T. Kataoka

Nagoya Math. J.
Vol. 77 (1980), 25-31

ON THE INTEGER RING OF THE COMPOSITUM OF ALGEBRAIC NUMBER FIELDS

TOSHITAKA KATAOKA

§1. Statement of the results

Let k be an algebraic number field of finite degree. For a finite extension L / k we denote by $\mathfrak{D}_{L / k}$ the different of L / k, and by \mathfrak{D}_{L} the integer ring of L. Let K_{1} and K_{2} be finite extensions of k. It is known that we have $\Im_{K_{1} K_{2}}=\Im_{K_{1}} \mathfrak{O}_{K_{2}}$ if K_{1} and K_{2} are linearly disjoint over k and $\mathfrak{D}_{K_{1} K_{2} / k}$ $=\mathfrak{D}_{K_{1} / k} \mathfrak{D}_{K_{2} / k}$ holds (see Shimura [2], 1.2).

In this paper we compute the conductor of $\mathfrak{S}_{K_{1}} \mathfrak{D}_{K_{2}}$ with respect to $\mathfrak{D}_{K_{1} K_{2}}$ and the module index of $\mathfrak{D}_{K_{1} K_{2}}$ and $\Im_{K_{1}} \mathfrak{S}_{K_{2}}$ in terms of relevant differents and "Elements". We note that the conductor of $\mathfrak{D}_{K_{1}} \mathfrak{D}_{K_{2}}$ with respect to $O_{K_{1} K_{2}}$ is the largest ideal of $\bigoplus_{K_{1} K_{2}}$ which is contained in $\bigoplus_{K_{1}} \mathfrak{O}_{K_{2}}$. For a Dedekind domain R whose quotient field is L and R-lattices M, N of the same finite dimensional vector space over L, we denote by $[M: N]_{R}$ the module index of M and N. We note that the index [$M: N$] is the absolute norm of [$M: N]_{R}$ if L is a number field and R is its integer ring. For general properties of module indices we refer to Frölich [1]. For a finite extension L / K of algebraic number fields of finite degree and an embedding σ of L over K, we denote by e_{σ} the element with respect to σ. We recall that e_{σ} is the ideal generated by $x-x^{\sigma}, x \in \mathfrak{D}_{L}$.

We state our results.
Theorem. Let k be an algebraic number field of finite degree, and K_{1}, K_{2} its finite extensions. Then we have
(1) the conductor f of $\mathfrak{S}_{K_{1}} \mathfrak{O}_{K_{2}}$ with respect to $\mathfrak{S}_{K_{1} K_{2}}$ is $\prod_{\sigma \neq 1} e_{\sigma \mid K_{2}} \mathfrak{D}_{K_{1} K_{2} / K_{1}}^{-1}$, where σ runs through all the non-trivial embeddings of $K_{1} K_{2}$ over K_{1},
(2) $\left[\mathfrak{D}_{K_{1} K_{2}}: \mathfrak{D}_{K_{1}} \mathfrak{O}_{K_{2}}\right]_{\mathrm{O}_{L}}^{2}=\mathrm{N}_{K_{1} K_{2} / L}(\mathfrak{f})$ holds, where $L=k, K_{1}, K_{2}$.

Corollary. Let notations be as in Theorem. Then we have $\mathfrak{O}_{K_{1} K_{2}}=$ $\mathfrak{O}_{K_{1}} \mathfrak{O}_{K_{2}}$ if and only if $\mathfrak{D}_{K_{1} K_{2} / K_{1}}=\prod_{\sigma \neq 1} \mathfrak{e}_{\sigma \mid K_{2}}$ holds.

Received October 2, 1978.

We note that $\prod_{\sigma \neq 1} \mathfrak{e}_{\sigma \mid K_{2}}=\mathfrak{D}_{K_{2} / k}$ holds if K_{1} and K_{2} are linearly disjoint over k.

We shall give another description of the conductor and some examples in $\S 3$.

§2. Proofs

2.1. Proof of Theorem (1). Firstly we claim that there exists an element $z \in \mathfrak{D}_{K_{2}}$ for any prime ideal \mathfrak{p} of K_{2} such that
(i) $k(z)=K_{2}$,
(ii) the \mathfrak{P}-component of the conductor of $\mathfrak{S}_{K_{1}} \mathfrak{O}_{K_{2}}$ is that of $\mathfrak{S}_{K_{1}}[z]$ for all prime ideals $\mathfrak{\beta}$ of $K_{1} K_{2}$ above \mathfrak{p}.

