corollary to Lemma 4, §5.

5. Ci. [6, Lemma 2]. The proof in that paper makes use of the notion of multiplication
rings. Appendix (I) of the present paper gives another proof which does not use that
notion.
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THEOREM 8. The Henselization of a valuation ring is also a valuation ring.

THEOREM 9. Amny integrally closed integral extension of a Henselian valu-
ation ring is also a Henselian valuation ring.

Further we have the following note-worthy

TueoreM 10. Let o be an integrally closed integrity domain which satisfies
the following condition: Every prime ideal b is contained in any principal ideal
a> with aeep. If o is locally Henselian at a prime ideal b, and if b: is another
brime ideal which is contained in p,, then o is locally Henselian at p:.

Proof. Any monic polynomial "+ aix” ™'+ . .. +a, with coefficients in o
such that ai€EDz, @;Ep; (722) has a linear factor x+ @ with a;=a' (mod. p.),
because x” + 4" '+ (ai/a)x >+ ...+ (d'/al) has a linear factor x+b with &
=1 (mod. py), and so f(x) has a linear factor x -+ a:b which is not congruent
to x modulo pa.

CoroLLARY.” If a valuation ring o is locally Henselian at a prime ideal b,
so is also at every prime ideal contained in ).

Now we prove

THEOREM 11 (Hensel’s lemma).” Let o be a locally Henselian valuation
ring at its prime ideal p. If f(x) is a polynomial of degree n with coefficients
in o such that f(x) = g(x)ho(x) (mod. b), where g(x) =x"+ax" "'+ ...+d
(n>7r>0) and hy(x) are polynomials in o which are relatively prime modulo b,
then there exist a monic polynomial g(x) of degree r and a polynomial h(x) in
0 such that f(x) = g(x)h(x), g(x) = g(x) (mod. p), h(x) = h(x) (mod. p).

Proof. First we assume that p is the maximal ideal of 0. Let coI1(cix
i=1

—d;) be the factorization of f(x) in a suitable normal extension o/ of o, where
oY and ¢; =1 if ¢;eEP', denoting by p' the maximal ideal of o (notice Theo-

rem 9). Then we can find 7 indices, say, 1, . . . , 7 such that g(x) =TI (x — &)
i=1
(mod. p') (c1=...=¢,=1). We may assume without loss of generality that

ci=1if i<s and that c;Ep if i>s. We set g(x):_l:_ll(x—d.-), k(x) =TI (x

i=r+l

-di), filx) = E(x —d;), h(x)=¢, 11 l(c,'x —d;). Then since every conjugate of

i=r+

d; is in o', we see that fi(x) whence g(x), 2(x) are polynomials in o. This
case being settled, we proceed to the general case. By our above observation,

%) This corollary may also be proved by our fundamental lemma just above.

") This theorem shows that a field with a valuation w is relatively complete with respect to
w in the sense of Schilling [9] if and only if the valuation ring determined by w is
Henselian. l
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we see that there exist such g(x) and k(x) in opix]; the modulus being changed
to pop, which is however identical with p, since o is a valuation ring. There-

fore we have that g(x) and h(x) are polynomials in 0. Thus the proof is com-
pleted.

4. Special valuation rings.

TueorREM 12.° Let o be a Henselian special valuation ring and let © be its

completion. Then every elememi a of © which is separably algebraic over o is
in o,

Proof. 1t is clear that a is integral over o, by virtue of Theorem 9. Let
a be the limit of the sequence (¢ci=dv+ ... +dj; j=0,1,...) with dpoCdjpo

if {>7 and f_\odzo= (0). Let f(x) be the irreducible menic polynomial satisfied

by a. If the degree n of f(x) is 1, our assertion is evident. Therefore we may
assume that #>1. Let ai=a, as, ..., a, be the totality of roots of f(x).
Then the totality o/ of o-integers in K(ai, ..., a») is a valuation ring, where
K is the quotient field of 0. We see easily that dj+i0' = (a —¢;)0' = (@ —¢;)0'.
This shows that each a; is the limit of the sequence (c¢;) in o, i.e., @ =a; for
each 7, which is a contradiction to the fact that a is separable. Therefore #
=1 and we have a¢€&no.

