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SMALL RANDOM PERTURBATION OF DYNAMICAL
SYSTEMS WITH REFLECTING BOUNDARY

ROBERT F. ANDERSON AND STEVEN OREY

0. Introduction.

Consider a diffusion process in Rd satisfying the stochastic differential
equation

dX = ε(σ(Xt)dWt + c(Xt)dt) + b(Xt)dt , Zo = x .

Here xeRd, W is the d-dimensional Wiener process, σ(y) is a function
with values in Rd x Rd, c(y) and b(y) are /?ώ-valued functions; σ, c, and
b are subject to suitable conditions. The solution of the stochastic dif-
ferential equation depends of course on ε, and in [7] Ventcel and Freidlin
study the asymptotic behavior of this solution as ε approaches zero, and
relate it to behavior of the dynamical system (non-random) obtained by
setting ε = 0. A key role is played be a certain functional /: Cτ(Rd) ->R\.
For the case b = 0 such results are also in S. R. S. Varadhan [6]. Ap-
plications to asymptotic problems in partial differential equations are
developed by these authors, and also by Friedman [2].

Our aim here is to study analogous problems when the diffusion is
controlled by a stochastic equation as above in the interior of some region
of Rd, but is subject to reflection on hitting the boundary of the region.
As is to be expected, such results have applications to asymptotic ques-
tions related to the Neumann problem. For further general remarks
about these problems see the beginning of Section 2.

Section 1 is devoted to obtaining the basic estimates. It relies on
a new construction for the reflected diffusion. Several constructions for
such a process—indeed allowing more general boundary conditions, and
under weaker assumptions on the coefficients than we impose—are already
known see [4] and [8] and the bibliography of the latter reference. Our
construction, however, provided us with the necessary information for
the problems at hand. It is of interest in itself not only because it
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gives a very easy proof of existence and strong uniqueness of the desired
process, but also because it provides an interpretation of the local time
on the boundary which is intuitive, and useful in obtaining bounds for
the growth of this quantity.

1. Basic Asymptotic Theorems.

Let W = (Wt), 0 < t < co be a Wiener process defined on a proba-
bility space (Ωf^fP) with values in Rd. Let !Ft be the P-completion of
the least σ-field with respect to which the random variables Ws, 0 < s < t
are measurable.

For D ciRd, C(D) is to denote the space of continuous functions
from [0, oo) to D, and for T > 0 CT(D) is to denote the space of con-
tinuous functions from [0, Γ] to D. An element η of C(D) or CT(D) will
often be referred to as a trajectory, its value at t denoted by ηt and ήt

used for the value of its derivative (if it exists) at t. If πt are the co-
ordinate functions, πtirj) = ηt, let <gt be the least <r-field with respect to
which the functions πs are measurable, 0 < s < t let ^ be the least α -field
containing #β, 0 < t < oo. If for every t e [0, oo), at is a ^-measurable
map from C(D) into R1 (or into Rd or Rd x Rd), a = (at) is called a non-
anticipating functional.

We shall be dealing largely with continuous stochastic processes (Xt)
defined on {Ω,tF,P) with values in some subset D of Rd. Such a process
is adapted to 2F\ if each Xt is measurable with respect to !F%. For ωeΩ
the function £ —> Xt(ω), or simply Z(α>) is an element of C(D). As is
customary, ω will usually be suppressed. Thus, for example, P[XeK]
must be interpreted as P[ω: X(ω) eK\.

Our procedure will be to obtain our results first for the case that
D is the half-space R% = {x — (x\ x2, , xd): xι > 0} with normal reflec-
tion at the boundary and then to reduce the general case to this by
introducing suitable local coordinates, i.e., localization. To treat the
half-space problem we begin with a simple generalization of the basic
results of Ventcel and Freidlin [7]: this consists of replacing the coef-
ficients σ(Xt), c(Xt), b(Xt) by non-anticipating functional σt <>X,cto X, bt o X.
Next we observe that the desired reflected process in R% with prescribed
coefficients σ(Xpe), <?(Xf'e), b(Xpε) can be obtained from an associated
unrestricted process Yx>ε moving in Rd and governed by a stochastic
differential equation involving suitable non-anticipating functionals σt9 ct,
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bt by a continuous map Γ from C(Rd) to C{R%), i.e., Xx>ε =

Using the explicit form of Γ will allow us to obtain results about

from results about Yx>\

1.1. The unrestricted process. Let Y*'e be the solution of

( 1 ) dYr = e(σt o Y^dW, + ct o Y*>«dt) + b t o Yx^dt , Y?>e - x .

Here <7t is a d x d matrix valued non-anticipating functional, and ct9 bt

are Λd-valued non-anticipating functionals. Let at = o^αf. We also write

at = (α{0> *ί = WO likewise, c\ and &{ are the ith coordinates of c« and

6t, respectively. The following assumptions will be made:

There exist positive constants ml9 m2, m3 such that for 0 < t < oo and

1 < i < d, l<j<d, and η and f e C(Rd):

mx , I c{(?) \<m19 \ b\{η) \ < rn1

- σγ(ξ)\ < m2 max \ηs - ξs\

\bi(η) - b*(ξ)\ < m2 max \ηs - ξs\
o<;s<Ξί

\c\(η) — c\(ξ)\ < m2 max \ηs - ξs\

™3|0|2 > Σ Σ oMW > mς^θf for all θ=(θ\θ2, .,0*) .

These conditions allow one to apply the usual successive approxima-

tion arguments to obtain the existence of a unique solution to (1). Only

in the special case that σt, ct, bt are given by functions (i.e., σt(η) = σ(η(t)),

etc.) can we expect Y*'ε to be a Markov process. We refer to Yx>ε as

the unrestricted process because it moves freely in Rd; there are no

boundaries.

We come to the results of [7], stated in the more general setting in

which we require them. The notation (x,y) will always denote the

Euclidean inner product in Rd, \x\ = (x, x)ί/2. In addition, if a — (aij),

l<ί < d, l < y < d i s a positive definite matrix, let

With the process determined by (1) associate the functional Iτ, defined

as follows: for φ e Cτ(Rd), let Iτ(φ) — oo if φ is not absolutely continuous,

otherwise
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(2 ) Iτ(φ) = Γ ||φ. - 6,(0 WU^ds .
Jo

THEOREM A. Let Yx>ε be the solution of (1) with t restricted to

[0, Tl

a) Iτ: C^R^-^R1 is lower semi-continuous.

b) For xeRd, φeCτ(Rd), φo = x, h>0, δ>0,

P[sup I Y?. - P t | < ί] > exp { - J L - ( / Γ ( 0 + fc)}
o^i^r I 2ε2 J

provided only that ε < εQ = (h A δ)/C(T,K), where K = Iτiφ) + T and

C(T,K) is a constant depending only on T and K and the underlying

parameters mlfm29m3.

bθ For any open subset G of Cτ(Rd),

lim 2ε2 log P[Y*>S eG]> - i n f {Iτ(φ): φ0 = x, φ e G] .
ε—0

c) For <peCτ(Rd), xeRd, δ>0, let

i(φ, δ, x) = inf {Iτ{ψ): ψ 6 Cτ{Rd) , ψ0 = α; , sup |ψ t — φt\ < δ} .