We take $z \in \mathfrak{N}_{K_{2}}$ which satisfies
(iii) $\operatorname{ord}_{\mathfrak{p}} f_{z}^{\prime}(z)=\operatorname{ord}_{\mathfrak{p}} \mathfrak{D}_{K_{2} / k}$, and $\operatorname{deg} f_{z}=\left[K_{2}: k\right]$.

Here f_{z} is the minimal polynomial of z over k. We show z satisfies (ii). We recall that the conductor of $\mathfrak{S}_{k}[z]$ with respect to $\mathfrak{D}_{K_{2}}$ is $f_{z}^{\prime}(z) \mathfrak{D}_{K_{2} / k}^{-1}$, where f_{z}^{\prime} is the derivative of f_{z}. We have

$$
\begin{aligned}
\mathfrak{S}_{K_{1}}[z] & =\mathfrak{S}_{K_{1}} \mathfrak{N}_{k}[z] \supset \mathfrak{S}_{K_{1}} f_{z}^{\prime}(z) \mathfrak{D}_{K_{2} / k}^{-1} \\
& =\mathfrak{D}_{K_{1}} \mathfrak{D}_{K_{2}} f_{z}^{\prime}(z) \mathfrak{D}_{K_{2} / k}^{-1} \supset \mathfrak{f} f_{z}^{\prime}(z) \mathfrak{D}_{K_{2} / k}^{-1} .
\end{aligned}
$$

Therefore the conductor of $\mathfrak{D}_{K_{1}}[z]$ contains $\mathfrak{f} f_{z}^{\prime}(z) \mathfrak{D}_{K_{2} / k}^{-1}$. Since $\operatorname{ord}_{p} f_{z}^{\prime}(z) \mathfrak{D}_{K_{2} / k}^{-1}$ $=0$, we get the claim.

By the claim f is the greatest common divisor of the conductors of $\mathfrak{O}_{K_{1}}[z]$, where z satisfies (i) and is contained in $\mathfrak{D}_{K_{2}}$. The conductor of $\mathfrak{O}_{K_{1}}[z]$ with respect to $\mathfrak{S}_{K_{1} K_{2}}$ is $g_{z}^{\prime}(z) \mathfrak{D}_{K_{1} K_{2} / K_{1}}^{1}$, where z is an element of $\mathfrak{S}_{K_{2}}$ with (i) and g_{z} is the minimal polynomial of z over K_{1}. We show that

$$
\prod_{\sigma \neq 1} e_{\sigma \mid K_{2}}=\left(g_{z}^{\prime}(z): z \in \oint_{K_{2}}\right. \text { with (i)), }
$$

where σ runs through all the non-trivial embeddings of $K_{1} K_{2}$ over K_{1} into a finite Galois extension L over k containing $K_{1} K_{2}$. Let \mathfrak{p} be a prime ideal of K_{2}. Let z be an element of $\bigodot_{K_{2}}$ satisfying (iii). Then we have

$$
\operatorname{ord}_{\mathfrak{B}}\left(z-z^{o}\right) \geq \operatorname{ord}_{\mathfrak{B}} \mathfrak{e}_{\sigma \mid K_{2}}
$$

for all the non-trivial embeddings σ of $K_{1} K_{2}$ over K_{1} into L and all prime ideals \mathfrak{P} of L above \mathfrak{p}, and

$$
\sum_{\sigma \neq 1} \operatorname{ord}_{\mathfrak{\beta}}\left(z-z^{\sigma}\right)=\operatorname{ord}_{\mathfrak{B}} \mathfrak{D}_{K_{2} / k}=\sum_{\sigma \neq 1} \operatorname{ord}_{\mathfrak{B}} \mathfrak{e}_{\sigma}
$$

for all prime ideals \mathfrak{P} of L above \mathfrak{p}. Here the sums are taken over all
the non-trivial embeddings σ of K_{2} over k into L. Therefore we have