CoroLLARY. Let o be a special valuation ring and let o* and 7 be respec-
tively its Henselization and completion. Let K be the totality of separably
algebraic elements over the quotient field of 0. Then we have 0*=KMN7?

(where K is considered as being contained in the algebraic closure of the quo-
tient field of 0).

5. Generalized Hensel’s lemma.

Lemma 4. Let o be an integrity domain. Assume that a polynomial f(x)
over o factors into a product of two polynomials g(x) and k(x) with coefficients
in an integrity domain which contains o. If the leading coefficient of g(x) is
in the quotient field K of o and if g(x) and h(x) have no common root, then

every coefficient of g(x) or h(x) is separable with respect to K.
Proof is easy.

CororLarY. If moreover f(x), g(x), h(x) are monic, then all coefficients
of g(x) and h(x) are separably integral over o.

TueoreMm 13 (Generalized Hensel’s lemma). Let f(x) be a primitive poly-
nomial of degree r+s with coefficients in a Henselian valuation ring o. If
there exist two polynomials g(x) and hyx) in o[x] with respective degrees r

8) Cf. the example in Appendix (I{I).
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and s such that g(x) is a monic pelynomial and (1) f(x) and g(x)h!(x) have
the same leading coefficient, (2) f(x) = g(x)ho(x) modulo an ideal a of o, which
is contained in a’bo where a=0 is the resultant of gx) and ho(x) and b is an
element of o which is nilpotent modulo ao, then there exist two polynomials g(x)
and h(x) in o[x] such that (I) g(x) and h(x) have the respective degrees r and
s, (ID g(x) = g(x), h(x) = ho(x) (mod. abe™"0) and g(x) is a monic polynomial,
where ¢ 1S an arbitrary non-zero element which is nilpotent modulo av, but ¢
may be 1 if a> is a primary ideal belonging to the maximal ideal of o, (III) f(x)
= g(x)h(x). '

Proof. We first consider the case where o is a special valuation ring. Let
T be the completion of 0. Then, as is well known,” we can find such g(x) and
h(x) with coefficients in 7, and in this case, we can set ¢ =1. Then by Lemma
4 and Theorem 12, all coefficients of g(x) and h(x) are in o, which proves our
assertion.

Now we prove the general case. Let b, be the minimal prime over-ideal
of ao, and let p. be the largest prime ideal contained in @o. Then we see easily
that op,/p:0p, is a Henselian special valuation ring. Therefore, there exist two
polynomials gi(x) and ki (x) with coefficients in oy, such that (i) g(x) and hi(x)
have the respective degrees 7 and s, (ii) £(x) = g(x), hi(x) = ho(x) (mod. aboy,)
and g(x) is a monic polynomial, (iii) fix) = g(x)h(x) (mod. b0p,). Since op,
is locally Henselian at p.0p, by virtue of the corollary to Theorem 10, there ex-
ist polynomials g(x) and k(x) with coefficients in 0p, such that (I) is satisfied
and that (II) gx) = &(x) = g(x), h(x) =h(x)=h(x) (mod. abiy,), g(x) is
monic, (1) f(x) = g(x)h(x).

Since abop, is an ideal of o contained in abc™', we see that g(x) and h(x)
are polynomials in 0. This g(x) and h(x) are required polynomials.

Remark. Theorem 13 holds even if 0 is a valuation ring which is locally
Henselian at a prime ideal p (not necessarily maximal) which contains the re-
sultant @ of &(x) and ho(x).

6. Some remarks on the Henselizations of valuation rings.

LemmaA 5. Let p; and b, be prime ideals of a ring o such that p;Db:. If
o is locally Henselian at p. and if o/p. is locally Henselian at pi/p., then o is
locally Henselian at p;.

Proof is easy.

