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THE TOPOLOGICAL SUPPORT OF GAUSSIAN MEASURE

IN BANACH SPACE

N. N. VAKHANIA

Introduction.

The main result of the present paper is the theorem 1, which de-
scribes the topological support of an arbitrary Gaussian measure in a
separable Banach space. This theorem will be proved after some dis-
cussion of the notion of support itself. But we begin with the reminder
of the notion of covariance operator of a probability measure. This
notion has a great importance not only for the description of support of
Gaussian measures but also for the study of other problems in the theory
of probability measures in linear spaces (c.f. [1], [2]).

Let X be a real Banach space with topological dual X* and //bea
probability measure on the σ-algebra generated by X*. We suppose that
μ has the second order in weak sense, i.e. X* c L2(X,μ) (this restriction
is necessary if we want to speak about an analogue of variance). Co-
variance operator R of measure μ is defined by the relation (see [1])

(Rxf)(xf) = f x*(x)xf(x)μ(dx) - f x*{x)μ{dx) [ x*{x)μ(dx) . (1)
J X J X J X

Here (Rxf)(x?) is the value of the linear functional Rxf e X** on the
element xfeX*. The operator R defined by this relation is a linear,
bounded, symmetrical ((Rx})(x*) = (Rxf)(xf)) and non-negative ((##*)
.(a?*) > 0 for all £* e P ) mapping of X* into X**.

On topological support of a probability measure.

The support Sμ of a probability measure μ in a Banach space is by
definition the smallest closed (measurable) set having μ-measure 1. There
exists another definition: the support Sf

μ is the union of all those points
of the space, every measurable neighborhood of which has positive μ-
measure. It is obvious that Sμ always exists (the case of empty set is
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not excluded) and besides if Sμ exists then μ(Sμ) = 1. It is not difficult
to show that if one of the following assertions:
(a) Sμ exists

is true then the another is also true and Sμ ~ S'μ. Indeed let Sμ exist
and Ox be a neighborhood of x e Sμ. If μ(Ox) — 0 then the closed set
Sμ\Ox must have measure 1. But it is impossible because Sμ is the
smallest closed set of measure 1. Consequently, Sμ c S'μ. If x~eSμ and
x e S'μ then there exists a neighborhood Ox such that Ox Γ) Sμ is empty
and μ(Ox) > 0 (for example Ox = X\Sμ). But this is impossible as
μ(Sμ) = 1. Consequently Sμ = S£. Let now (b) be valid, i.e. μ(Sμ) = 1.
It is easy to see that Sμ is a closed set. Let us show that Sμ is the
smallest (measurable) closed set of measure 1. Let S be closed, μ(S) = 1
and let Sμ ς£ S. Then there exists a neighborhood Ox of some point
xeSμ such that O^ΠS is empty and μ(Ox) > 0 (for example Ox = X\S).
But this contradicts to the supposition μ(S) = 1.

In the general (non-separable) case it may be that neither assertion
(a) nor (b) is true. In [3] (see also [1]) for any given positive number
p the measure μ (Gaussian) in Banach space &„ (on σ-algebra generated
by A c £*) is constructed such that /i-measure of any ball of radius p is
zero. It is clear that for such measure the set Sμ is empty, i.e. the
assertion (b) does not hold and therefore the assertion (a) is not true,
i.e. the smallest closed (measurable) set having measure 1 does not exist.
Consequently the definitions of support for a general case are out of
use since the support in the first sense may not exist and in the second
sense it may be even an empty set. In the separable case however
these difficulties do not arise because the assertion (a) is always true.
Indeed in this case the set Sμ can be obtained as an intersection of all
closed sets having measure 1. This possibility is an immediate conse-
quence of the following elementary

LEMMA. In a separable space the intersection of any system of
closed sets of measure 1 is again a closed set of measure 1.

The proof of this lemma is quite easy and it is ommited here.

Support of Gaussian measure.

Everywhere below X will be assumed to be separable. In separable
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X σ-algebra generated by X* is the same as σ-algebra of Borelian sets.
The definitions of Sμ and Sμ are correct and Sμ — S'μ. Note that in the
case of separable X if #:X*->,X** is the covariance operator of
Gaussian measure then #X* c X in the sense of natural embedding of
X into X** (see [1]). Thus taking into consideration that this natural
embedding is a linear isomorphism we can simply mean that in a sep-
arable case the operator R maps X* into X.

