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THE PRINCIPLE OF LIMITING ABSORPTION FOR
PROPAGATIVE SYSTEMS IN CRYSTAL OPTICS
WITH PERTURBATIONS OF LONG-RANGE CLASS

HIDEO TAMURA

§1. Introduction

The present paper is a continuation of [10] where we have proved the
principle of limiting absorption for uniformly propagative systems with
perturbations of long-range class. In this paper, we consider the Maxwell
equation in crystal optics as an important example of non-uniformly propa-
gative systems and, under the same assumptions on perturbations as in
[10], we prove the principle of limiting absorption for the stationary pro-
blem associated with this equation by using a way similar to that in [10].
We here restrict our consideration to a very special class of non-uniformly
propagative systems, but the method developed in this paper will be ap-
plicable to more general systems for which non-zero roots of characteristic
equations of unperturbed systems are at most double. For another works
on the spectral and scattering problems for non-uniformly propagative
systems with perturbations of short-range class, see [1], [5], [6], [7] and [8],
etc.

1.1. Notations. We first list up the notations to be used throughout
our entire discussion.

(1) We work exclusively in 3-dimensional euclidean space R with
generic point x = (x,, %, x;). R? denotes the 3-dimensional space dual to
R} and the generic point & in R? is denoted by & = (&, &, &). We further
denote by x-& the scalar product between x and &; x-& = >3, x,&,.

(2) C* denotes the k-dimensional unitary space with the usual scalar
product (,). (In this paper, the notation (,) is used only for k = 6.)

(® For a multi-index m = (m,, m,, m,;), m, being a non-negative integer,
we denote by |m| the length of m. We write 3, = (3/dx,, 9/0x,, 9/0x,), D, =
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(D,, D,, D), D, = — idfox, (i = +—1) and o7 = (8/dx,)(8/dx,)™*(d/0x;)™ for
m = (m,, my, m;). (We use the symbols m and n to denote multi-indices.)

1.2. Functional spaces. We introduce the functional spaces in which
we work. We denote by L, the Hilbert space of square integrable func-
tions over R} and introduce the space L,, with weight « by L,, = {f;
@ + |xP)**fe L} (Lyo = L,). We further define the space L{, as L{¥, = >
® L,,, ¢ summands, and the norm in this space is denoted by | [{*.

1.3. Formulation of results. We shall formulate the results to be
obtained here with several assumptions. According to Courant-Hilbert [2],

the propagative system of crystal optics in homogeneous media is described
by

(1.1) (VXH)I'—EjatEj:O, (VXE)1+/.¢atHj=O, j=1, 2,3,

where E = Y(E,, E,, E;) and H = '(H,, H,, H,) are the electric and magnetic
field vectors, respectively, while ¢;, ¢; > 0, and g, g4 > 0, are the dielectric
and magnetic permeability tensors, respectively. For simplicity, we assume
throughout this paper that g =1 and that

1.2 & > & > 6.

(The case ¢, = ¢, or ¢ = ¢ can be dealt with similarly. In particular,
when ¢, = ¢, = ¢, equation (1.1) describes a uniformly propagative system
in homogeneous isotropic media.)

Let A(D,) be the differential operator corresponding to F/ X ;

O, "‘&3, 52
A(&) = 58’ 0’ _81 °
—82, 51, 0

As is easily seen, A(§)* = — A(&), A(&)* being the adjoint of 4(¢). Equation
(1.1) can be rewritten as a symmetric hyperbolic system for u = *(e2E,,
Eé/zEzy 5:1’./2E3’ IJD H27 Hs);

(1.3) —idu = L(D,)u,
where
0, M
(1.9 L) = (__A(S)Mo_m 0 A(S)) ’ M, = {e0p}s1-1 5

3, being Krocker’s delta.
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The perturbed system associated with (1.3) which we investigate is
given in the following form:

(1.5) —id,u = L(x, D,)u ,
where

_ 0 M) " 4@ NG
09 209 = (_yeynieomern 0o )

M(x) = {e(®)}5,5-1,5 » N(x) = {pn®)}k-1,5 -

Here we make the following assumptions on M(x) and N(x):
(A.1) M(x) and N(x) are positive definite uniformly in x;
(A.2) There exists a constant §, § > 0, such that

L7 lese(®) — e8| < CA + |x)°,
(1.8) [07es(0)] < Cu(l + |22 [m[ =1

(A.3) py(x) also has the same properties as above with ¢,0;, replaced by
E

((1.8) seems to be rather restrictive, but we remark below that (1.8) with

[m| = 1 only is enough.)

Under the assumptions above, we see that the operator L = L(x, D,)
defined by (1.6) has a natural self-adjoint realization (denoted by the same
symbol L) in L{. The domain 2(L) is given by 2(L) = {u; u € L&), Lu € L{)}.
Similarly, we denote by L, the self-adjoint realization of Ly(D,) defined
by (1.4) with 2(L,).

We can now state the first result on the spectral properties of L. We
always assume that (A.1) ~ (A.3) are satisfied.

THEOREM 1.1. The eigenvalues of L are discrete with possible accumu-
lating points 0 and =+ oo.

Next, we consider the following stationary equation associated with
(1.5):

1.9) Lu— QAxiv)u=f, 0<kLl,
with fe L&, « > 1/2, 2 being the spectral parameter corresponding to the
time variable £. Clearly, if £ > 0, then there exists a unique solution u =

R(A = ir)f = (L — (2 £ ix))"'f such that ue L{,.. The second result can be
stated as follows:
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THEOREM 1.2. Assume that 2, 2% 0, is not an eigenvalue of L. Let
u = R + ix)f be the solution to equation (1.9) with fe L®, « > 1/2. Then,
the following statements hold:

(i) There exists a constant C, independent of k, 0 <k < 1, such that

[RQ@ £ inf i < CalfI% 5

(ii) There exist bounded operators R(A + i0) from L, to L., defined
by
R £ i0)f = lim R(2 % ir)f
10

strongly in L{® .

