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SMOOTHNESS OF SOLUTIONS OF STOCHASTIC EVOLUTION

EQUATIONS AND THE EXISTENCE

OF A FILTERING TRANSITION DENSITY

B. L. ROZOVSKII AND A. SHIMIZU

In this paper, we shall discuss the smoothness of solutions of stochas-

tic evolution equations, which has been investigated in N. V. Krylov and

B. L. Rozovskii [2] [3], to establish the existence of a filtering transition

density.

First, we introduce the filtering equation, which has been discussed

in [1] [3] [6] and [9]. Let us consider the system (xt9yt) given by the

stochastic differential equation

dxt = a(xt, yt, t)dt + b(xt9 yt9 t)dvt

dyt = A(xt, yt, t)dt + B(yt, t)dvt

Xo = O,yo = ξ, te[0,T], T< + o o ,

where v = {vt}teio,τi is a (d + dt^-dimensional Brownian motion defined on

a complete probability space, and a, A, b and B are matrices of type

d X 1, d1 X 1, d X (d + dx) and dx X (d + dt) respectively. We denote by

Ff the complete σ-algebra σ{yτ, 0 ^ τ ^ t}. Let us denote by Pt[f] a

measurable modification of the conditional expectation E[f(xt9yt, t)\Ff],

We put

/ 2 , β(x,y,t)=CA,

wt = foC(yτ,τ)dyt - ^Pt[β]dτ ,

y't = wt+ PPT[β]dτ
Jo

and

Pt = exp { - £ Pt[β]dwτ - 1 £ \Pr[β]\2d

Received March 11, 1980.

195



196 B. L. ROZOVSKII AND A. SHIMIZU

Here, | | denotes the norm in Rdl and wt is a ^-dimensional Ff-Brownian

motion. Under the assumptions Aj)-^) in § 1 in [3], it is known that

φt[η] = P^ηlpϊ1, η e C?(Rd), satisfies the next equation

(0.1) dΦt[v] = Φt[Lv]dt + Φt[MηWt ,

where C?(Rd) denotes the space of C°°-functions with compact support,

L is a differential operator of second order, M is a differential operator

of first order, and the coefficients of the both operators L and M depend

on t, x and ω. To state Equation (0.1) precisely, we need some preliminaries.

We denote by a^x, y, t) the (/, jf)-component of the matrix %b(x, y, t)b*(x, y, t),

#*(#> y, t) denotes the ί-th component of the vector a and βk(x, y, t) means

the β-th component of the vector β(x, y, t). Put

a(x, y , t) = C(y, t)B(y, t)b*(x, y , t ) ,

and let aυ(x9y, t) be the (ί, ̂ -component of the matrix a(x,y, t). Then,

the operators L and M can be written as follows:

Mη = (M{η, M27], - - , Mdχτj)

and

d β

= βk(x9 yt, t)η + Σ «*<(*> ̂ , 0-^—7 , (k = 1, 2, -, d,) .

In this paper, we shall study the Cauchy problem of Equation (0.1)

with the initial condition

(0.2) Φs[η\ = η(z) for all η e C0-(Λd),

where z is an arbitrarily fixed point in Rd. Making use of Sobolev's

lemma (Theorem 2.2 in [3]), we can see that there exists a process ψ. in

a space Hld/2ί(s, T), which will be defined in § 1, such that

where ]<2/2[ is the smallest natural number bigger than d/2, and ( , )]d/2[

is the inner product of the Sobolev space W}mί{Rd). Hence, Equation (0.1)

with initial condition (0.2) can be written in the form

(0.3) 6h, η)ι = (r, V)ι + l[ (Ψτ, Lη\dτ + J | (ψt, Mη\dy'τ ,
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where I = ]d/2[.*) By the Girsanov's theorem we see that Equation (0.3)
can be regarded as follows:

(0.4) (ψt, η)ι = <r, η)ι

Here,

Γ (ψ r, ikfy)zcfa;r == £ Γ <*« Λ f*?)*Λ»? >
where u;t = (wf)k=1^...idl is a jFf-Brownian motion .

From § 1, the α -algebra Ff will be denoted by Ft for simplicity, and
wt will be replaced by the notation Bt.