For every δ > 0, αmZ α > 0 ίfeβre exists a β > 0 ŝ cfe £fcα£ /or 57 < β,

and ε < β and every λ > 0, a? e D

P[ sup i(Γ*. , ί, 2/) > ^ < exp ( - - ^ - W - αW + Γ + 1))) .
{y:\y-x \<δ'} I 2ε2 J

cθ For any closed subset F of Cτ(Rd)

lim 2ε2 log P[Y*>* eF]< - in f
6->0

Proof. Not much is required, since the results are known when the

coefficients are functions rather than non-anticipating functionals, and

the proofs go over to the more general case. Thus a) follows from the

proof of the corresponding assertion given in [7], Lemma 2.1. In

Theorem 1.1 of [7] b) is proved, though the dependence of ε0 on h and

δ is not given. However, as remarked by Friedman [2] Theorem 1.1,

by following the proof of [7] one obtains constants nx and n2, depending

only on the parameters m19m29mz such that

P[sup I Yf. - Ψt\ < δ] > 1 exp f — ^
o^i^r 2 I 2ε2
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provided 5 > δo(ε, t) = n2ε<JΎ. But then

P[supJ Yf -pίl < δ] > P[sup | Yf'e - φt\ < δo(e, T)]

> _ exp (---—(Iτ(φ) + %Afe Γ)X -

and b) follows. Assertion bθ follows from b) immediately. Again, in
the Markovian case c) is essentially Theorem 1.2 of [7]. Actually, only
i(Yx* , δ, x) is discussed, but the indicated extension is trivial. Assertion
cθ follows from c) together with a).

We note that in case σt is a function, and ct = bt = 0, assertions
a),bθ,cθ were given by S.R.S. Varadhan [6].

1.2 The half-space. We deal now with the case of the half-space
with normal reflection. Let R% = {x = (x\ x\ , xd): x1 > 0} and let eι

be the unit vector (1,0, « ,0). We wish to obtain the diffusion Xx>6

which satisfies

(3) dXf 'β = ε(σ(Xf> )dWt + c(X^)dt) + b(Xf)dt

on {x: xι > 0} and which is instantaneously reflected according to ex on
reaching the boundary {x: x1 = 0}, and such that X^ε = x. We assume
that the coefficients σ(x), c(x), b(x) are defined on the closed half-space
R%, and let a(x) = σ(x)σ*(x). The coefficients are to satisfy the conditions
of boundedness, uniform Lipschitz continuity, and uniform positive de-
finiteness corresponding to those listed after (1). We will utilize a
characterization of the desired process due to S. Watanabe [8]. Introduce
the following notation: D = R%, 3D = {x: x1 = 0}, γ is to be the vector
valued function defined on 3D with γ(x) = ex. Then Xx>* can be char-
acterized as satisfying

dXf ε(σ(Xr)dWt + c(Xf> )df) + UXf>9)dt

where (ZfΌ and (ff»•) are continuous stochastic processes, adapted to the
underlying σ-fields (J^) and satisfying the following conditions with pro-
bability one: Xf>< eD; ff is non-decreasing in t and increases only during
Δ = {t: Xf 'e e 3Z)} J has Lebesgue measure zero. These requirements in
fact determine the pair (XXi% ξx>') uniquely, see Proposition 1 below. We
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present a new method of constructing the desired pair, which will be
most useful for our purposes.

Define a transformation Γ: C(Rd) —> C(R%) (the same symbol Γ may
be used when the parameter set is [0, T]) as follows: for ζ = (ζ1, ζ2,
. • ,ζd) e C(Rd),η = Γ(ζ) is defined by η = iη\η2,--,ηd), where rf = ζ%
i = 2,3, , d, and v] = ζj - ((inf © A 0). Write Γ£(ζ) for (Γ(ζ))t. Now

define the transformation ξ: C(Rd) -» C(R) by Γ(ζ) - ζ - (f(ζ), 0, , 0) and
write ft(ζ) for (£(©),.

We note some immediate consequences of the definitions. First (Γt)
and (ξt) are respectively C(Rd

+) valued and non-negative real valued non-
anticipating functionals. Secondly Γ and ξ are continuous, and in fact
the supremum norm of Γ(ζ) — Γ(τj) is bounded by twice the supremum
norm of ζ — η. The third, and final observation now is that always
\Γs{η)-rt{rj)\<\ηs-ηt\.

PROPOSITION 1. Let Yx>s be the solution to (1), where ε > 0, xeRd

+,
and σt,ct,bt are related to the coefficients of (4) by σt — σoΓt9ct = coΓt9

bt = boΓt. Then Xx>* = Γ o Y ^ α?zd ^ ' e = ξ o Y '̂e soZves (4) and Z^'e a^d

fx'δ satisfy the conditions imposed in connection with (4). Tfoe pair
(Zx'% ξx* ) is uniquely determined by (4) and the associated conditions,
i.e., any other pair satisfying (4) and the associated conditions is equal
to (Xx>e,ξx>e) with probability one.

Proof. From the fact that Yx*s satisfies (1), it follows immediately
that (XX>;SX>') satisfies (4). Evidently Xx>eeR%. It is clear that ff is
non-decreasing, increasing only on the set Δ = {t: Xp* e 3D}. It must be
shown that Δ is a Lebesgue null set, with probability one. Note that
if Γ1 is the first component of YX^,Δ = {ί: Y\ = (inf ΓJ) Λ 0}. Let Ϋ

be the process satisfying an equation like (1), but with b = c = 0. Re-
stricting Yx>ε and Ϋ to 0 < t < T these processes induce measures in
Cτ(Rd), namely μ(A) = P[YX>* e A] and fi(A) = P[7 e A] and these measures
are mutually absolutely continuous. Hence it suffices to prove that for
the first component Ϋ1 of Ϋ the set {t: Ϋ] = (inf FJ) Λ 0} is a Lebesgue

0<s^ί

null set. If σ is the identity matrices and ε = 1, Ϋ1 is Brownian motion,
and the result is known. For general σ, ε > 0, Ϋ1 is obtained from
Brownian motion by a strictly increasing time change, and so the pro-
perty is preserved.



SMALL RANDOM PERTURBATIONS 195

In order to show uniqueness, suppose (Xt, ζt) also satisfy (4) and the

associated conditions. Write Xx < = (X1,X\ ,X"), X = (P,P, ,Xd)

and define Y = (Y\ Y\ • •, Yd), Ϋ = (Ϋ1, Y\ • • •, Ϋd) by Y1 = X1 - ξ' ;

Y2 = X2, ,Yd = Xd and Ϋ1 = X1 - ξ, Ϋ2 = P, • , Ϋά = Xd. Then both

Y and Ϋ satisfy (1), and since uniqueness holds for this equation Y = Ϋ.