1.4. Reduction. In order to prove the results above, we make the
following reduction. By a simple transformation, equation (1.9) can be
reduced to

(1.10) Lu— QAxin)u— QX i)E@xu=f
with another fe LY, &« > 1/2, (v being also another transformed function),
where
M7 *M(x)My2, 0 )
111 E(x) = < 0 0 _ I,
( ) (%) 0, N(z) 6

I, being the 6 X 6 identity matrix. In view of (A.2) and (A.3), we see that
each component of E(x) converges to zero with order |x|™* as |x| — co and
satisfies (1.8). To prove Theorem 1.2, it is sufficient to verify a similar
result for solutions to equation (1.10).

1.5. Remark. We conclude this section by making some comments
on assumption (A.2). As stated above, (1.8) in (A.2) is weakened. It will
be easily seen that the argument used in the proof can be also applied
to the case in which the perturbation M(x) is decomposed into M(x) =
M(x) + M,(x), where M,(x) satisfies (A.2) and M,(x) is of short-range class
(i.e. M(x) satisfies (1.7) with § > 1). Thus, for M(x) satisfying (1.7) and
(1.8) with |m| = 1 only we define M,(x) as

M@ = & [ ol =)@ MO)My,  5>7>0,

x> = (1 + |x[)'®) by use of the mollifier technique. Then, we see that
M,(x) satisfies (1.8) with another 8(6 = 7) and that M(x) can be written
in the above form. A similar decomposition is made for N(x).
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§2. Unperturbed propagative system
In this section, we state several properties of the unperturbed system
L&) (defined by (1.4)) which are necessary to the future argument.

2.1. Eigenvalues. According to [2] (pp. 602 ~ 607), the eigenvalues of
Ly(&) are given as the roots of the equation

@1) 00" — ¥ + 2) =0,

where

2.2) V@ =1+ &) + G+ &)+ + 8D,
(2.3) D) = (§1 + &1 + E){(eaea) 'E1 + (e0e) 65 + (ere) 763}

Hence, for & 2 0, the matrix L&) has a zero eigenvalue with double multi-
plicity and four non-zero eigenvalues;

2.4) 2.4(8) = £V3TE) + VX©) ,
248 = +VITE) — VXE)» (=2, j=12),

where

X&) = U@y — 490
= (VK& — VEK&) — KE)(WKE + vEE) — Kg) = 0,
K =1/e,— 1/, >0, K,=1le, —1/e, <0, K,=1le,— 1/e;>0.

(The sign of K, (1 <j< 3) follows from (1.2).) Here we should note that
when & =0 and vKZ — VK& =0 (or VK¢ + vEKE =0), X(& =0.
Therefore, 2,(&) (j = 1, 2) are not smooth at such points. Summing up, we
have the following result.

LEvmma 2.1. (i) The eigenvalues of L(¢), & % 0, are enumerated so
that

21(5) = 22(5) > lo(g) =0> 2—2(&) = '2—1(‘5)

with relations 1_,&) = — A48) and 2,8) = 4,(—¢&) (j =1, 2).

(ii) 2,8 = 2(&) at & satisfying X(&) =0 and 24§ (j = 1,2) are not
smooth at such points.

(i) () + @) = YEE) + 2V0E) , 4(ONE) = VIE) .
Hence, both of 2,(¢8) + (&) and ,(&)2(&) are smooth in R: — {0}.
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(v) det (L@ — = 2 [] @ — 2,@) [] @ — 2.4@)
= B — TOF + 09) .

2.2. Slowness surface. From now on, we fix 1 so that 1> 0 (the case
2 < 0 can be treated similarly).
We define the surfaces 5,()(j = 1, 2) as

A =126 =1.

Then, a short calculation shows that the two surfaces £,(1) and £,(2)
intersect with each other at the following four points:

(2.5) P = (1\/53(51 - 52)/(51 —&), 0, ilﬁ/ez(az - 53)/(’51 — &),
Dz =(— Wefe, — &)f(e, — &), O, i1~/51(52 — &)[(e; — &) .
Lemma 2.2. () 5,2 (j=1,2), 2> 0, are bounded closed surfaces, en-

closing the origin. (ii) 5,(2) are smooth except for the four points defined
by (2.5).

2.3. Unitary matrix. From now on, we fix one of the four points
defined by (2.5) and denote it by &,. (For example, we take p,, as &.) Let
O be a small neighborhood of &, not containing the origin. We denote by
€.(8) and &,(8), &€ 0, the 2-dimensional subspaces spanned by the eigen-
vectors corresponding to 1.,(6) and 1.,(¢) and to the zero eigenvalues,
respectively. Then, we can find orthonormal bases {e/(£)},.,. which span
&.,(€) and which are smooth in @. Furthermore, it is easily seen from
definition that

(2.6) Ly(&0)e’(80) = 2(&ei (&) j=12.

Similarly, we denote by {eZ(£)};.;,. and {ej(§)};1,., £€ 0, orthonormal bases
spanning &_(¢) and &), respectively.

We define the 6 X 6 unitary matrix Uy¢), &€ @, associated with the
orthonormal bases above so that

A4,

2.7 A8) = UL U* = 0, , §€0,

where
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(@), @)
@8) A0 = (G a@)”

a{tk(e) = (Lo(é)el:c:(s) ’ ei(é)) ’ j, k= 1’ 2.

Here we should note that a?%(¢) = 0, j x &, for ¢ satisfying X(&) = 0. In
particular, at & = &,

(2.9) aX(&) = a2(&) = 2.4(&) = A.:(5) = +2.

§3. Weighted pseudo-differential operators

In this section, we introduce a class of pseudo-differential operators
and state several fundamental properties of these operators without proofs.
Roughly speaking, the class to be defined here satisfies relations dual to
the standard Hormander class S, ; ([3]).

DerFiNITION 3.1. We say that P(x, &) = {p;(x, £)};,k=16 (%, &) € RS X RE,
belongs to AJ7(4) 1 =B> ¢y =0,0 =6 + y = 0), when the following con-
ditions are satisfied:

(@) pulx, &) is smooth in R} X R} and is rapidly decreasing in & to-

gether with x-derivatives of all order;

(®) 192D, &) < Cua(l + |E)F(A + &)= for any N, N> 0 ;

© 1920:D5(x, O] < Crmn(L + )Y + [£)*™» | |m| =1,

(m, 1) = o + (m| — DB — [nly) .
(The constants § and ¢ are decaying rates of x-derivatives of zero and
first order, respectively.)