We shall make the same assumptions on the coefficients of the oper-
ators L and M as in [2], which will be stated in § 1. By a solution of
Equation (0.4), we mean a function ψteHi(s,T) with values in Wi(Rd)
for each (t, ω) and finite £'[||ψί||?]**) f°r all t, which satisfies Equation (0.4)
for any η e O?(Rd) and t e [s, T] with probability 1. N. V. Krylov and
B. L. Rozovskii [2] investigated the existence, the uniqueness and the
smoothness of solutions of Equation (0.4). In the introduction, we will
state our results for simplicity only in the case that the coefficients of
L and M are sufficiently smooth. That is, in addition to the assumptions
in [2], we assume here in the introduction that the coefficients of L and
M are C°°-functions in x for each (t, ω), and that their derivatives do not
exceed a constant K in absolute value for any (t, x, ω) and a. In this
case, the Krylov-Rozovskii's result on the smoothness of solutions (Theorem
2.2 in [2]) can be stated as follows: Let m ^ 0. // 2£[||τΊ|L+»l is finite,
then the solution ψ# of Equation (0.4) belongs to the space H%ι+m+1(s, T).

In this statement, it should be noticed that the smoothness of the solu-
tion depends on the smoothness of the initial data γ. Under the initial
condition (0.2), we can assume γ e W} (Rd), but we can not suppose further
smoothness of γ. Therefore, we should remove the condition on the smo-
othness of γ to discuss the smoothness of the solution ψt. Our result on
the smoothness of the solution of Equation (0.4) can be formulated as
follows: The solution ψ. of Equation (0.4) satisfies ψt(x, ω) e f]m W™(Rd) for

each (t, ω) e (s, T] X Ω. Since we obtain this result without the smoothness
of γ, we shall obtain the following expression for the solution Φ\ of
Equation (0.1) with initial condition (0.2): Φz can be expressed in the form

*> γ is a function in W\(Rd) such that η(z) = (r, η)ι.
**> II ||i denotes the norm of the Sobolev space W\(Rd).
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ΦM = ί Φ(.s, z, t, x; ω)η(x)dx , (t, z, x) e (s, T] x R« X R« ,

for any η e Cs°(Rd), where φ(s, z, t, x; ω) = (I — Λ)ιψt, I is the identity oper-

ator and Δ is the Laplace operator.

§1. Notation and results

Let Rd be the d-dimensional Euclidean space, T a fixed positive
number, (Ω, F, P) a complete probability space {Ft}teίQiT1 an increasing
family of complete σ-algebras contained in F, dx a positive integer, and
{Bt}teio,τi a ^-dimensional FΓBrownian motion. We shall fix a basis in
Rd and denote by a, ai9 β, γ arbitrary unit coordinate vectors as well
as the zero vector. If a = 0, then Da denotes the identity operator, while
if a is the i-th basis vector, then Da = d/dxK

We suppose that the coefficients a^(#, yt91), akj(x, yty t) of the operators
L and M are differentiable in x, then it is obvious that the operators L
and M can be written as follows.

Lη = (-l)i«ι+^ιDβ(af(x)D"η) ,

and

where af(x) are real functions defined on [0, T] X Rd X Ω, a"(x) are func-
tions with values in Rd defined on the same space, | | is the norm of the
d-dimensional Euclidean space, and the argument ω is omitted as a rule.
Here and throughout the paper, the summation convention is in force for
repeated indices. Wξ(Rd) is the Sobolev space of all real functions ψ
defined on Rd with finite norm

= ( Σ

where Dai Dak are generalized derivatives of ψ, and || || denotes the
norm of the space U(Rd).

We will mention the assumptions on the coefficients aa

t

β(x), aa

t{x) of
the operators L and M. We denote by B([0, T]) the Borel sets in [0, T],
and by B(Rd) the Borel sets in Rd. For the rest of this paper, we shall
make the following assumptions:

Let us fix positive constants K, δ and an integer m ^ 0.
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A) The functions af(x) and aa

t(x) are J3([0, T]) X B(Rd) X immeasurable,

and they are immeasurable for each (t, x).

B) For all x, ξ e Rd, te [0, T] and ω e Ω, the inequality

af(x)ξψ- Σ
l l i

holds where ξa is the i-th coordinate of ξ if a is the i-th coordinate

vector.

C) The functions af(x), aa

t(x) and their derivatives in x up to m

inclusive are continuous in x for each (t, ω); these functions and their

derivatives do not exceed a constant K in absolute value (in length, for

the vectors at{x)) for any (t, x, ω) and a.