So X2 = P, • • •, Xd = Xd and X1 - ξx'' = P - ξ. That is to say

and this implies that both sides must vanish (a fact originally observed

by Skorokhod [3]) because the left side can increase only when X) = 0,

that is when X\ < X\ so that since ZJ — X\ = 0 and the functions are

continuous, always X] < X\ the same argument proves that always X]

< X], Uniqueness has now been proved.

Now define for φ e CT(D)

I}(φ) = inf {/Γ(ψ): φ e Cτ(Rd) , Γ(ψ) = φ) .

Observe that if φ e CT{D) and ψ e Cτ(Rd) are absolutely continuous, then

Γ(ψ) = φ will hold if and only if

( 5 ) ψt = φt - \ χdD(φs)w(s)γ(φs)ds
Jo

for some measurable, non-negative function w. Then 7ί(ψ) is given by

( 6 ) ί \\φs - χdD(φs)w(s)γ(φs) - b(φs)\\l-.Hψs)ds
Jo

and this is minimized, under the restriction w(s) > 0 by taking

( 7 ) W(S)= ((Ps-b(φs)γΛφs))a-H,s) V Q

\\r(<Ps)\\a-H<Ps)

and inserting this in (6) gives an explicit expression for I}(φ).

PROPOSITION 2. The assertions of Theorem A hold for the solution

Xx>ε of (4) if 1} is used in place of Iτ and D and CT(D) take the place

of Rd and Cτ(Rd) respectively.

Proof. To prove a) consider a sequence <p{n) of trajectories in CT(D)

converging uniformly to φ, and satisfying Iτ(φ{n)) < β < oo, n = 1,2, .

It must be shown that I}(φ) < β. It follows from (5), (6), and (7) that
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there exist ψ(n) e Cτ(Rd) such that Γ(ψ(n)) = φ(n) and Iτ(ψ(n)) = I}(φ(n)) < β.

This implies that there exists βf < oo such that \ψln)\2dx<β' and it

follows that (ψ(n)) must be an equicontinuous, uniformly bounded sequence

of functions. There exists then a subsequence converging uniformly to

a limit function ψ. By the lower semi-continuity of Iτ, IT(Ψ) < β By

the continuity of Γ, Γ(ψ) = φ, so that I}(φ) < IT(Ψ) < β.

All the remaining parts of Theorem A can be handled without any

complications by using the definition of 1} and recalling the simple pro-

perties of Γ noted just before Proposition 1.

1.3. Localization. Let DQ be a connected open subset of Rd with closure

D, and suppose that D has smooth boundary 3D on which is defined a vector

field γ pointing into the interior Do. We want to construct P ) ! and ξx>e

so that (4) holds, and the conditions stated after (4) are satisfied. Xx>*

is a diffusion with instataneous oblique reflection determined by γ at the

boundary. As far as Xx>6 is concerned only the direction of γ9 and not

its magnitude is relevant; however, as is clear from (4), the magnitude

of γ will affect £*••. The process ξx>6 is called the local time on the

boundary.

The construction problem is reduced to the corresponding problem

in the half-space, with normal reflection, by means of local coordinate

systems. We will assume that coordinate systems satisfying certain con-

ditions exist this will be the case if dD is smooth, γ(x) varies smoothly,

and γ(x) is uniformly bounded away from vectors tangant to the boundary

at x.

We turn to details. We consider Rd endowed with a fixed Euclidean

coordinate system, so that every point in Rd, hence every point in D can

be identified with its Euclidean coordinates, x = (as1,x2, -,xd). Now let

qi == {U°, U1, •} be a countable or finite family of relatively open subsets

of D which cover Do and such that each U e °U is associated with a

coordinate system, that is a map u: U->Rd, giving each point xeU

coordinates u(x) = (u\x),u\x), -,ud(x)). The following assumptions are

to hold:

( i ) £7° c Do and the coordinates corresponding to U° are just the

original Euclidean coordinates. If U = Uk, k > 0, the coordinate map-

ping u: U —> Rd is one-one and twice continuously differentiable. In this

case U intersects 3D and
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U ΓΊ 3D = {x e U: u\x) = 0} , [7 Π Do = {# e U: u\x) > 0} .

(ii) There exists a positive constant p09 and for each xe U a non-

negative integer fc(x) such that all points in D within a distance of ρ0

or less from x belong to Uk(x).

Suppose (4) holds. If Xf>e e Uk, and if u is the coordinate mapping

associated with Uk, then u(X?>e) will, according to Itό's formula satisfy

an equation like (4), with new coefficients σk, ck9 bk in place of σ, c, b and a

vector field γk on the boundary of R% in place of γ ξx>* will be unchanged.

(iii) There exist positive constants mum2, m3 such that for all k the

coefficients σk,ckybk satisfy the conditions after (1).

(iv) γk(0, y2, , yk) = e19 for (0, τ/2, , τ/ώ) in the range of u. (This as-

sumption is equivalent to (Vu\ γ) = 3 l t, where V is the gradient.)

(v) There exists a positive constant ra5 so that for every Uk the

associated coordinate mapping u satisfies

—\u(x) - u(y)\ < \x - y\ < mδ\u(x) - u(y)\
m5

for all x and 1/ in Uk.

If ί/ is a coordinate neighborhood with associated coordinate map-

ping u, then u: U ~+ Rd

+. Also if a e C7, and /3 = (jS1,β2, - - ,βd) is a tangent

vector acting on x, u makes β correspond in an obvious way to a tangent

vector β — ψ, , βd) acting at u{x), and β and β are related by

βι — Σ?=i (duιldxj)βi. For xedD our assumptions guarantee that

u(x) e dR% if β is tangent to dD, β1 = 0, and if /3 = γ, β = ele

The construction of the desired process is now straight forward. The

process will first be constructed up to the time Si of leaving the open

ball of radius p0 around x0 then from Si up to the least time bigger than

S2 of leaving the open ball around X%[8, etc. At the first stage use the

coordinate patch JJk{x\ If k(x) = 0, the boundary plays no role, and the

process is immediately constructed by the usual technique of successive

iteration. If k(x) > 0, the coordinate mapping u associated with JJk^x)

changes the problem to a problem in the half-space with normal reflec-

tion. This problem was solved in the previous section, and we obtain

a process in the half-space with normal reflection applying the mapping

inverse to u gives us Xp% 0 <t < Sx. For this process (4) will hold,

with ξpε being identical to the local time on the boundary for the process
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in the half-space. Iterating this procedure leads to a construction of

(Xf•%£?••) o n O < K o o .