We say that a family of P(x, &;¢) with parameter e belongs to A%7(4)
uniformly in ¢, if the above constants C,, and Cy,, ., are taken inde-
pendently of e.

We now define the pseudo-differential operator P = P(x, D,) with
symbol P(x, &) e A51(¢) as follows:

Pu = (20)°* [ e*P(x, DAe)de

for u(x) = “(u(x), -- -, ulx)) e &, & being the Schwartz space of rapidly
decreasing smooth functions, where #(£) is the Fourier transform of u(x);

) = Ie“"eu(x)dx, and the integration with no domain attached is taken

over the whole space.

DerFiNiTION 3.2. We say that P(x, D,) belongs to OPAj7(4), when it
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is a pseudo-differential operator with symbol P(x, &) € As1(4).

In the future argument, we use frequently pseudo-differential operators
with symbols having compact support in &.

The next properties are fundamental to pseudo-differential operators
of class OPA%7(4). The proof of these results can be done almost in the
same way as in the Hoérmander class S, ,, so we omit it ([3], [4]).

ProposiTioN 3.1. (i) Let P(x,D,) (j=1,2) be pseudo-differential
operators of class OPA}7,(¢). Then, the product P = PP, is also a pseudo-
differential operator of class OPA%(4), where 6 = 6, + 6, and ¢ = min (g, + 65,
g, + 0), and the symbol P(x, &) is expressed as P(x, &) = P(x, £)Py(x, &) +
Q(x, §) with Q(x,8) e Aln(), p=0 — 7.

(ii) Let P(x, D,) be of class OPA%(¢). Then, P*, P* being the ad-
joint of P in L), is also a pseudo-differential operator of class OPA%"(4)
and the symbol o(P*)(x, &) is expressed as o(P*)(x, &) = P*(x, &) + Q(x, &)
with Q(x,&) e A%1(4), p =0 — y, where P*(x, &) is the adjoint matrix of
P(x, &).

Proposition 3.2. Let P(x, D,) be of class OPAS(¢). Then, P is a
bounded operator from L{, to L., for any a. Furthermore, if P(x, D,;¢)
belongs to OPA%(£) uniformly in e, then P(x, D,.;¢) is bounded uniformly.

§4. Diagonalization

4.1. Decomposition. We fix 4, 0 < 8 < 1, so that § < 5 for § in (A.2).
Let E(x) be the symmetric matrix defined by (1.11) and let e,(x) (j, k=
1,6) be each component of E(x). Then, we can make the following de-
composition: For any ¢ > 0 small enough, there exists a constant R =
R(8, ¢) such that; (i) e;(x) = e;(x;e) + é(x;¢), (ii) esnlx; e) = e(x) for |x|
> R and hence &,(x;¢) is of compact support, (iii) |es(x; )| < e(1 + |x])~°
and |97e,(x; ¢)| < eC,(1 + |x])~¢*™® for all x. We denote by E(x;e) the
symmetric matrix with components e;.(x; ¢); E(x;¢) = {e;(x; &)}; x=1,6-

We consider the following equation (see (1.10)):

4.1) Lu— QA+ ix)u — QA+ ie)E(x;e)u=f, 0<ke<l,

with fe L®, a« > 4. Our aim of this and the next sections is to reduce
(4.1) to an equation of the form like (3.1) in [10] through several steps.
To do this, we treat for the moment the equation (4.1) with £ = 0 ;

(42) Ly — u — AE(x;e)u =f
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and assume that the solution u of (4.2) belongs to L{.
From now on, we fix the constant § with the meaning ascribed here
and set ¢ = 1 + 0 (¢ is also fixed).

4.2. Localization. Let &, be the point fixed in subsection 2.3 (§, = p. ).
Let 0 be a small neighborhood of &, not containing the origin. (We fix
0 throughout the remainder.)

Let /(&) be a non-negative smooth function supported in @ such that
¥(&) = 1 in a small neighborhood of &. We let y(D,) operate on both
sides of equation (4.2) to obtain

(4.3) (Ly — 2 — 2E(x; )Y(D)u = Y(D,)f + r(x;¢) ,

where r(x;e¢) = A[V(D,), E(x;¢)]u, [,] being the commutator. By decom-
position in 4.1 and by Proposition 3.1, the pseudo-differential operator
e '2[y(D,), E(x; ¢)] belongs to OPA!:%(6) uniformly ine. Here we introduce
the following notation.

Noration 4.1. We denote by r(c) = r(x; ¢) all terms which are written
as r(e) = R(x, D,; ¢)u for the solution u of (4.2) with R(x, D,;¢) e OPA!S(6)
such that the symbol ¢'R(x, &; ¢) belongs to A?(6) uniformly in e.

According to Proposition 3.2, we see that

[r@)%., < eClul® for any v,
if ueL®.

4.3. Diagonalization. The next task is to transform (4.3) into an
equation of the diagonalized form. This transformation is made on the
basis of the lemma below (Lemma 4.1). To formulate this lemma, it is
convenient to introduce the following definition and notation.

DerinNiTION 4.1. We say that P(x, &) defined on R: X @ belongs to
Ali(e; 0), if ¢(&)P(x, &) e ALi(¢) for any smooth function ¢(§) supported in
a.

Noration 4.2. For a vector-valued function v with 6-components, we
write v = “(v,(x), v(x), v_(x)), where v,(x) = "(v.,(x), V.4(x)) and vy(x) = "(vy(x),
Un(x)). Roughly speaking, v, and v, correspond to the spaces &, and &,
introduced in subsection 2.3, respectively. For given function v, we often
write v, = [v]. and v, = [v], to denote the +-components and 0-components,
respectively.
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LemMma 4.1. Let Uy¢), £€ 0, be the unitary matrix introduced in (2.7)
and let A(&) be defined by (2.7). Set L(e) = L(x,&;2,¢) = L(x, &) — 2 —
AE(x;¢), (x,8)e R: X 0, for L(x,&) defined by (1.6). Then, for any ¢ >0
small enough, there exists a 6 X 6 matrix U(e) = U(x, &; 4, ¢) such that

UELEUE)™ = Af$) — 2+ X() + R()

in R X 0. Here U(e), X(e) = X(x,&;2,¢) and R(e) = R(x, &; 2,¢) have the
following properties:

(a) R(e) belongs to A%(6; 0);

() X(e) is of the following form:

X.0),
X(@) = 0, ,

X_(e)

where X () and Xy(s) are 2 X 2 symmetric matrices and belong to
A5(2;0);
(¢) U(e) is represented in the form
Ue) = Uy®) + Uix, &;2,¢)
with U(e) € AY%(6; 0). Furthermore, U(e) satisfies
UEU@E* = I, — Ry(x, &; 2, ¢)

with R,(e) e A%(6; 0), I, being the 6 X 6 identity matrix.
(@) e 'R(), e X.(e), e ' Xy(e), e~ Uy(e) and e 'R,(c) belong to the corre-
sponding symbol classes uniformly in e.