Let s be a real number such that s e [0, T], and we will introduce

the spaces H}(s, T) and H^\s, T). We denote by H?(s, T) the space of

L2(Jϊtf)-valued functions ψ = ψt(α>) defined on [s, T] X Ω such that

1) ψt(ω) is measurable in (t, ω), and for each t it is immeasurable

in ω.

2) ψ£(ω) e W?(jRd) for almost all (ί, ω), and

( Γ Cτ 1 \1/2

Here, measurability of ψ = ψί(ω) is understood in the sense of measur-

ability of functions with values in a metric space L2(Rd). It is well-known

that this measurability is equivalent both to strong and to weak measur-

ability.

By H£+1(s, T) we denote the subspace of H£+ί(s, T) consisting of func-

tions ψ = ψί(ω) with values in Wϊ(Rd) for each (t, ω) 6 [s, T] X Ω, such

that iSfllΨίHfc] < +oo for all te [s, T], Let us consider the next stochastic

evolution equation

τ, aa

τ(x)η)ndBτ + J (fT, η)ndτ ,

where scalar products are intended by the notation in the third term in

the right hand side, and n — I + 1.

From now on, we assume that the coefficients aa

t(x) for |α| = 1 are

(n + l)-times continuously differentiate in x for each (t, ω), and that their

derivatives in x do not exceed a constant K in length for any (ί, xy ω)
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and a. By a solution of Equation (1.1), we understand a function ψ, e

H?+ί(s,T) which satisfies Equation (1.1) for any ηeC0~(Rd) and te[s, T]

with probability 1.

We should give a notice that the equality

(1.2) {Λ-% v)j+k = {v,rj)k) A = I - Δ ,

holds for any υe Wξ(Rd) and ηe Wj+k(Rd) if j is an integer and k is a

non-negative integer such that j + k ^> 0. When / = 0 in (1.1), we can

see by (1.2) that a process ψ# with initial data γ satisfies (0.4) if and

only if A^ψ, with initial data A"xγ satisfies (1.1).

Then, we shall obtain

THEOREM 1. Let n <L m. Fix a non-negative integer k such that n +

k<*m. Suppose that aa

t(x) for \a\ = 1 have derivatives of order n + k + 1 with

respect to x which are continuous in x for each (t, ω) and uniformly bounded

in a, t, x and ω in the sense of length of d-dimensional vectors, and that

γ = γ(x, ω) belongs to Wϊ**(RΛ) for each ω and E\\\γfn+k] is finite. Besides,

if feH?+k(s,T), then Equation (1.1) has a solution ψ. € Hrk+1(s9 T).
Especially when k = 0 and f = 0, Equation (1.1) has a solution, and hence
Equation (0.4) has a solution ^#efl?+1(s, T).

Here, we will write the results on the uniqueness of solutions which
have been obtained in [2].

PROPOSITION 1 ([2]; THEOREM 2.1). Let n ^ m. We assume that aa
t{x)

for \a\ = 1 have derivatives of order n + 1 with respect to x which are con-
tinuous in x for each (t, ω) and uniformly bounded in a, t, x and ω in the

sense of length of vectors. Let ψ] and ψ* be solutions of Equation (1.1).

Then E[\\ψ] - ψ?||J] = 0 holds for all te[s, T].

PROPOSITION 2 ([2]; Corollary 2.1). Let I + 1 <I m. Suppose that a"(x)

for \a\ = 1 have derivatives of order 1 + 2 with respect to x which are con-

tinuous in x for each (t, ώ) and uniformly bounded in a, t, x and ω in the

sense of length of vectors. Let ψ) and ψ* be solutions of Equation (0.4).

Then, E[\\ψ] - ψ2

t\\ΐ\ = 0 holds for all te[s, T].

Making use of Theorem 1 and Proposition 1, we shall obtain

THEOREM 2. Let n <^ m. Suppose that aa

t(x) for \a\ — 1 have derivatives

of order n + 1 with respect to x which are continuous in x for each (t, ω)

and uniformly bounded in a, t, x and ω in the sense of length of vectors,
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and that γ = γ(x,ω) belongs to Wi(Rd) for each ω and E\\\γ\fi\ is finite.

Then, Equation (0.4) has a solution ψ. such that ψt(x,ω)e W™~2(Rd)for each

(t, ω) e (s, T] X Ω.