PROPOSITION 3. There is a unique pair of processes (Xx'% ξXΌ) sat-

isfying (4) and the associated conditions, in the sense that any other

such pair equals (Xx>ε,ξx>e) with probability one.

Proof. An explicit construction of the solution has just been given.

Since uniqueness is a local property, this follows from Proposition 2 by

using appropriate local coordinates.

For η e C(D), t > 0, let θtη e C(D) be defined by iθtη){s) = ηt+s. Since

Xx>ε(ω) e C(D), the notation θtX
x>s(ω) is defined; and naturally θtX

x^ is a

function Ω -> C(D) with value θtX
x^{ώ) for ω e Ω. More generally if S

is a random variable ΘSX
X>6 is the function which for ω e Ω assumes the

value θS(ω)X
x>ε(ω) in C(D); the notation will be used only when S is a

stopping time with respect to (J^).

It is well known that the processes Xx>ε constitute, for fixed ε, a

diffusion process. In particular they have the strong Markov property,

a convenient version of which we now state: let a(η, t) be a bounded

measurable function defined on the product of (C(D), #) with ([0, oo), Borel

sets), with values in R\ Let g{x, t) = E[a(Xx>% t)]. Then for any stop-

ping time T with respect to ^t,Έ\a(βτX
x^, T\σ

τ)] = g(Xτ).

1.4. Asymptotic inequalities. The reflecting diffusion process has

been constructed by localization, which reduced the problem to the half-

space problem. The results in the half-space also lead to the correct

form of 7+. For <pe Cτ(D),I}(φ) is to be +oo if φ is not absolutely con-

tinuous, and otherwise equal to the expression (6), with w(s) given by

(7). We now wish to extend the results proved in sub-section 1.2 for

D = R%,γ = e19 to general D and γ.

THEOREM 1. Under the assumptions of sub-section 1.3, the asser-

tions of Theorem A hold for the Xx>s of (4) if 1} is used in place of Iτ,

and D and CT(D) take the place of Rd and Cτ(Rd) respectively.

Proof. By introducing appropriate local coordinates, the problems

are transformed locally to the half-space with normal reflection, and

Proposition 2 applies. It is then a matter of patching together local

results. For this purpose the following additive property of J+ is crucial:

if 0 < S < T and φ e CT(D), then I}(φ) = I£(φ) + l}_s{θsφ).
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Let S0(φ) = 0 and let S^φ) = inf {ί: \ψt - φo\ > Po}, S2(φ) = inf{ί > S1:

\ψt — 95i(f)l > Po}> etc. with Si(φ) = oo, if not otherwise defined. Here ^0 is

as in (ii) of sub-section 1.3.

To prove a), let φ e CT(D) with Sm^iφ) <T< Sm(φ) and suppose

ψ{n) e CT(D) so that φ(n) —> φ uniformly. For convenience, temporarily re-

define Sm(φ) so as to be equal to T. We can assume without loss of

generality that φ™ e Uki9sJ-u»\ Sj.^φ) <u< Sj(φ), for j = 1,2, . , m.

Thus by the half-space result

which by the additive property of 1} and the fact that m < oo is enough

to conclude

For b) consider p e CT(D), with Sm^(φ) < T < Sm(φ). For m = 1, the

result follows immediately from b) of Proposition 2, by using suitable

local coordinates. For m > 1 one must patch local results. For details

see the proof of Theorem 1.1 in [7], where all the work is done on a

Riemann manifold. Assertion bθ follows from b).

We turn to the proof of c). The first step will be to prove by in-

duction on m that for every positive integer m and positive δ and a,

there exists a positive β so that for δ' < β and ε < β and any t > 0

P( sup ί(Xx>% δ, y, Sm(Xx> ) A T) > X)
{y:\y-x \<δ'}

( 8 ) f χ

^ exp - — — ( λ - α ϋ + m(T + 1)))
I 2ε2

where

i(^, >̂ 2/, t) = inf {/ί+(ψ): ψ e C 4 φ ) , ψ0 = V ^ n d

SUP |ψw — φu\ < δ} .

For m = 1, this is again immediate by Proposition 2. For the in-

duction step from m to m + 1, consider ψ e CT(D) and let S = STO(p) Λ Γ.

It follows from the definition of i and the additive property of /+ that

for 0 < δ' < δ, 0 < δ" < δ',

sup i(φ, δ, y, Sm+ι(φ) Λ T ) < sup ί(φ, δ', y, Sm(φ) A T)
{y \ φo-y \£δ"} {y:\ φo-y\<,δ"}

+ SUP ί(θsφ, δ, Z, S^θβψ) A T) .
{z:I (0^)0-2 !<ίS'}
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Now in this last relation, replace φ by Xx>s(ω)y and write the resulting

inequality as

Thus by the induction hypothesis, for n any positive integer

\ 2 8

«k-l/n)λ£Zι(X*.*)<i(k/n)λ) L 71

f
J (Z1(JΓ». )>

< {n + 1) exp (—-L-fί - ^U + (m + 1)(Γ + 1)) - -
I 2ε2 V n

the inequality between the extremes holding provided δ" and ε are suf-

ficiently small, depending on δ and a, but independent of Λ and n. Now

(8) follows easily.

Let Tfs = S/Z^6) - SjΛX**), y = 1,2, . . . . We will show that there

exists a positive constant ε0 and a positive integer m0 depending upon T

and a positive constant c0 so that for ε < ε0 and m > m0.

(9) P[Γf < Γ/m for some i<m]< exp ί-
2ε

Since P[Sm <T]< P[T?>e < T/m for some i < m] c) follows from (8) and

(9).

First, we show there is an integer m0 depending upon T and a

positive constant cx so that for m>m0 and ε < 1,

do) pvrr < τ/m\^Si_liΣX>6)] < e x p [—

Because of the strong Markov property, (10) need only be shown for

i = 1. Again introduce local coordinates u so that u(Xx>*) is the process

in the half-space with normal reflection. Let pt = po/mδ with m5 as in

v) of sub-section 1.3. It suffices to prove that for T = inf {t:

/oj> if m > m0 and ε < 1
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P[T' < Tim] < exp f---£-1

Now by our construction u{Xx>*) = Γ(Yx>e), where Yx>ε is the associated
unrestricted process. Let

T" = mf{t:\Yx>° -u(x)\>Pl} .

It now is enough, keeping in mind the third property of the Γ-trans-
formation noted before Proposition 1, to show for m > mQ and ε < 1

(11) P\T" < T/m] < exp {-_g^ j .