LEmMMA 6. Let b be a prime ideal of a valuation ring o with quotient field
K. Let there be an element a which is a root of an irreducible monic poly-
nomial f(x) of degree # such that f(x) modulo p is also irreducible over o, p.

" Cf. [8, §11]. Virtually it is the same as that in [3, p. 71].



ON THE THEORY OF HENSELIAN RINGS 53

If v is a valuation ring which contains o/p and @ modulo p, then there exists a
valuation ring o such that (1) the quotient field of o' is Z= K(a), (2) /NK
=0 and therefore there exists a prime ideal V' of ¢/ such that YNo=p, (3) o/
Baq (4) if we consider @ modulo p as @ modulo ¥ of ¢/, the quotient field of
o//p’ is generated by a modulo p over that of o/p and further o/y Sb.

Proof. Let 0" be the totality of o-integers in Z= K(a). Let " be a prime
ideal of o such that p"MNo=p. We want to show that the quotient field of
o"/p" is generated by a (modulo p) over the quotient field K of o/p. Indeed,
every element of ¢ is of a form (c1,0/¢2,0) + (er,i/e2,1)a+ « o o + (1, n-1/C2,n-1)a" !
with ¢;, j€0 (§=1,2: j=0,..., #—1). Since o is a valuation ring, we may
assume that ¢z, ;=1 unless ¢1,;=1. Then since 1, @, ..., a** are linearly
independent over o/p, we have ¢ je&p for every j=1,..., n—1, and this
shows our statement. Now let ¢” be a maximal ideal of ¢" such that ¢ 2"
and 9”/p" contains the intersection of maximal ideal of v with K [e@ modulo pl.
Then we see easily that ¢/ =0"q is a required ring.

THEOREM 14. Let p be a prime ideal of a valuation ring o and let o* be
the Henselization of o. Then there exists a prime ideal d* of o* such that p*
No=p; and for this v*, 0*/v* is the Henselization of o/p.

Proof. The existence of p* is evident. Since o*/p” is Henselian, it con-
tains the Henselization of o/p. As for the converse, we observe that since o*
is locally Henselian at p*, 0¥ contains the local Henselization § of o at p. De-
note by o; the valuation ring 9§, where § is the intersection of the maximal
ideal of o* with 5. Then, by Theorem 6, n/p; = 0/p, where p; is the prime ideal
of oy such that piNo=p. Since o, is locally Henselian at p;, we see easily by
virtue of Lemma 6 that there exists a valuation ring o’ such that (1) 0, So' So*
and therefore there exists a prime ideal ¥ of o/ such that N0, =p and (2) o'/’
is the Henselization of o0//p1=v/p. Further it is easy to see that o' is locally
Henselian at . Now, by virtue fo Lemma 5, ¢/ is Henselian, whence o 20*.
Thus our proof is complete.

Turorem 15.°  Let o be a valuation ring and let o* be its Henselization.

Then every principal ideal of o* is generated by an element of ov.

Proof. 1t is sufficient to show that if 0= 0¥, there exists a valuation ring o
(0C o' €0™) such that every principal ideal of o’ is generated by an element of o.
Let i be a minimal integrally closed integral extension of o contained in o,
Then we can find two prime ideals p; and p: of o such that (1) there exist at
least two prime ideals in i whose intersection with o coincides with by, (2) there

10) 1f we make use of the results concerning maximally complete valuation rings due to Krull
[4], this result is evident by virtue of the corollary to Theorem 7.
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exists unique prime ideal in i whose intersection with o coincides with p;, (3)
there exists no prime ideal p such that p;DpDp.. Let pf and pF be prime
ideals of o* such that p*MNo=yp; (1=1, 2) and set q=pFNi. Let XK' be the
quotient field of t and set o’ =0 K’. Then we have o//piN' =i/q=0/p by
virtue of the corollary to Theorem 1. Therefore we may assume that p; is
maximal. Let a be the intersection of all maximal ideals qi, . . . , g of 1 other
than q and let @ be an element of q which is not in a. Let b be a principal
ideal of o/. (I) When b<EpyMNo': It is evident that b is generated by an ele-
ment b of a. We can find natural numbers s and ¢ such that c=b+4a’(1+a
+...+a"YDeq (1=i<r), b=co. Then evidently b is generated by the
rorm of ¢ with respect to o. (II) When bSpS(\0o/: That b is generated by
an element of 0 is evident because every element of i is of a form (ai,o/az,0)
+(ayi/as,)a+ . .. +(aynlazn)a” (ai,;E0, az jeE D), where n+1 is the degree
‘of @ with respect to o.