Theorem 2 and Proposition 2 imply

COROLLARY TO THEOREM 2. Let 2n ^ m. Suppose that a"(x) for\a\ =

1 have derivatives of order n + 2 with respect to x which are continuous

in x for each (t, ώ) and uniformly bounded in a,t9x and ω in the sense of

length of vectors. Then, the Cauchy problem of Equation (0.1) with initial

condition (0.2)*} has a unique solution Φ*[ ], which can be expressed in the

form

ΦM = £ Φ(s, z, t, x; ω)η(x)dx , t e (s, T] ,

where φ(s, z, t, x; ώ) e W^~2n(Rd) for (z, t, ω) e Rd X (s, T] X Ω as a function

of x.

Remark. Theorem 2 can be regarded as an extension of the existence

and smoothness theorem of fundamental solutions of parabolic differential

equations, whose proof has been given in [8].

§ 2. Proof of Theorem 1

First, we should give the preliminaries of the proof. We will give a

quick review on the result obtained by N. V. Krylov and B. L. Rozovskii

in [4] and [5], Here, their result will be given in a simpler case than in

[4] and [5].

Let H be a real separable Hubert space, and let V be a reflexive real

separable Banach space. {Bt}teίOtT1 denotes a J^-Brownian motion with

values in the d-dimensional Euclidean space Rd (In [4] and [5], the space

Rd was replaced by a real separable Hubert space E.). Suppose that V

C H = ί P C V*, that the imbedding mappings are dense and continuous,

and that <u*, ι/> = (i;*, υ)**} if ι;* e H. Here, V*(H*) denotes the space

^ By a solution of the Cauchy problem (0.1) with (0.2), we mean a real valued function
defined on [s, T] x Ω x C(Rd) such that (i) for each (ί, ώ) e [s, T] X Ω, Φt[η] is a linear

fnnctional on C(βd), the space of all bounded continuous functions on Rd, satisfying
\Φt[η]\ ^ Pt1 su pxeR* \y(%)\ for (t, x, ή) e [s, T] x Ω x C(Rd), where ρt is a version of pt con-

tinuous for all ω e Ωf (ii) for each η, Φt[η] is it, ω)-measurable, (iii) for each (£, ή), Φt[v\
is .FVmeasurable, (iv) for each (α>, ή), Φt[ή] is t-continuous and (v) Φt[η] satisfies (0.1)
and (0.2).

**} ( , •) denotes the inner product of the Hubert space H.
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of linear functionals on V (resp. H), and <υ*, υ} means the value of

u* e V* at v e V.

Let A(-,t, ώ) and B(-,t,ω) = (S*( ,t9 ω))i=1,...idl be mappings defined on

V with values in V* and Hdl = H X H X X H (dΓfold) respectively for

all (t, ω). For each υeV, the functions A(v, t, ω) and B(v, t, ώ) are meas-

urable in (t, ω) (with respect to the dt X dP-completed algebra), and im-

measurable in ω for fixed t e [s, T].

Let us consider the following Itό's equation

(2.1) ut = us + £ Λ(κτ, r, ω)dτ + J* B(MΓ, τ, ω)dBt , ί 6 [s, T] ,

where B(uτ, τ, ω)dBT in the right hand side in (2.1) means the inner product.

A function ut(ώ) with values in H, defined on [s9 T] X Ω is called a solu-

tion of Equation (2.1) if it is measurable in (t, ώ) and FΓmeasurable for

each te[s, T], and if it belongs to L2([s, T] X Ω, V) Π L2(Ω, C([s9 T]; H))

and satisfies Equation (2.1) (as an equation in V*) for all t e [s, T] with

probability 1.

We assume the following conditions (A.I)-(A.IV) on the functions

A(υ91, ω) and B(v919 ω)9 which will be denoted by A(v) and B(v) respectively.

(A.I) (A(υx + λv2)9 v} is continuous in λ e R1 .

There exist positive constants N9 ε and a non-negative function f(t9 ω)

defined on [s, T] X Ω9 F rmeasurable for each fixed t e [s, T]9 belonging to

D([s, T] X Ω) such that for all i; 9υ
x and v2 e V9 (t9 ω) e [s9 T]X Ω are satisfied

the next statements (A.Π)-(A.IV):

- A(v2)9 u1 - v2) + Σ f t
(A.III) 2(A(v)9 v} + Σ f i i WBKvnh ^ - ε || v\\*v + f(t9 ω) + N\\ v tfH ,

* ^ f(t9 a>r2 + N\\v\\v .