From (1) we have

Y?<*>'β = ε Γσ,o Yu^>'dW(s) + Γ(ecf o P w ' 8 + 5 , o Γ ^ . )ώ .
Jo Jo

For ε < 1, the second integral on the right is bounded, uniformly for
t < T/m, in absolute value by 2m1T/m. Selecting m0 > 4m1T//?1, the left
hand side can not exceed pλ in absolute value for t < T/m, m> m0 unless
the first term on the right exceeds p1/2. For that term, we can apply
a known bound for stochastic integrals:

P\ sup ε Γ σs o Y^*dWs >λ]< exp ( - fm }
Lo<Lt£τ/m Jo J I 2 ε 2 m 3 c 4 Γ J

where c4 is a constant depending only on the dimension d of the range
space; see for example, Theorem 2.1 of [4]. Now putting λ = po/2 leads
to (11), hence (10). From (10) follows

P[Tt > T/m for all i < m] > (l - exp ί- c\ m\Y

if m > m0 and ε < 1. Since

l - e x p | 5ί_-™-|) > l - m e x p | — c - ^ - \ ,

I 2ε2 T)) ~ I 2e2Γ J

one has

P[Tf < T/m for some i< m] < exp (-^L.(-A _ 2e2)}
v ώε \ 1 /)
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and (9) follow for m>mQ and ε < ε0 m0 and ε0 are positive constants
depending upon T.

Finally, c') follows from c) together with a).

1.5. The deterministic limit process. Setting ε = 0 in (4) leads to
the equation

(12) dXF = b{Xr)dt + χ3D(X*t>°)r(Xp°)dξp° , X*>* = x .

Again we require that Xx>° and ξx>° be continuous stochastic processes
adapted to (^t)9Xp°eDf and ξx>° is an increasing process, with ξp° — 0,
and increasing only on J = {ί: X*>° e 3D} however, we do not now demand
that Δ have Lebesgue measure zero. The proof of Proposition 1 serves
also to prove the existence of a unique pair (Xx>°9 ξ

x>°) satisfying (12) and
the associated conditions.

Consider for a moment (X*»°, ξ x>°) in the special case of the half-space
with normal reflection. Let X1 denote the first component of Xx>°, b1 the
first component of 6. Let Γo = inf {t: X\ = 0}. Then (12) gives for

t>τ0

X\\ - X>u = Γ XDo(XpW(Xp0)ds + Γ
J To J To

If t e J, the left side vanishes. On the other hand the first term on the
right must also vanish: this becomes clear if one notes first that the
integral is not changed if one integrates over [Γo, t]\J instead of [Γo, t],
and [To, t\\Δ is the union of a finite or countable number of open in-
tervals, and integrating over any one of these yields zero. We obtain
then

J T

This has been justified for te Δ,t > To. For t < Γo all term vanish,
while for t > T each term remains unchanged if t is replaced by
max {s: s < t, s e Δ}. Finally, since ξp° is non-decreasing we may write
for t > 0,

(13) ff ° = - Γ X D&ΪWKXΪ*) Λ 0)ds .
Jo

Return now to the case of general D and γ. For x e dD, denote by
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compr>Z) b(x) the unique number such that b(x) — compr)2} b(x)γ(x) is a

vector tangent to dD at x. Then

(14) f?>° = - Γ χ9i)(Z?'0) (comp^ &(X?.°) Λ 0)ds .
Jo

For in the case of the half-space with normal reflection (13) and (14)

coincide, and in general (14) is reduced to (13) by introducing suitable

local coordinates. Substituting (14) in (12) gives

dXf-° = (&(Xf°) - χ9D(Xf>°) (compr,a (δ(Zf °) Λ 0)r(Xf>°

PROPOSITION 4. // (X*'°, fx>°) is the unique solution of (12) satisfying

the associated condition, then (14) holds, and Xx>° restricted to 0 < t < T

is the unique φe CT(D) satisfying φ0 = x,Iτ(φ) = 0.

Proof. Relation (14) has already been proved. Now let φ e CT(D),

<p0 = x. From the formulas (6) and (7) for I}(φ) we see that a necessary

and sufficient condition for I}(φ) = 0 is that φ is absolutely continuous

with derivative ψt satisfying for almost every t.

Then letting ξt be the integral with respect to t from zero to t of the

second term on the right, (φ, ξ) given a solution to (12) and the associated

conditions. So φ = Xx>° is the only possibility; and I}(XX>°) = 0 by (15).

We will obtain the convergence of (X*'% £*»•) to (X*'°, £* °) as ε -> 0.

First we require a lemma.

LEMMA. For d > 0, Γ > 0 £^ere βα isίs fc(3, Γ) > 0 such that for all

φ e CT(D), if φ0 =' x and sup |Xf'° — φt\ > δ then I}(φ) > k(δ, T).
Q<,t<,T

Proof. First note that the dependence of Xf'° on the initial point

x is continuous, in fact Lipschitz continuous. This can be seen by re-

ducing the situation to the half-space with normal reflection by localiza-

tion, and this case in turn is reduced to the unresticted system Yx>° by

the Γ-transformation construction; for the Γ*'° system the assertion is

immediate from the uniform Lipschitz continuity of bt, and GronwalΓs

inequality.

Next we note that if the lemma is proved for 0 < T < Tλ for some

positive Tl9 it follows in general. Let us show how to extend the lemma
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to the range 0 < T < 22\. We may of course assume that k(δ, T) is

non-increasing in T, non-decreasing in δ. Consider then φ e CT(D), <p0 = x

where TX<T < 27V Suppose ψto - Zfj0 > δ, Z\ < t0 < T. By the initial

paragraph of this proof we can find a(δ) > 0 so that \Xy

t>° - Zf'°| < δ/2

for \y — z\< a(δ), 0 < t < Tλ. Let us apply this with y = Xψί, z = φTl.

If \V - z\ > a(δ) then, I}(φ) > k(a(δ), Tx). On the other hand if \y - z\

< a(δ), then \θTlψto - X\f\ > δ/2 and so /f ( 0 > Iί-Tl(βTlφ) > k(δ/29 T - 2\)

> fc(3/2, TO. So we may set k(δ, T) = A?(α(ί) Λ ί, ΓJ. By iterating the

result is extended to 0 < T < mTl9 m = 1,2, .

Finally we prove the result for 0 < T < T19 where Tx = l/(2m2).

Again, by introducing local coordinates the problem can be reduced to

the half-space with normal reflection, and then, by the construction of

this process it is reduced to the unrestricted process Γ*'β. Suppose then

that φeCτ(Rd),φ0 = x, T < Tlf and that \φto - Γ?o>°| = δ, t0 < Γ. Define

ψt by <pt = bt(φ) + ft and obtain

[t0ψtdt = Γ
Jo Jo

Γ(bs(φ) -
Jo

The difference between the left side and the first term on the right is

δ. The second term on the right is bounded by m2t0δ so that

idS δ/2 .

Finally

Iτ(φ) = fΊl*.llα.-.(,, da > - i - Γ\Ψsl2ds > ^ - ( Γ \ψs\ds)
Jo m 3 Jo m 3 ί 0 VJo /

so we can take k(δ, T) =

Now we obtain the convergence of the process X*>ε to Xx>° as ε -» 0,

and some consequences of this fact.