Appendix (I)

LemMma 7. Let 01, ..., 0n be valuation rings with common quotient field
K. Let a be an element of K. Then there exists a natural number s such
that both a/(14+a+...+&" ™) and 1/(14+a+ ...+a) are in the inter-
section D of 01, ..., 0p. If ¢ is any given natural number, we can select s

such that (¢, s) =1.

Proof. It is clear that there exists a natural number s=2 such that (s, ¢)
=1 and that 1+a+ ... 44" " is not in the maximal ideal p of o for every &
(l=i=<n). This s is a required number: For, when a&p, it is clear that (1+a
+...4+d&") is a unit in o;, and therefore a/(1+a+...+d"), 1/(1+a
+ ...+ad ")E0; when ads0;, we see easily that these elements are in o;, if
we observe that 0 =w;(1) >wi(a)swi{l+a+ ... +a"), w; being a valuation

given by o;.

Theorem of independency of valuations.”” Let o, ..., 0n be valuation
rings with common quotient field K. Assume that 0:SE0; if ixj (14, j<n).
Set b=0:\...MNon and let p; be the maximal ideal of o for each i. Then (1)
every qi=pi\d (1<i<£n) is @ maximal ideal of b and conversely every maximal
ideal of b is one of qi. Further (2) dq, =0;>*

Proof. First we prove (2). Let @ be an element of »;. Then there exists
a natural number s such that a¢/(1+a+ ...+d"), 1/(1+a+ ...+ are
in » by Lemma 7. Then it is evident that 1/(1+a+ ...+ a ") € p;, wheace

1) This is a refinement of a Krull's result [4, Theorem 18].
12) This last assertion (2) holds without the assumpion that o; % o; if /44, as is seen in the
proof.
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a&Ddg,. Therefore by, 20;. Since 0; 20, q; = p:MNd, we have 0; 2dq;, hence Dy =0i.
This shows, by our assumption on o;, that q;SEq; if % j. There exists there-
fore an element ¢; of b such that e; is a unit in 0o; and is a non-unit in other o;
for each 7' Now we prove (1). For this purpose, it is sufficient to show that
every ideal of b is contained in one of g;, i.e., if an ideal a of » contains ele-
ments a1, . . . , an such that a; is a unit in o; for each 7, then a=b. Now, a
contains aie;, which is a unit in 0; and is a non-unit in other o;. Therefore e

n
=>\aie; is in a. It is evident that e is a unit in every o;, whence e is a unit
i=1

in b. Therefore a=b. Thus our theorem is proved.

CoroLLARY 1. Let b, 0, ..., 0, be the same as in the preceding theo-
rem. Let a; be an ideal in o; and let p; be the minimal prime over-ideal of o;

n
for each i If pisEp} for every pair 4, 7 (i%j), then b/ Dla,- is the direct sum
of 01/a1, . « ., Ou/Gn.

Proof. If we observe the fact that if p is a prime ideal of a valuation
ring o, pop coincides with p set-theoretically, then we can see in virtue of the
above theorem that (a;MNd)+ (a;MNDd) =d if i=;j: Indeed, if we consider the
ring Dpjop, then this ring is the valuation ring 0iy;, which has the maximal
ideal b’oip;, =pi. If there exists a maximal ideal q; = p;()d such that i, qj =pf
Mb, then dynp is a valuation ring of type 0j, with a suitable prime ideal q of
o;. Since the maximal ideal of 0;; is qoj; = g, we have i =qZo;. Therefore p;
Syp; or pySpi, contrary to our assumption. Thus g; is the unique maximal

ideal of b containing p;Nd whence a;d. Thus we see that b/ .(_.\la,- is the di-
rect sum of d/a;d, . . ., b/asd. That d/a;MNd = 0;/0; is evident because dg, = 0;.