We have proved a result similar to Lemma 4.1 in Appendix of [9],
where Ay (&) was assumed to be diagonal. However, this lemma can be
also verified with a slight modification in exactly the same way as in [9],
so we omit the proof.

We now transform (4.3) into an equation of the diagonalized form.
Let %(£) be a non-negative smooth function supported in @ such that x(&)y(&)
= (&) for (¢) introduced at the beginning of subsection 4.2. We define
ﬁ(x, g;2,¢e)e AJY6) as l7(x,$;2, e) = y(e)U(e) with U(e) in Lemma 4.1.
Similarly, we define A,(¢), X.() and X,(c). We set

4.4) v = U(x, D,; 2, eW(D,)u .

Then, we have the next result.
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Lemma 4.2. Let X, (c) be as above and let v be defined by (4.4). Then,
v, = [ul, satisfies the equation

(4.5) (A.(D,) — AL + X.(x, D.; 3, &), = g + [rE).

with some r(c), where A,(&) is defined by A.(&) = x(&)A.(&) with A.(©)
given by (2.8) and 1, is the 2 X 2 identity matrix, while g is defined by

(4.6) g = [U(x, D.; 4, (DS, -

v_ (resp. v,) satisfies a similar equation with A,(D,) and X,() replaced by
A _(D,) and X_() (resp. 0 and X(c)).

The proof of this lemma is done by using Lemma 4.1 and by making
an easy calculation based on Propositions 3.1 and 3.2.

Here we should note that the equations for v_ and v, can be easily
treated, since the symbols of pseudo-differential operators in these equations
are invertible in a neighborhood of the support of (&) for ¢ small enough.
Thus, we consider the equation only for v, in the next sections.

§5. Transformation, I

In this and the next sections, we consider the equation (4.5) and trans-
form this into an equation of the desired form ((3.1) in [10]) through two
steps.

5.1. Change of the coordinates. We first introduce the new coordi-
nates (z,7) in R: as follows:

(6.1) T = («/I_f;& + 1/1—{163)/1/-?—-9 = (1/1—?151 - '\/Kfs)/ﬂ/K-, ==&,

where K; (1 <j < 3) are the constants defined in subsection 2.1 and K =
K, + K,, We write { = (r,7), » = (9, 7). Then, there exists a constant
unitary matrix I of size 3 X 3 such that & = II¢&. We further denote by
z= (), y=(y,), the coordinates (in R?) dual to {; z= II*x. The
unitary matrix I/ induces naturally the one to one map (denoted by the
same symbol I7);(Il¢)(z, &) = ¢(I1z, [I*¢). For notational convenience, we
denote a representation in terms of the (z,{) coordinates by the same
symbol as an original function which is represented in terms of the (x, &)
coordinates; ¢(z, {) = (II¢)(z, ¢) = ¢(I1z, II*¢) for ¢ = ¢(x,&). Clearly, II is
a unitary map from L{ to itself and the symbol class Af;i(¢) defined in
section 3 is stable under this transformation.
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5.2. Preparations. Let & be the point fixed in subsection 2.3 (&,=p, ).
Then, &, is represented in the Z-coordinates as follows: & = (z,, 0, 0). (The
explicit expression for 7, is not needed later.) We take the (fixed) small
neighborhood ¢ of & in the form 0 = J X £, where J is a small open
interval containing z, and 2(CR?) is a small neighborhood of the origin
0, 0).

We state several simple facts which will be used in the later argument.
Let (&) (=7() and O(&) (=D(2)) be defined by (2.2) and (2.3), respectively.
Then, we have

(.2) 2~ TER + 0@ = C* + jz: I e,  Ceo,

with some coefficients I";(p; 1) (0 < j < 3) smooth in £, C being a positive
constant. Furthermore, the right side of (5.2) is decomposed as

3
(5.3) o+ JZJ} I'y(p; )7

= (2* — a,(n; Dt + 0y(n; D)=* + 6,(9; Dz + G:(p; 2) ,

where all the coefficients o/y; ) and &,(»; 1) (j = 1,2) are positive and
smooth in 2. Let 7;(p;2) (j = 1,2), 7, < 7,, be the (positive) roots of the
equation

(5.4) 7 — ay(p; Ar + on; ) =0.

Then, the surfaces defined by 1,£) = 2 (j = 1,2) are represented as r =
74(y; A) in the (z, ) coordinates. Furthermore, using (iv) in Lemma 2.1 and
recalling the definition of A,(¢), we have

65 0t (A.© — D= 1— @) - 4©)
= D(, /B A — 01(77; 2)7 + 0'2(77; ), ed,

where

.t A) = CE* + a:(n; Dz + d:(n; 4)
68) Dewid) = = @ + @)

C being as in (56.2). Clearly, D(z,%; ) is positive and smooth in 0.

LEMmA 5.1. Let A, (&) (=A.Q), L0, be the 2 X 2 symmelric matrix
defined by (2.8) and let ai*(§) (=a’*(§) = al*(z,n)) (j, k= 1,2) be the (j, k)-
component of A,(§). Let 2,&) (=24(z, n)) be the positive eigenvalues of L&)
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(defined by (2.4)). Let o4p;2) (j = 1,2) be as above. Then, the following
facts hold:

(1) alz, 0) + a%(z,, 0) = 22 at & = (z,, 0, 0);

(ii) a%(z,0) = a®(z,0) = 0 for reJ;

(i) (9/9r)(Au(z0, 0) + 2u(zo, 0))>0;

@iv) a,0;2) = 2z,.