THEOREM 2. a) For every δ > 0 ίfeerβ e#isίs αw α > 0 swcfe ίfeαί

fim 2ε2 log P[ sup \Xpβ - X; °| > 5] < α: .

b) sup |Xf'β - X?°\ ->0 in LV(P) as ε -> 0, 1 < p < co, uniformly

for xeD.
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c) sup \ξpε — ξp°\ -> 0 in LP(P) as ε -» 0, 1 < p < oo, uniformly for
0£s<T

xeD.

d) For geD x R\ x R\ —>R1 bounded and uniformly continuous

[T g(Xx

s>%ξx*">s)dξr-+ [T g(Xx

s>\ξx

s>
0,s)dξp0 in LP(P) as ε->0. 1 < p < oo,

Jo Jo

uniformly for xeD.

Proof. We will be considering X*>e on 0 < t < T only. Let Fx>δ

= {φ e CT(D): φ0 = x, sup |p, — Xx

s^\ >δ). It follows from the lemma that

for δ > 0 there exists <χ(d) > 0 such that φ e Fx>δ implies Iί iφ) > a(δ).

Note that if φeFx>δ and ψ e CΓ(J9) satisfies ψ0 = >̂ sup |ψέ — φt\ < 3/2

then ψ e F ^ / 2 , hence 7ί(ψ) > a(δ/2). So Theorem 1, part c) is available

to show that P[XX'S e Fx>δ] -* 0 as e -> 0, exponentially fast, and uniformly

in x.

Since a) implies sup |Xf's — Zf°| —> 0 in probability, to conclude b)

it is only necessary to prove that the pth power of this quantity is in-

tegrable uniformly with respect to ε,0 < ε < e0, and xeD, the integra-

tion being with respect to dP. Since XXt° is deterministic it will suffice

to show that

E[( sup \Xr - x\)p] <K, 0 < ε < ε0
0<s£T

for some finite kv. Let SJίX***) have the same meaning as in the

proof of c) of Theorem 1, and set S< = SHX**) A T. Let v = v(Xx>*)

— min{ΐ: S< = T). It follows from (9), and the sentence succeeding it,

that for m > m0, ε < ε0

(16) P[v(Xx><) >m]< exp

By construction

ctπv\ I Vx.e Vx.e I I Vx.e Ύ"X,e I 1

SUP |AS' — Λ ^ J = [ A ^ — A 5 ' 4 - 1 | = >̂0 , 1

and still

* S^P ̂  lZ?'δ - x's\U <Po ίori = v.

Thus



206 ROBERT P. ANDERSON AND STEVEN OREY

sup \Xr - x\ < Σ sup [Xf - X%\ < v(Xx>')pa .

It follows, using (16) that the pth moment of the left number is bounded,

uniformly for 0 < ε < ε0. So b) is established.

For part c) consider the half-space with normal reflection. Since,

for ε > 0, ξx> is given explicitly as ξ(Yx'e), where Yx*ε solves (1), and

since b) is also true for Yx>6 and Yx>° in place of Xx>* and Xx>°, it follows

by the continuity of ξ that c) hold in this case. Defining St as in the

preceding proof of b), introduction of local coordinates will serve to

prove sup \ξJe — ££°l -> 0 in probability as ε -»0. By (16), sup |f£β

OS O

— £5° I —*- 0 in probability as ε —> 0, and so as in part b) it is enough to

show that E[\ sup ξpe\p] = E[\ξ% \p] can be bounded uniformly in ε,0 < ε

< ε0, and x e D. From the half-space case and the strong Markov pro-

perty, we easily obtain

for some finite kp, 0 < ε < 1. Now

and so for p any positive integer,

f y\ = Hi I 2_j Xiv^nΛ 2-ι vis* ~~ ?s\~i)
Ln=l \ΐ=l

/ n Γ/ ΊX1^

and again by (16) this converges uniformly for 0 < ε < ε0, x e D.

Lastly for part d), consider g bounded and uniformly continuous,

and

Jo
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r, ζ ί °, s)dξ

By the uniform continuity, for β > 0 there is a δ so that on the set

A = [sup \x;>> - z;.°| < 5, sup iff" - ίf Ί < fl ,

one has

|flr(X? , ίJ , s) - g(Xr, ff °, β)| < β •

Hence, since \g(X,ξ,s)\ < K,

and since

P[Ω\A] < P[sup |Z; - χ? °| > 5] + P[sup |fj - fj.°| > δ]

we have by part c), E[\I\P] -> 0 as ε -»0.

For //, we use the fact that if F is an increasing continuous func-

tion of bounded variation and f(s)dF(s) < oo, then if
Jo

| / ( s + u) - f(s)\ <δ , 0 < s < l , 0<u<l/n ,

then

(17) | £ f(s)dF(s) -

Select n then so that for 0 <n<T/n and all 0 < s < T

\g(Xtfuf f?;°«, β + u) - g{X*>\ξ*>\ s)\ < δ .

Hence by (17) for p an integer,

E[\II\P]

71



208 ROBERT F. ANDERSON AND STEVEN OREY

+ S'K'nP

\ξx

s>* - £? 0 |)*]

and therefore by p a r t c). i?[|//|p] -> 0 as ε -> 0.

2. Applications.

We proceed to give a few applications to asymptotic problems in
partical differential equations connected with the operators

as ε tends to zero. In subsections 2.1 and 2.2 we investigate the behavior
of solutions to the Neumann problem and certain mixed boundary value
problems as ε —> 0 under various conditions. The methods are those of
[7], where the corresponding questions for the Dirichlet problem were
investigated. In subsection 2.3 we treat the asymptotic behavior of the
Neumann function rβ(£, x, y) for the operator d/dt + Lε and a given region
in Rd. The corresponding problem for the fundamental solution p*(t,x,y)
as well as for the Green's functions qe(t, x, y) was originally solved by
S.R.S. Varadhan [5]; the case of general b was treated by A. Friedman
[2].

2.1. Neumann problem. Let D be the closure of an open bounded
set DQ C Rd, simply connected, and with smooth boundary 3D and let γ
be an oblique vector field on the boundary such that Theorems 1 and 2
apply. For λ > 0 and g bounded and uniformly continuous on the 3D,
the problem

Leu — λu = 0 in DQ with (Fu, γ) — g on 3D

has a unique solution u*. Using the representation for Xx>6 and applying
Itό's formula to fe(t, X?Ό> with pit, x) = e'uu9{x\ gives

Now u* is bounded, and so letting t —> oo, one obtains

u'(x) = -
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To conclude

write

Γ e~λsg(Xr)dξr = Γ e-λsg(Xr)dξr + Γ e-l8g(Xϊ-)dξ*> .
Jo Jo JT

By Theorem 2d,

To finish, it need only be shown that for large T, E\Γ e-λsg(Xx

s>
6)dξxA

UT J
is small uniformly in ε. Since

where C is a bound for |flr|, it suffices to note that E[ξx>+\ — ff>e] is bounded

independent of ε and t, see Theorem 2.