CoroLLARY 2/ Let 05, ..., 0, and K be the same as in the above and
let wi, . .., ws be the valuations of X given by oy, . .., 0, respectively. Let
ai, ..., an be elements of o1, ..., 0y respectively such that the respective
minimal prime over-ideals P, ..., Db Of @01, « .., Gn0n in 0y, ..., 0p have
no inclusion relation. If di, ..., dn is a given system of elements of K such
that w;(aid;) =0 for each 7, then we can find an element d of K such that
wi(d - di) =wi(ai).

Proof. Set b=p0;N...MNo, as above. Then by Corollary 1 b/ Qa?o; =01/ aror

+ ...+ 0./d%0, (direct sum). There exists therefore an element e of b such
that w;(a;) = wi(e) for every i. Further we see that there exists an element /
of b such that w;(f — ed;) =wi(a}). Then evidently d = f/e is a required elemen:.
%) Take an element of Ngq; which is not in q;.

i*i

1) This is a generalization of Krull’s result [4, Theorem 15].
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Now we come to the fundamental lemma concerning the extensions of
valuations, which is quoted in §3. But, before proving this, we prove a well
known

LemMMa 8. Let o be a valuation ring with quotient field K. Assume that
a field Z is an algebraic normal extension of K with Galois group G. If ¢ is a
valuation ring with quotient field Z such that o VK =10," then the intersection
b= N9’ is the totality of o-integers in Z.

oEQ
Proof. Let ® be the totality of o-integers in Z. Since d is integrally
closed, it is clear that d2%. Conversely, if a is an element of b, a power of
the fundamental symmetric formulas of all distinct conjugates of @ is in o.
This shows that a is integral over o, i.e.,, a€?. Therefore b="V.

Proof of the fundamental lemma. First we assume that Z is finite normal
over K. Then the theorem of independency of valuations, combined with Lem-
ma 8, shows the validity of our assertion. As for the general case, it is suf-
ficient to show that if 0%aEZ then aEby or a”'Edy. But this can easily be
seen if we consider a finite normal extension of K containing ¢ and contained
in Z'® since we may assume that Z is normal over K.

Appendix (II)

Here we show an example of Henselian, special, discrete valuation ring o
such that (1) o is not complete, (2) the completion § of o is an almost finite
integral extension of o,

Example. Let t be a perfect field of characteristic » (%0) and let z, x1,
w«+., Xn, ... be indeterminates. Let 7 be the ring of power series of z over
k(%i, ..., %n, ...), which is a discrete complete special valuation ring. Let
K be the quotient field of 5, We set Ko=K?(2, X1, « o) Xny o v s)s

Then the element ¢ = >, %z’ of K is not contained in K,. Let K be a maxi-
i=1

mal subfield of K among those which contain X, and do not contain ¢. Since
the p-th power of an arbitrary element of K is in K,, K must be K(c). Now
set 0=0(\K. Then o is evidently a valuation ring and 7 is its completion,
Thus o is a required example.

Remark 1. © is not finite over o. For, if 7 is finite over o, o must be
complete.

Remark 2. The completion of such a valuation ring o that is required
here is purely inseparable integral extension of o.

5) This relation means that the valuation given by o’ is an extension of that given by o.
) Observe [6, Lemma 1].
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Added in Proof, The corollary to Theorem 7 can be generalized as fol-
lows:

“Let 0 be an integrally closed quasi-local integrity domain with maximal
ideal p. If o is a Henselian integrity domain with maximal ideal P’ such that
o' 20 and Y MNo=1p, then o/ contains the Henselization of o up to an isomorphism
over 0,”

This will be proved in a later paper.