$$
\operatorname{ord}_{\mathfrak{B}}\left(z-z^{\sigma}\right)=\operatorname{ord}_{\mathfrak{B}} e_{\sigma \mid K_{2}}
$$

for all non-trivial embeddings σ of $K_{1} K_{2}$ over K_{1} into L and all prime ideals \mathfrak{P} of L above \mathfrak{p}. Using the decomposition $g_{z}^{\prime}(z)=\prod_{o \neq 1}\left(z-z^{\sigma}\right)$, we have

$$
\operatorname{ord}_{\mathcal{B}} g_{z}^{\prime}(z)=\operatorname{ord}_{\mathcal{B}} \prod_{\sigma \neq 1} e_{\sigma \mid K_{2}}
$$

for all prime ideals $\mathfrak{ß}$ of L above \mathfrak{p}. Thus we proved the assertion. Hence we have (1).
2.2. Proof of Theorem (2). It suffices to prove the case $L=K_{1}$. For a $\mathfrak{D}_{K_{1}}$-lattice M of $K_{1} K_{2}$ we denote by M^{*} the dual module of M with respect to $\mathrm{Tr}_{K_{1} K_{2} / K_{1}}$ We have

$$
\left[\mathfrak{D}_{K_{1} K_{2}}: \mathfrak{D}_{K_{1}} \mathfrak{D}_{K_{2}}\right]_{\nabla_{K_{1}}}^{2}=\left[\left(\mathfrak{O}_{K_{1}} \mathfrak{D}_{K_{2}}\right) *: \mathfrak{D}_{K_{1}} \mathfrak{D}_{K_{2}}\right]_{\mathfrak{D}_{K_{1}}}\left[\mathfrak{D}_{K_{1} K_{2}}^{*}: \mathfrak{D}_{K_{1} K_{2}}\right]_{D_{K_{1}}}^{-1}
$$

(see Fröhlich [1], Proposition 4, §3). Since $\mathfrak{D}_{1_{1} K_{2}}^{*}=\mathfrak{D}_{K_{1} K_{2} / K_{1}}^{-1}$,

$$
\begin{aligned}
{\left[\mathfrak{O}_{\mathcal{K}_{1} K_{2}}^{*}: \mathfrak{D}_{K_{1} K_{2}}\right]_{\mathfrak{D}_{K_{1}}} } & =\left[\mathfrak{D}_{K_{1} K_{2} / K_{1}}^{-1}: \mathfrak{D}_{K_{1} K_{2}}\right]_{\mathfrak{O}_{K_{1}}} \\
& =\mathrm{N}_{K_{1} K_{2} / K_{1}}\left(\mathfrak{D}_{K_{1} K_{2} / K_{1}}\right)
\end{aligned}
$$

holds.
From now on we compute the module index $\left[\left(\mathfrak{O}_{K_{1}} \mathfrak{O}_{K_{2}}\right)^{*}: \mathfrak{D}_{K_{1}} \mathfrak{D}_{K_{2}}\right]_{\mathrm{O}_{K_{1}}}$.
Lemma 1. Let S be a finite set of prime ideals of $K_{1} K_{2}$. Let \mathfrak{p} be a prime ideal of K_{2}. We denote by n a natural number. Then there exists an element γ of $\mathfrak{N}_{K_{1}} \mathfrak{Q}_{K_{2}}$ such that $\gamma \equiv 1\left(\bmod \mathfrak{ß}^{n}\right)$ holds for all \mathfrak{B} of S above \mathfrak{p} and $\gamma \equiv 0\left(\bmod \mathfrak{P}^{n}\right)$ for all \mathfrak{P} of S not above \mathfrak{p}.

Proof. We put

$$
S_{1}=\left\{\mathfrak{N}_{K_{1}} \mathfrak{O}_{K_{2}} \cap \mathfrak{P}: \mathfrak{B} \in S, \mathfrak{P} \mid \mathfrak{p}\right\}
$$

and

$$
S_{2}=\left\{\mathfrak{D}_{K_{1}} \mathfrak{D}_{K_{2}} \cap \mathfrak{B}: \mathfrak{P} \in S, \mathfrak{B} \nmid \mathfrak{p}\right\}
$$

Elements of $S_{1} \cup S_{2}$ are maximal ideals of $\mathfrak{O}_{K_{1}} \mathfrak{O}_{K_{2}} . \quad S_{1} \cap S_{2}=\varnothing$ holds. So by Chinese remainder theorem there exists an element γ of $\mathfrak{O}_{K_{1}} \mathfrak{O}_{K_{2}}$ such that $\gamma \equiv 1\left(\bmod \mathfrak{M}^{n}\right)$ for all $\mathfrak{M} \in S_{1}$ and $\gamma \equiv 0\left(\bmod \mathfrak{M}^{n}\right)$ for all $\mathfrak{M} \in S_{2}$ hold, which proves Lemma 1.