Proof. Since 24&,) =2 (j = 1,2) by definition, (i) follows from (2.9)
at once. By our choice of the (z,5) coordinates, we easily see that ,(z, 0)
= Az, 0) for zeJ. Indeed, X(¢) = 0 at such points, X(¢) being as in (2.4).
Hence, the above fact follows immediately and (ii) is also verified. Since
2,8) (j = 1,2) are positively homogeneous of degree one and since 7 is a
vector transversal to the surfaces defined by 1,(¢) = 1 (not smooth) at & =&,
(iii) is easily verified. By a simple geometric consideration, we see that
the point (2¢,, 0, 0) lies on the surface defined by = = g,(y; 1) and hence (iv)
follows at once.

5.3. The first step. The first step of transformation is based on the
following lemma.

LEmMA 5.2. Let A,(&) (= A.(©), L0, be defined by (2.8). Then, there
exist two 2 X 2 matrices S({) and B(y) such that

(6.7 SO(A.(Q —L)SQ) =, — B(p), Led,

I, being the 2 X 2 identity matrix. Here S({) and B(y) have the following
properties:

(@) S(¢) is symmetric, invertible and smooth in 0;

(b) B(y) is symmetric and smooth in 2, 0 = J X 2.

The proof of this lemma is rather long, so we give it in section 7. We
admit the validity of Lemma 5.2 for the moment and continue the trans-
formation.

Let (&) (=x(0) be the function introduced in subsection 4.3. Let w(y)
be a non-negative smooth function supported in 2 such that «()x() =
2(2). We define the symbols S(2), V(¢) and B(y) as S(©0) = x(9)S(), V() =
2@©SE©)" and E(r;) = o(y)B(y), respectively, with S(¢) and B(y) introduced
in Lemma 5.2. We further define Y,(2,; 1, ¢) as

(G Y.z 02,0 = 8(0X.(2,854,95©)
for X.(z,¢;2,¢) = X.(x, & 4, ¢) in equation (4.5). Here it should be noted
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that 17,,(2, C; A, €) is symmetric and belongs to A)%(2). We set
6.9 b, = V(Dv, = V(D)[U(z, D.; 2, (D, )u],
for the solution v, of equation (4.5). Then, we have the following result.

LemMA 5.3. Let the symbols S(0), ﬁ(y;) and Y.(z,¢;2,¢) be as above.
Let §, be defined by (5.9). Then, ¥, obeys the equation

(5.10) (D, — B(D,) + Y.(2, D,; 2,9)5, = 5(D,)g + [rE)].

with some r(e), where g is defined by (4.6).

Equation (5.10) is easily derived by letting S(D,) operate on both
sides of (4.5) and by making use of Lemma 5.2. This is the equation
obtained through the first step.

§6. Transformation, II

6.1. Symbol class. To formulate the results obtained in this section,
it is convenient to introduce the new symbol class which is a subclass
of A%1(4) defined in section 3.

DEeFInITION 6.1. We say that P(2, {) = {p(2, £);,k-1, £ = (z, 3), belongs
to Bii(4) (n=v+7r=0,1=8>7r=0), if the following conditions are
satisfied:

(@ P(z,0) e AL0);

(d) [0i0;p,(2,0)] < C(1 + [E)~7( + [z)~*~'"” for any N;

(© |079:0,pu(z, O < Ca(l + [ED~"(A + |2D~*™™, |m| = 1,

(e(m, n) = p + (m| — 1B — |n|7)
where the constants C, and C, may depend on i, n and N.

We further define Bf1(4;0), @ = J X 2, in the same way as AZi(4; 0)
was defined (Definition 4.1). In particular, we denote by Ef;;(ﬂ ; 82) the
subclass of Bf(¢; 0) such that P(z, ) = P(z,t, ) is independent of ¢, z € J;
P(z,0) = P(z,7).

6.2. The second step. We fix y so that 0 <y < ¢ and set p =0 — ¢
=146 —7r>1 (From now on, we use the constants y and p with the
meanings ascribed here.) The second step is based on the following lemma.

LemmA 6.1. Let B(p), n€ £, be as in Lemma 5.2 and let Y.() = Y.z ¢;
A, e)e AL%(2) be defined by (5.8). Then, there exist two 2 X 2 matrices P(e)
= P(2,; 2,¢) and Q) = Q(z, 7; 4, ¢) such that
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(6.1) (I + P(e)(zI, — B(77) + Y.(&O)L + P(e))
=tl, — B(p) + Q) + Re), (€0,

with some Ry(e) = Ry(2,¢;2,¢)e B(2; ). Here P(c), Q) and Rye) have
the following properties:

(a) P(e) is symmetric and belongs to By'(2; 0). Furthermore, I, + P(e)
is invertible in O for ¢ small enough.

(b) Q(e) is symmetric and belongs to 33;5(2; ).

(c) e 'Rye), ¢ 'P(e) and ¢ 'Q(e) belong to the corresponding symbol

classes uniformly in e.

The proof of this lemma is rather long, so we give it in section 8.
We admit that Lemma 6.1 is valid and proceed to the transformation.

Let #(2) and w(y) be as before. We define the symbols T'(e) = T(z, &; 4, ¢)
and W(e) = W(z, g;4,¢) as

T(e) = @)L + P(2 (5 4,6), W(e) = (O + P(z,8; 2, €)™

with P(z,C; 4, ¢) introduced in Lemma 6.1. Clearly, 7(c) and W() belong
to By1(2). We further define the symbol A(e) = A(t, y, 9; 2, ¢) as
(6.2) A(t, y,71; 2, ¢) = o()(—B(y) + Q(, ¥, 79; 4, €))
for Q) = Q(,y,7; 2, ¢) introduced in Lemma 6.1. The symbol A(e) has
the following properties:
(6.2.1) A(e) is a 2 X 2 symmetric matrix;

(6.2.2) The (j, k)-component a,(2, ¥, 7; 4, ¢) of A(e) (j, k=1, 2) has compact
support in » and satisfies the estimates
la:ajk(t’ y’ ﬂ; 2’ E)l :—-<_ CN,n(l + |77|)—N{1 + 5(1 + Izl)—(ﬁ-lnlr)} ’
|0705a5x(2, ¥, 75 2, €)] < eCy,m,n(1 + 9D "(@A + [2D7*™™»,  |m| =1,
((m, n) =0 + (m| — 1)6 — |n|y)
for any N, where the constants Cy,, and Cy,,, , are independent of e.
Next, we set
w, = W(z, D,; 2, )7,

(6.3) - - ~
= W(Z, D,; A, E)V(D,)[U(Z, Dz; 2, E)WP(Dz)uL

for U, of equation (5.10). Then, we have the following result.