Then, the next proposition has been established in [4] and [5] (The-

orem 1 in [4], Corollary IL2.1 and Theorem Π.2.2 in [5]).

PROPOSITION. Under the assumptions (A.I)-(A.IV) and given initial

data useH9 there exists a solution ut of Equation (2.1). Let u\ and u\

be solutions of Equation (2.1), then E\\\u\ — wJ|||J = 0 for each te [s9 T],

The next lemma will be used to introduce operators At and Bt in

the proof of Theorem 1. Since the proof of Lemma is elementary, it will

be omitted.
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LEMMA. Under the assumptions of Theorem 1, the following equalities

hold:

(Dβψ, (-ΐ)MafDaη)n = (afDβDaiDa* . Da»ψ, ( - l ) | α | β α D α i . . Danrj)

(2.2)
I Z_j J^χ \v

j = ί alt"'.an

X

+ £ ] 2] (baHai2 aυ«βDβDai Dα wψ, (— l ) | α |

j = ί αi, ,α»

for any ψ and ηe Wf+1(RΛ), and

(Daψ, a?v)n = (alaDaDai . -.

Xΰ f f l Dai* Z>^ D^X

/or any ψeW?+ί(Rd) and ηeW?(Rd), where the functions ba^at*'"aiiaβ and

c«iXaH...aijia have derivatiVes in x up to order k inclusive uniformly bounded

with respect to t, x, ω, a, β and aί9 a\* are the i-th components of the vectors

α", and ( , )o denotes the inner product of L2(Rd).

Now we are in position to prove Theorem 1.

Proof of Theorem 1. Put H = W?+*(JBd) and V = WΓk+\R% In order

to appeal to the Krylov-Rozovskii's result, we will introduce operators

At and Bt. Let us define as follows:

• D"η)t

l y

X DaDai

(Atψ, η) = (A'tψ, v> + (A'1 ft, V ) n + k + 1

and

(β'ψ, ^ = (σ' D D 1 i )-ψ, 2)αi D«»rj)k

+ Σ Σ (c*w"°i*taDaD*1

X £ ) « ! . . . £)«ii . . . J5«iy . . . Danη\

for any ψ and 27 in V, where α{β, baiίaί*'"aίsaβ and cβ<iβ<«#"β^ίβ are the func-

tions which appeared in Lemma.

*> The set {ii, i2, , iy} is contained in the set {1,2,3, , n}.
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Taking into consideration that the inequality

\<Atψ,V>\ £ (const. \\ψ\\v +

holds, and that n + k — 1 2> 0, we see that A(ψ, t, ω) = Atψ is a mapping

defined on V with values in F * for each (t, ω). On the other hand, we

have

\ ( B l Ψ , η ) H \ ^ c o n s t . \\f\\v\\7]\\H,

hence B^ψ, t, ω) = B*ψ is a mapping from V into fiΓ for each (t, ω).

Now, let us consider the following stochastic equation

(2.4) (ψt9 rj)H = ( r , rj)H

Equation (2.4) is equivalent to the next equation

Oh, >?)n+* = (r,ϊ).+* + £ {A^rjydτ + Ĵ  (5τψr, η)n+kdBτ

because

£ Λ-1/;, η)n+k+1dτ = £ (/τ, ^)n+fccίτ , ί e [5, Γ] and 37 e

with probability 1 under the condition ft e JΪ2

w+fc(s, T). In order to show

that Equation (2.4) has a unique solution in L2([s, T] X Ω, V) Π L2(42,

C([s, T] J5Γ)), we will make use of the above-mentioned Krylov-Rozovskii's

result.

In our case, the condition (A, I) is obvious. To check (A, Π)-(A, IV),

we will calculate the quantities (A'tψ, ψ> and Σfci llft'Ψlllr

ΣjaΏ"\jf9 ( — l ) ' α ' J _ ) α . Z ) α i JE)an'ψ\jc -\- i

X Dΐχ DΐkDaDai

^ (aa

t

βDβDri jDr*Dαi Danψ,Σ
a\ = \β

X DaDri . D r*ί)α i . . Z)αnψ)0
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where ε is an arbitrary positive number.
On the other hand, we have

|(B'ψ, τj)H\ < \(arD°D7> • D * J D " D°»ψ, D r i D>D«* D"η\\

+ Σ Σ Kc ' ^ -^-JD Zy1 D7kDai - jD- ψ,

X f l r i DΓ f tDα i J3αίi Ώaii . JDβ»9)o|

+ c,||ψ|U||9lU.