2.2. Mixed boundary value problem. Let D and p be as in subsec-

tion 2.1, but consider the problem

L'u = 0 in Do and —In + (Vu,γ) = h on 3D ,

Λ > 0, with h bounded and uniformly continuous. Let u° be the unique

solution and define

Jo

Now Zj is a martingale, and hence from Itδ's formula applied to the

product Z\ exp {—λξx'°},

(18) u<(X*><) exp {-λξ*>'} - Γ -λu'(X*><) + (Fu% r ) (ZfΌ exp {-λξr}dξx

s>
s

Jo

is also seen to be a matringale.

Let a = σσ*, which by assumption is uniformly positive definite, and

this guarantees ξx>e —> oo as t -> <χ>, (c.f. the argument in the second part

of this subsection). So by (18), letting t —* oo,
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(19) u\x) = E^j h(Xr) exp {-«? }d

If ξp° —> 0 as t —> oo Theorem 2d) shows ue goes to the right side of (19)

with ε = 0, as ε [ 0.

If ξ**° does not tend to infinity (e.g., ff° = 0 if Xx>* remains in DQ)

things are more difficult. We now consider a special case of this situa-

tion. We impose the following assumptions:

i) There exists w0 e DQ such that Xx»° -» w0 without leaving Do as

t —> oo for every xeD.

ii) (γ(z), b(z)) > cx > 0 for all z e &D.

iii) Let V(y) — inf {I$(φ): p e CT(D), φQ — w0, φτ = ?/, 0 < Γ < oo}.

There is to be a unique point y0 e 3D satisfying V(y0) = min V(y).
yGdD

Evidently there exists a T > 0, a p e C Γ φ ) with p0 = ^ 0 and φτ — yQ,

I}(φ) = 7(τ/0) and P ί e Do for 0 < t < T. So I$(φ) = Iτ{φ).

Conditions i), ii), and iii) were imposed by Ventcel and Freidlin [7]

in Theorem 3.1, which we will use below.

The representation (19) of ue(x) and Theorem 3.1 [7] suggests that

as ε —> 0, uε(x) tends to λ~ιh(y^. Indeed this will follows under our pre-

sent assumption if xeDQ from the representation together with the fol-

lowing assertion:

For every positive M and ε there exists a stopping time TM>e such

(20) that for every neighborhood U of y0,

lim P[fji i t > M, Xr e dD\U for any s e [0, T^6]] = 1.
e—0

We proceed to prove (20). Let Uo be a small neighborhood of wQy

and define: So = 0, S, = inf {t: Xpε e Uo}> TY = inf {ί > Sx: Zf'e e SZ)},

Sn = inf {« > Tn_λ: Xr e Uo}, Tn = inf {t > Sn: Xp* e 3D}. Let Zn = fj;+ 1

— ξ%n> n = 1,2, - - . Let C7 be a neighborhood of y0. From Theorem

3.1 of [7], we know the probable behavior of Xx>s between times So

and S19 and also between time Sk and Sk+1. Between time So and Slf

Xx>° will in all likelihood remain within a ^-neighborhood of the trajectory

Xx>°. Starting at time Sk the process will for a long time remain near

w0, eventually, it will, however, hit 3D at time Tk, most likely in U, and

then return to Z70 without intersecting 3D\U. During the time interval

Sk+ι — Sk, other behavior is of course possible, we will refer to it as

exceptional behavior, but Theorem 3.1 of [7] implies that there is a constant

c(U) > 0 such that the conditional probability given ^Sk of exceptional
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behavior during the interval Sk+1 — Sk is bounded by exp { — c(Z7)/(2ε2)}.

Thus on a typical interval [Sk,Sk+1) the local time will increase only

while Xx>6 is in U. However, when ε is small the increment in local

time during [Sk,Sk+1) will also be small with high probability. We will

show that there exists a positive constant cQ such that for k > 1,

(21) P[ξf:+ι - » ; > c0ε
21 ̂ Sk] > 1/4 .

Before deriving (21), let us show how it implies (20). Let for k = 1,2, ,

X =
O

and let X[, Xf

2, be a sequence of independent identically distributed

random variables, P[X[ = 1] = 1/4, P[Zί = 0] = 3/4. Then for all n

and the right side approaches 0 as n approaches infinity by the law of

large numbers. Let M be given and choose n > 8M/(c0ε
2). We then

conclude that PVΣ?κ=ι (ξf+i — ξfε) < M] -> 0. Since n increases like ε"2

while the conditional probability of exceptional behavior during [Sk,Sk+1)

decrease like exp {—c([7)/(2ε2)}, we may conclude (20) with TM>ε = Sn.

It remains to prove (21). Clearly it suffices to consider k = 1. In

order to study the increase in ξx>ε just after T19 introduce appropriate

coordinates, so that Xt = u(Xpε

+t) is the desired diffusion in Rd

+ with

normal reflection, and ξt is the associated local time. Furthermore, Xt

= Γ(Yt)y where Yt is the associated unrestricted process. Let Y1 be the

first component of Y. Recall by our construction, ξt = inf YJ, and as

long as Xpε remains in the coordinate patch ξψε

+t — ξψε = ξt. Now Y1

satisfies

Y\ = ε Γ Σdι>*oΓJίY)dW* + Γ βoΓs(Y)ds
Jθk = l JO

where σ^k(x) and β(x) are the coefficients in the equations for dX; by

assumption aι*\x) = Σί=iσhk(σ^)kil(x) > m3~
1 and for ε < 1, β(x) < 2mλ.

Now the first term on the right in the representation of Y1 is a mar-

tingale Mt with square variation At = ε2 άhloΓs(Y)ds and by the above
Jo

At > ε2m^1t. As is well known Vt = MAri is a one-dimensional Brownian

motion. Write then
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Yl = VΛt+ {*βoΓ.{Y)d8
Jo

and deduce for ε < 1,

inf Yl < inf Vs + 2mλt < Ve*m-H + 2mίt .

Let c be a positive constant such that P[Vt < — c<Jt] > 1/4. Thus

2mιt'\ > 1/4 .

Now set t* — cVm^/iim^2 and find

P[ inf Y] < -εV/ίδm^)] > P[Vm-igH> + 2mxί* < -ε^VCδm^)] > 1/4 .
0 * 8

This gives the local time increment for Zf' only as long as this process
remains in a coordinate patch about Xψl however, since it has to trans-
verse a distance in excess of p0 before leaving such a patch, and ί* is
of order ε2, it follows from Theorem 1 that the probability of getting
out by time £* is negligible, and (21) is proved.