Let SX* denote the closure in X of the set JSX*. Furthermore let
m denote the mathematical expectation (mean value) of measure μ defined,

as it is well known, in the sense of Pettis integral (i.e. x*(m) ==

ί x*(x)μ(dx) for all x*eX*\

THEOREM 1. Sμ = m + #X* for any Gaussian measure μ in X with
expectation m and covariance operator R.

Proof. If we transform a measure according to the translation of
the space, the support will be also translated by the same element.
Therefore it is enough to consider the case m = 0. From the results
given in H. Sato's paper [4] it follows immediately that Sμ is a linear
manifold in case m = 0 (recently Nguen zui Tien has given immediate
and elementary proof of this fact). The linear subspace in X is also
i?X*. Thus it is enough to show that

= Sj-, (2)

where A1 denotes as usual the annihilator of A i.e. the set of those
points x* e X* for which x*(x) = 0 everywhere in A c X. Now let us
prove the equality (2).

(a) The proof of inclusion Ϊ2X*-1- c Sjr
Let y* e RX*-1. This assumption is equivalent to the equality y*(Rx*)

= 0 for all #*eX*. In particular, remembering the definition (1) of
covariance operator, we have

y*(Ry*) - f y*2(x)μ(dx) = f y*Kx)μ(dx) = 0
J X J Sμ

and consequently

μ{x: y*(x) = 0} = 1 .
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But the set {x: y*(x) = 0} is closed and has measure 1, hence it con-
tains Sμ i.e. y*(x) = 0 for all x e Sμ. This means that y* e Sj- what was
to be proved.

(b) The proof of inclusion Sj c ~RX*L.
Let y* e Sjr i.e. y*(x) = 0 everywhere on Sμ. Then denoting by

χ( μ) the characteristic functional of the measure μ we have

χ(V* μ) = ί exp {ίi/*(a;)}̂ (dfl;) = f exp {ii/*(α;)}/ί(da;) = 1 . (3)

It is easy to see that the characteristic functional of the Gaussian
measure μ with covariance operator R and expectation zero has the form

χ(#* μ) = exp {-±X*(RX*)} , X* 6 X* ,

and thus from the equality (3) we obtain

y*(Ry*) = 0 for y* e Sj (4)

Now we have to use the following elementary inequality the proof
of which does not differ from the proof of the corresponding well known
inequality in Hubert space:

|2/*(#z*)|2 < y*(Ry*)x*(Rx*) , ^ , f e l * . (5)

This inequality (which is valid for any linear bounded symmetrical
non-negative mapping of X* into X) shows that it follows from (4) the
condition: y*(Rx*) = 0 for all a ; * e P , But it means that f e β ϊ * 1 .

The proof is complete.

COROLLARY. In accordance with the definition in finite-dimensional
space, a probability measure μ on a Banach space X is called non-degen-
erate if every non-trivial linear functional x* e X* as a random variable
on (X,μ) has non-degenerate {i.e. non-concentrated at a single point) dis-
tribution. Since the variance of x* is (Rx*)(x*) non-degeneracy means
that (Rx*)(x*) = 0 only for x* = 0. Using the elementary inequality (5)
and the Hahn-Banach theorem, it is easy to show in the same manner
as it is done in [5] for the case X = iv that the following two assertions
are equivalent and each of them also means non-degeneracy of μ:

(a) The mapping R: X* ->X is one to one,
(b) ~
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Let now μ be a Gaussian measure. According to Theorem 1 and
the assertion (b) non-degeneracy of μ means that Sμ = X (essentially this
fact is a consequence of the linearity of the support). Consequently for
any Gaussian measure μ in separable X ^-measure of every non-empty
open set is positive (in non-separable space the matter is much more
complicated, see [3]).

Remark. Theorem 1 contains B. Rajput's recent result ([6], the case
X — £p91 < p < oo) and earlear result of K. Ito ([7], the case of separable
Hubert space). The reasoning used to prove Theorem 1 are contained
in our paper [5] which contains even the proof of Theorem 1 for the
case X = £p assuming non-degeneracy of the measure. Note that the
limitation of non-degeneracy is not essential and using a little additional
argument we can come to the general case (see [8], where it is done for
the case p — 2).
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