LEmMA 6.2. Let A(Z, y,7; A, €) be defined by (6.2) and let w, be as above.
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Then, w, obeys the equation
6.4) ow, + 1A@R, ¥, Dy; 2, w, = ih + rye)
with some r(s), where h is defined by
©5) h=T(, D,;2,5(D.)g
(= T((z, D.; 2,)S(D)IU(z, D,; 2, )¥(D.)f1.)
for g defined by (4.6), while r(c) satisfies the estimate
(6.6) [r@Ih.. < eClull  for any v,
if the solution u to equation (4.2) belongs to L.

Equation (6.4) is derived by letting T'(z, D,; 2, ¢) operate on both sides
of equation (5.10) and by making use of Lemma 6.1. This is the desired
equation and the transformation is now completed.

Now, we return to equation (4.1) with non-zero x. We make the same
transformation as (6.3) for the solution u to this equation;

©.7) w, = W(z, D,; 2, V(DU D.; 2, H0(D.)u.. -
Then, by Lemma 6.2, w, satisfies the equation

daw, + iAQt,y, D,; 2, w, = ih + ryfe) ,
where £ is defined by (6.5) with f = f + ix(l, + E(x; ¢))u;

h =f, + isf,

fi = T(z D,;3,9S(DIU(z, D.; 2, (D1, ,

fo = T(z, D.; 2, 9S(D)U(z, D,; 2, &Iy + E(z; (Dl ,
and r,(c) satisfies the estimate of the same type as (6.6). (Throughout the
remainder, we denote by r,(), j = 1,2, - - -, all terms satisfying the estimate
of the same type as (6.6).) Since the symbols T(z,;4,¢) and S@) are

invertible in a small neighborhood of the support of ¥({), f, can be de-
composed into

fi= §(Dz)2w+ + 8 + rye)
with some rie), where g; is represented in the form

& = G(Z, Dz; 23 6)[6(39 -Dz; 2, E)III‘(D,)U«]_,,
+ T(z, D,; 2, 0S(D)[U(z, D,; 2, )E(z; e)(D.)ul.,
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with some G(z, {; 4, ¢) belonging to A{7(2) uniformly in e. Hence, by Pro-
position 3.2, g, € L and satisfies

(6.8) &l < Clulh
for C independent of e. Summing up, we have the following result.

THEOREM 6.1. Let u be the L’-solution to equation (4.1) with fe L®,
a > %. Define w, by (6.7). Then, w, satisfies the equation

(6.9) dw, + iA@, ¥, Dy; 2, w, + £S(DYw, = if, — kg, + 1)
with some re), where f, e L, is defined by
fi = T(z, D,; ,9)8(D)[U(z, D,; 2, ew(D,)f].

and g, belongs to Ly, and satisfies the estimate (6.8).

(6.9) is the basic equation corresponding to (8.1) in [10]. Once this
equation has derived, the proof of Theorems 1.1 and 1.2 is done exactly
in the same way as [10], so we omit it.

Finally, we note that an equation similar to (6.9) can be also derived
for another coordinate system (2,() close enough to (z, ().

§7. Proof of Lemma 5.2

Proof of Lemma 5.2. For notational convenience, we write A, () as

_ (@), a(0)
40= (5 b))
(@:(©) = ali(z, 9), a(0) = oz, 7), a) = a¥(z, n) = a’(z, 7).
Now, we put S(¢) and B(y) as follows:

_ (58, s(@©) _ (b(n), b()
sO=(or 50 B0=( o)

We assume that all the components of S({) and B(y) are real and hence
S(©) and B(y) are symmetric matrices. (Note that the component a() is
real.) Furthermore, for the moment, we assume that S(¢) is invertible in
0; k() = s,0)s,(0) — s(0)* % 0. We multiply both sides of (5.7) by S(@)*
from the right side and obtain

k SI(C)’ S(C) al(C) - 23 a(C)
O so)be " o)

(o =), o)

(7.1)
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We take the determinant of both sides of (7.1). Then, in view of (5.5),
it is natural to assume that

(7.2) k() = D&; ) = D(z,9; D)),
(7.3) b)) + bin) = ai(n; 2,
(7.4 b,(be(n) — b)) = ax(n; 2) ,

where D(¢; 2) is defined by (5.6) and o,(5; 4), j =1, 2, are introduced in
decomposition (5.3). Equation (7.1) becomes four homogeneous linear equa-
tions for (s,(¢), s.(£), s(¢)). Using the relations (5.5) and (7.2) ~ (7.4), we see
after a short calculation that non-trivial solutions to these linear equations
are given by

5(0) = FOfr + (a:0) — DEE; 2) — b},
50 = F(Ofr + (@) — DEC; D) — bon)}
5@) = — FQ@OEE; 2 + b)) ,

with any function F({), where we have set E((; 1) = D(C; 1)~
We now define the smooth function p(y) (o(0) = 7,), » € 2, as the (unique)
root of the equation for z;

(7.5) 2z + (a0) + a(0) — 2DE(z, 75 2) = a:(n) .

It is easily seen that equation (7.5) has the desired root. In fact, if we set
G(z, ) = 2 + (a,(§) + ax(§) — 20)E(z, ; 2) — a,(y), then it follows from Lemma
5.1 that G(zy, 0) = 0. Furthermore, using Lemma 5.1 again and recalling
the expression for D(z, »; 2) defined by (5.6), we see that (3/dz)G(z,, 0) > 0.
Thus, the implicit function theorem shows the existence of the desired root
o(p), if 2 is taken small enough.

With p(y) defined above, we now determine b,(y), b.(y) and b(y) by

bi(p) = p() + (ae(), 1) — DE(e(y), 7; 2) ,
b)) = p(p) + (ao(p), 1) — DE(e(y), 75 2) ,
b(p) = — alp(y), DE(e(), 7; ) .