Noting the τι + k + 1 times differentiability of the coefficients a\a, we see
that the right hand side of (2.6) is not greater than

Σ \(aϊDaD71 - - DrΦai - Danψ, D71 D7*Dai . Danη\\

+ Σ Σ \(DH - - ΰ r ^ α i Da»ψ,

X caiiai*m"aiJiaDaD71 D7kDai - J5α ί i JDα^ Dan7])0\

•. D7kDaχ Z>αnψ||01|37IIJSΓ + c5 IIΨΊU WVWH

Here, || ||0 denotes the norm of the space L\Rd). Making use of Cauchy-

Schwartz-Bunjakovskii's inequality

(a + bf ^ (1 + ε)α2 + ( l + — ) δ 2 , ε > 0 ,

we have

II**ΨIIH ^ (1 + e) | |αj α ί) α ί) r i D7kDai Dαnψ||§

^ Σ II a?DaDTι .. Z)r*Z)αi . .
! l l

and hence

Σ WBM ^ Σ I
i = l \a\~l

Let ε in (2.5) and (2.7) be sufficiently small, then we get the next inequality
from (2.5), (2.7) and the assumption B) in § 1:
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(2.8) 2(M, ψ> + Σ II Bt* \\Ή ^ - δ'\\ ψ \\2y + c'
i = l

holds for any ψ in V, where δ' and c' are positive constants.

By (2.8), it is easily verified that the inequality

2</^i - Atψ2, ψ, - ψ2>(2.9)

holds for any ψ, and ψ2 in V. That is, the condition (A, Π) is verified.

Noting the inequality

and choosing a sufficiently small ε > 0, we obtain from (2.8)

Σ

Put f(t, ω) = \\ft\\2

H Taking into consideration (2.10) and

^ const. HΨIIΓ +

we can verify the conditions (A.III) and (A.IV).

Hence the Krylov-Rozovskii's result can be applied to Equation (2.4),

and we get that Equation (2.4) has a unique solution. Thus, we see that

Equation (2.4) has a solution ψ. in the space H?+k+1(s9 T).

In order to complete the proof, it is sufficient to show that any solu-

tion of Equation (2.4) is a solution of Equation (1.1). Making use of (1.2)

and Lemma, we can see that

holds with almost all (t, ω), and that

, Λ-*τj> = (Z)αψ, aa

tV)n , ψ, η € V .

Hence, replacing η by Λ~*η in Equation (2.4), we obtain that any solution

of Equation (2.4) satisfies Equation (1.1). Thus, the proof is complete.



STOCHASTIC EVOLUTION EQUATIONS 207

§ 3. Proof of Theorem 2

Proof of Theorem 2. Let ψ. be the solution of Equation (1.1) with

ft = 0. That is, ψt satisfies the equation

£ τ9 a«τV)ndBr.

Note that Λψ. with initial data Aγ satisfies Equation (0.4). Let j(t) be

smooth function such that j(s) = 0 and j(t) > 0 for t > s. Putting ut —

j(ί)ψt, we can see by Itό's formula

(ut, η)n =

Here, we know that j'ψ.eHg+Xs, T) and us = 0. Hence, by Theorem 1,

we see that u = jψt e i/2

7l+2(s, T). Repeating this argument, we get

Finally, we obtain

• • • dτh-ψ. 6 HΓι(s, T) , h = m - n - 1 .
J s J s

Thus, we see that ψ t e W^(Rd) for each (t, ω) e [s, T] X 42.

Finally, we will prove Corollary to Theorem 2.

Proof of Corollary to Theorem 2. Under the assumptions of Corollary,

we see by Theorem 2 and Proposition 2 that Equation (0.4) has a unique

solution ψm e H&s, T) satisfying ψt(x, ώ) e WΓ'\Rd) for each (t, ω) e (s, T] X

β. Put φ(s, z, t, x; ω) = (I- A)ιψt = Λιψt. Then, φ(s, z, t, x; ω) e WΓ'2n(Rd)

for each (s, z, t9 ω) as a function of x. Noting (1.2), we have

Φtbλ = (Ψt, η)t = (Λ'£φ, η)e = (Φ, η)o = ί ^(^, Z, t, x; ώ)η(x)dx .

Thus, the proof is complete.
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