2.3 The Neumann function. Again let D and γ be as in subsection
2.1. In addition to our underlying assumptions about the coefficients in
(4), we assume in this subsection that b is differentiate and that there
exists a > 0 such that

(22) db ,_, db ^ <\χ-y\«, l<i<d, x,yeD
dxι

Setting τ\ty x, dy) = P[Xp' e dy] it is known that re(t, x, dy) = r'(t,
x,y)dy, with r*(t,x,y) a continuous function, the Neumann function for
the operator du/dt + Leu for the region Do x [0, oo).

We will obtain the asymptotic behavior of r°(t> x9 y). To do this we
use information about two related functions. One of these is the Green's
function q*(t, x, y) for the operator du/dt + L'u for the region Do X [0, oo).
It is familiar that

Q'(t, 5, y)dy = P[X?" e dy, Xr eD0, 0 < s < t] .

Next, extending the coefficients σ(x), c(x), b(x) to all of Rd so that our
boundedness and regularity hypotheses are preserved, we obtain operators
du/dt + Leu, with u defined on Ra x [0, oo). Let v*(t,x,y) be the corre-
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sponding fundamental solution. Naturally associated are the diffusion

processes

dX*>< = εσ{Xr)dWt + (εcdf'O + b(X*t«))dt , XP° = x

in Rd. In fact

Evidently

(23) p*(t, x, y) > qε(t, x, y) , r (ί, x, y) > q°(t, x,y) , t > 0 , x,yeD0 .

Define

Iΐ(%, V) = inf {/ί+(0: 9 e Ct(D), <p0 = χ,φt = y} .

We will prove

(24) lim — — log r*(t, x, y) = /^(aj, y) , x,yeD0.
β-o 2ε 2

Observe that X*>0 is simply the solution of the dynamical system

)dί , X*'° = a? .

Evidently if x e Do and ε > 0, Xf6 coincides with Xpe up to the first time

that 3D is hit. Also, for φ e Cτ(Rd), it is clear that if <pt e Do for 0 < t

< T then Iτ(φ) = 7f (p).

We will utilize, as did Friedman [2], the following useful extimates

of Aronson [1]:

(25) p*(t, x, y) < - A _ exp [ - C | l f ^ " " V f ) iίt<T*,

(26) p (ί, a, 2/) > - ^ exp {- Λ l ^ _ Z _ ^

if

where T* is any positive number, t* is a sufficiently small positive

number, Ao, A l f A2, c, Cj, c2 are positive constants. Now fix y. For δ > 0,

s > 0, let

Let ψ ( s ) be the trajectory determined by
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dψ£> = b(ψ^)dt , 0 < u < t , ψ< > = y ,

It follows from our assumptions that one can choose positive numbers

δ0 and s0 sufficiently small so that the following hold for all s < sQ, δ < δ0:

if z e Cδ

s,X
zj° eDQ, for 0 < u < s; sup |ψ<f} - ψ<s)| < pQ; there exists a

positive number m such that the distance between ψ(

o

s) and D\Cδ

s exceeds

δ/m.

Now we choose a suitably big constant n, the exact requirements

on its size will be made evident below. For ε sufficiently small C2

s

nmδ c Cδ

s°.

Also there exists dλ > 0 such that CJ° is at a distance at least dλ from

3D, with dι not depending on s, 0 < s < s0.

Observe now that (26) provides a positive c(s) (it will go to zero

with s) such that

^ zeC?™ .?

Noting that one can go from z to y in time s either without or by

hitting the boundary of D, it follows as usual from the strong Markov

property that

P*(s, z, y) < qe(s, z, y) + P[X%* e dD for some u, 0 < u < s] .

sup {v\u> w,y):Q <u < s,we 3D} .

Since \w — y\ > dx for w e dD the second factor in the last term can be

bounded by (25), and we obtain for ε sufficiently small

(27) r(s, z, y) > q*(s, z9 y) > - ^ - , z e Cfwe .
Δε

Let h > 0 and choose ψ e Ct(D) so that ψ0 — x> ψt = y, It(Ψ) < Iΐ(%, y) + h,

and in addition there exists an s, 0 < s < s0, such that ψt-s+u = Ψis) Then

re(t, x,y)> I re((t - s), x, z)re(s, z, y)dz
J c * n m e

since the distance between ψt_s and D\Clnm> is at least 2nε,

[|Xfi , - f 4_s < ne] C [Xf j , e C?m']
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and the probability of the set on the left can be estimated by Theorem 1,

part b), provided only n is chosen big enough. It follows that

lim - A - log r'(t, x, y) > I+(x, y) + h
ε-o 2ε 2

and since h is arbitrary we have obtained the desired lower estimate.

For th upper estimate define

Bδ

So = {(t-s,z):O<s<s0, z e D , \ X ? - y\ < 3}

Fix δ > 0 and s0, 0 < s0 < t so that Bδ

SQ c: [t — s0, t] X Do. Observe that

this implies the existence of a positive kλ such that for it — s9z) e Bδ

SQ,

φ e Ct_s(D), <p0 = z, and φu e 3D for some u, 0 < u < t — s always

(28) Iΐ_s(φ) > kx .

It follows from (23), and (25) that there exists β > 0 so that for Nβ(y)

= {w: \w — y\ < β}, there exists A > 0 such that

(29) qε(s, z, w) < ^ , for (t - s,z)e 3Bδ

SQ, w e Nβ(y) .

Define the following sequences of stopping times:

T1 = inf {u: (t - u, Xx

u>
e) e Bδ

So} At, S1 = inf {u > Tx: Z j s edD} At

Tn = inf {u > Sn.,: (t - u, Z ) e Bδ

SQ} A t ,

Sn = inf {u > Tn: X%° edD} At .

Let \Nβ(y)\ stand for the Lebesgue measure of Nβ(y). It is evident, using

the strong Markov property, that

r € Nβ(y)] = ± P[Xr e Nβ(y), Tn<t< Tn+1]
ln=l

( 3 0 ) S ^ - L ^ n - . j ^ ^ r ^ ^ v ^ , . ^ , - ^ , , ^

w e Nβ(y)} .

The last factor is bounded by (29). On the other hand it follows from

(28) and Theorem 1, part c) that

IΓγl n \ υ 115̂  ττ

n_1J ^s GXp Λ —

for ε sufficiently small. Hence the series in the last member converges

exponentially fast and we obtain a constant A' such that
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(31) P[Xr e N,(»)] < PίT, < t]-£-\Nβ
S

Let iδ = inf {Itiψ): φ e Cfφ), ^ 0 = #> φs 6 Z?*o

 f o r s o m ^ s e [0, ί]}. It is an

easy consequence of Theorem 1, parts c) and a), that for any u > 0, the

first factor on the right of (31) is bounded by exp{ — (iδ — h)/2ε2} for e

sufficiently small. Using this in (31), dividing through by (Nβ(y)) and

letting β -> 0 gives

(32) r{t9 x, y) < - ^ exp {—^-(h - Λ)} .

Finally, observe t h a t i, increases to I?(x,y), and since δ>0 and fe>0

are arb i t rary the desired upper estimate is proved.
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