Here we note that we choose the neighborhood @ = J X 2 so that p(p) € J
for e 2. If we determine b,(y) (j = 1,2) and b(y) as above, then we see
from Lemma 5.1 that b,(0) = b,(0) = 7, and b(0) = 0. Furthermore, (7.3)
and (7.4) are satisfied. Indeed, (7.3) follows from the definition of p(y) and
(7.4) is verified by making use of (7.5) and (5.5).

Next, we define £,(0), £(0) and #Q) as
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4 = {r + (@,0) — DEC; ) — b}z — o(p)) ,

t8) = {r + (a.(0) — DEE; 2) — b}z — o()) ,

H0) = — {a@EE; D) + b}z — p(7)) -
These functions are well-defined and smooth in @, which follows from the
definitions of b,(y) (j =1, 2) and b(y). Moreover, by Lemma 5.1, we have
that (%) = (&) % 0 and #(&) = 0 at & = (zy, 0,0). (In particular, #&) =0
follows from (ii) in Lemma 5.1.) Hence, H()" = ,(Q),(8) — &(¢)* > 0 in 0.

Now, we determine s$,(2), s,({) and s({) by

80) = VEG D,QHQ , (j=12), s€) = —vEC DH)/HE).

Then, s,8), s(0) and s(§) satisfy equation (7.1). (Take F(¢) = vE(; )/
(z — pNH(E) as F(£).) And s,(0)s0) — s(C) = E(C; 2) = D(; A", Hence,
(7.2) is satisfied and S(y) is invertible in ¢. Thus, we can find S(¢) and
B(yp) with properties (a) and (b) and the proof is completed.

§8. Proof of Lemma 6.1

8.1. Preparations. Let B(y), ye€ £, be the 2 X 2 symmetric matrix
introduced in Lemma 5.2. The (j,j) and (j, k), j 2= k, components of B(y)
are denoted by b,(y) (j =1, 2) and b(y), respectively. In the proof of Lemma
5.2, we have shown that

(8.1) b,(0) = b,(0) =7,, b(0)=0.
For later use, we here set
b(n) = 3o + b)), bly) = Hb.(y) — b)) .

We denote by &,(p) (j =1,2), pe &, the eigenvalues of B(p); k(p) =
ki(p) > 0. We see immediately that k,(y) = ky(y) only for » =0 and that
k,(n) are smooth in 2 except for 5 = 0. We may choose the small neigh-
borhood @ = J X 2 of &, so that k() e J for pe 2.

Let o(p) be as before. We set wy(z, 7)) = o(M{2)), (2> = (1 + [z[)'7,
where the constant M is fixed so large that the support of w,(z,7) in 3
is contained in 2 uniformly in 2. We further set w,(z,7) = 1 — w,(z, 7).

We decompose B(y) into B(p) = B(z,5) + B.(z, ), where

_ bo(’?)’ 0 [0) 5(77)’ b(?])
(8.2) Bi(z, ) = < 0, bo(’?)) + (2, 7) (b@)’ _5(,7)) ’
©  Ban=oe@)(0 ).
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We denote by A,(2, 7) (j = 1, 2) the eigenvalues of By(z,7); b, = h, > 0. As
is easily seen, Az, ) are given by

©.9) hi(z,7) = bo(n) + oz PV + b)Y,
hz, ) = by) — w2, DVb@Y + b&) ,

and h,(z, ») are smooth in R} X £.

LemMA 8.1. Let B(2,7) and By(z,7) be as above. Let hy(z,7) (j=1,2)
be the eigenvalues of B((z,7). Then, the following statements hold: (i)
Bz 1) e Bi1.(2;2), (i) Bz, 7)€ Bi.,(2;Q), (iii) hy(z 7)€ B, (1; Q).

Proof. Since b(y) = 0(5)) and b(») = O(3)) as 5| — 0 by (8.1), (i) and
(ii) follow at once. For the proof of (iii), we note that c¢,|y [ < b(p)* + b(y)
< ¢|pf', which follows from the fact that the discriminant X({) defined in
subsection 2.2 satisfies the same estimate as above as |p|— 0. Hence, (iii)
is easily verified.

LEmMmA 8.2. Let hyz,7) be as above. For given g(z2,{) = g(z,t,p) €
B1(1;0) (v = 6), it holds that:

(1) g(z h(z, 7]), 77) € Bf,‘.?(l; 2),

(il) {2z 1) — &0 bz ) DY — hulz, 1)
A similar result is also valid for hy(z,7).

First, we should note that by our choice of @ the two symbols above
are well-defined. The proof is easily done by making use of Lemma 8.1,
so we omit it.

The proof of Lemma 6.1 is done with the aid of the next lemma.

LemMA 8.3. Let By(2,() be the symmetric matrix defined by (8.2). Then,
for given symmetric matrix G(z,¢) € B1(2; 0) (v = 6), there exist two 2 X 2
symmetric matrices P(z,{) and Q(z,7) such that

(858)  P(z0(L, — B(2,0) + (cI, — Bi(2,0))P(2,0) + G(2,0) = Q(z,7)

Here P(z,{) and Q(z,7) have the following properties:

(@) P(z,0) belongs to B1(2; 0);

(b) Q(z,7) belongs to Bl1(2; ).
Furthermore, if ¢'G(z,{;¢) belongs to B°1(2;0) uniformly in e, then
¢ 'P(2,£; ¢) and e'Q(z, 1; €) also belong to the corresponding symbol classes
uniformly in e.
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8.2. Proof of Lemma 6.1. We first give the proof of Lemma 6.1, admit-
ting the validity of Lemma 8.3.

Proof of Lemma 6.1. We choose an integer K so large that Ky > 1.
We put formally P(c) and Q(c) as follows:

PO= PO, Q0=3Q0.
We write P, = @_, = I, Here we determine Pie) = Py(2,L;2,¢) Q,(e) =
Qi(z, 7; 4, ¢) to satisfy the following equations:
8.6;0)  Pfe)eL — B(z; 7)) + (L, — Bz, n))Pi(e) = — ¥,(e) + Qo) ,
Py(e)(z], — Bi(z; 7)) + (eI, — Bi(z, ))P,(e) = Q,(e)
(86:.) + 3. POBE D — TP

~ B POGCL — BE P, 1Sj<K.

Furthermore, we require P,(¢) and Q,(c) to have the following properties:

(8.7;7) Pye) is symmetric and ¢-'P,(c) belongs to B%,,(2; ®) uniformly
ineg, 0<j<K;

8.8;7) Q,(e) is symmetric and ¢'Q,(¢) belongs to B],H .2; 2) uniformly

in e.

By Lemma 8.3, we can construct P,(c) and Q,(c) satisfying (8.6;j) ~ (8.8;))
(0 £j £ K) inductively. If P,(e) and Q,(c) are determined to satisfy (8.6; )
and if P(c) and Q() are defined as above, then we have, recalling the
decomposition for B(z), that

(I, + PE)cL, — B@p) + Y. )& + P@) = cL, — B + Q@) + R,

where R,(¢) = R.(z,¢; 4, ¢) is expressed as

X

+ 33 21 POT.© — Be )Prsa®

B = 33 3 PCL — Bl 1)Prvs-i(9)

X

It is easy to see from (8.7;7) and (8.8;)) that ¢ R,(s) belongs to B:*(2; 0)
uniformly in e. Furthermore, it follows from (8.7; j) again that P,(c) = O(e)
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and hence I, + P(e) is invertible in @ for ¢ small enough. Thus, we can
construct P(s) and @Q(¢) with the desired properties (a) and (b) and the
proof is now completed.

8.3. Proof of Lemma 8.3. Finally we shall prove Lemma 8.3.

Proof of Lemma 8.3. For given G(z,{) = G(z,,7), we write

— 2g1(z7 C)’ g(z’ C)
@&0= (g(z, 0, 2 C)> ’

(For brevity, we assume that g(z, {) is real-valued.) We use the following
notations for given k(z,7) and A(z, 5):

K(z,C; k) = {8(z,7,7) — 8@z, k(z, n), )}

1
T — k(z,7)

H(z, ¢ h k) = — L

Ty K@ B~ K b )75 B

(We assume that the symbols above are well-defined.) If k(z,7) and A(z, 5)
belong to f?},;{,,,(l; ), it then follows from Lemma 8.2 that K(z,; k) and
H(z,L; h, k) belong to B.1(1;®). In a similar way, we introduce the no-
tations K,(z,; k) and Hy(z, ¢; h, k) for gz, z,9) (j =1, 2).

Now, we put P(z,{) and Q(z,5) as follows:

P = (P& pED) ) = (206E0), =z
@o=(0gs hah) Qen=(Emr 157 )

We assume that the components of P(z, £) and Q(z, 5) are real-valued and
hence P(z,¢) and Q(z,7) are symmetric matrices. Furthermore, we put
the components of B(z,75) as follows:

cl(z’ 77) = bO(’?) -+ ml(z> 77)5(77) )
ez, 7)) = by(y) — .z, PDb(y) ,
cz,9) = oz, Dbly) , (¢, + ¢, = 2b) .

Then, (8.5) becomes linear equations for (p,, p,, p);

(8.9.1) (t—c)p—cp+g=aq,
(8.9.2) c—cp—cp+8=q,
(8.9.3) 2c —b)p—cpy—cp,+8=q.

We eliminate p, and p, from the above equations to obtain
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(8.10) 20t — b){e* — (¢, + )t + cc, — ¢lp = Z(2,0) ,
where
Z(z,0) = Z(z,7,7)

= C{(T —c)g — &)+ (. — cx)(Qz - gz)}
+ @ —c)e—c)g—g).

With the eigenvalues h,(z,7) (j = 1,2) of B,(z,7) (defined by (8.4)), (8.10)
can be rewritten as

(8.11) 2(z — bz — h)(z — h)p = Z(2,0) .

As the first step, we require Z(z, {) to satisfy Z(z, b.(y), 7) = 0. This implies
that

(8.12) cq; = c{gi(b) + a, — 8/(b)} + (¢, — bo)(g — g(by)) ,

where we have set g(b,) = g(z, b,(y),n) (similarly for g,(b,),j = 1,2). (By
our choice of the neighborhood 0 = J X £, these symbols are well-defined.)
We insert the expression (8.12) for cq, into (8.11) and obtain

(8.13) 2z — h)(z — h)p = Zy(2,0) ,

where

Z(2,0) = Z(z,t,7)
= 2c(q, — &(by)) + (z — c)(g — &(bo))
— cf(z — c)Ki(2,; by) + (z — c)Ki(2, C; by}
— (e —¢)z — c)K(2,C; by) -

As in the first step, we set Z,(z, h,(z, ), 7) = 0 and obtain, using the relation
h: — (¢, + ¢)h, + c,c; = ¢?, the expression for 2cq,;

@®14)  26% = 2c8(b) — (b — c)(g — g(bo)
+ c{(h, — c)K\(h,; b)) + (b, — c)Ky(hy; by) + cK(hy; b))},

where K(h,; by) = K(z, hy(2, 1), 9; by) (similarly for K,(h,; b,), j =1,2). We
insert (8.14) into (8.13) and obtain, using the relation (z — A)(z — hy) = 7*
— (¢, + ¢))r + cc, — ¢, that

2(7" - hz p = Zz(z, C) ’
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where

Z2,8) = Z(z,7,7)
=q — &(b) — (r — h)K(z, {; by) — c{K(hy; by) + Ki(hy; by)
+ cH(z, §; hy, by) + (z — c)H (2, ¢; hy, by)
+ (¢ — c)Hy(2, §; hyy by)} .

Finally, setting Z,(z, h,(2, 1), ) = 0, we can determine ¢ in the form
(8.15) q = g(by) + ¢S(z, )

with some S(z,7) e Ef;z(l; ) and hence ge ﬁf;;(l; 2). Furthermore, com-

bining (8.15) with (8.14) and (8.12), we can determine g, and g, with the
desired properties. Thus, p = p(z, {) can be also determined and it belongs
to B!:i(1; O).

Next, we use the relation (8.9.1) to determine p,. To do this, we have
to show that

cp(z, CI(Z, 77)’ 77) + Qx(Z, 77) - gl(z, C,(Z, 77)9 77) =0.

However, this relation is readily verified by making use of (8.10). Similarly,
p. can be also determined by using the relation (8.9.2). On the other hand,
we can easily show that (8.9.3) is satisfied for (p,, p,, p) satisfying (8.9.1),
(8.9.2) and (8.10). Thus, we can construct P(z,7) and Q(z,7) with the
desired properties and the proof is now completed.
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