For a \mathfrak{D}_{k}-module M and a prime ideal p of k, we denote by $M_{p} S_{p}^{-1} M_{\text {, }}$, where S_{p} is $\mathfrak{Ð}_{k}-p$.

Lemma 2. Let p be a prime ideal of k. Then there exist $\alpha, \beta \in K_{1} K_{2}$ such that

$$
\begin{equation*}
\operatorname{ord}_{\mathfrak{\beta}} \alpha=\operatorname{ord}_{\mathfrak{B}} \beta=\operatorname{ord}_{\mathfrak{\beta}} \mathfrak{D}_{K_{1} K_{2}}\left(\mathfrak{D}_{K_{1}} \mathfrak{D}_{K_{2}}\right)^{*} \tag{1}
\end{equation*}
$$

hold for all prime ideals \mathfrak{B} of $K_{1} K_{2}$ above p,

$$
\begin{equation*}
\alpha\left(\mathfrak{S}_{K_{1}} \mathfrak{N}_{K_{2}}\right)_{p} \subset\left(\mathfrak{N}_{K_{1}} \mathfrak{N}_{K_{2}}\right)_{p}^{*} \subset \beta\left(\mathfrak{N}_{K_{1}} \mathfrak{D}_{K_{2}}\right)_{p} \tag{2}
\end{equation*}
$$

Proof. Firstly we prove the existence of α satisfying the condition. Let \mathfrak{p} be a prime ideal of K_{2} above p. Let z be an element of $\subseteq_{K_{2}}$ with (iii) in 2.1. Since the dual module of $\mathfrak{D}_{k}[z]$ with respect to $\operatorname{Tr}_{K_{2} / k}$ is $f_{z}^{\prime}(z)^{-1} פ_{k}[z]$, we have

$$
f_{z}^{\prime}(z)^{-1} Ð_{k}[z] \supset \mathfrak{D}_{\bar{K}_{2} / k}^{-1}
$$

We take $d \in \mathfrak{D}_{K_{2} / k}$ which satisfies $\operatorname{ord}_{q} d=\operatorname{ord}_{q} \mathfrak{D}_{K_{2} / k}$ for all prime ideals \mathfrak{q} of K_{2} above p. Then we have

$$
d f_{z}^{\prime}(z)^{-1} \mathfrak{L}_{k}[z]_{p} \supset \mathfrak{D}_{K_{2}, p}
$$

So we have

$$
d f_{z}^{\prime}(z)^{-1} \mathfrak{W}_{K_{1}}[z]_{p} \supset\left(\mathfrak{S}_{K_{1}} \mathfrak{O}_{K_{2}}\right)_{p}
$$

By taking dual, we get

$$
g_{z}^{\prime}(z)^{-1} d^{-1} f_{z}^{\prime}(z) \mathfrak{O}_{K_{1}}[z]_{p} \subset\left(\Im_{K_{1}} \bigodot_{K_{2}}\right)_{p}^{*}
$$

We put $\alpha_{p}=g_{z}^{\prime}(z)^{-1} d^{-1} f_{z}^{\prime}(z)$. We take γ_{p} which satisfies the conditions in Lemma 1, where S is the set of all prime ideals of $K_{1} K_{2}$ above p and n is sufficiently large. We put

$$
\alpha=\sum_{p \mid p} \alpha_{p} \gamma_{p} .
$$

α satisfies the condition of Lemma 2. In fact, for a prime ideal \mathfrak{B} of $K_{1} K_{2}$ and a prime ideal \mathfrak{p} of K_{2} with $\mathfrak{P}|\mathfrak{p}| p$, we have

$$
\operatorname{ord}_{\mathfrak{F}} \alpha=\operatorname{ord}_{\mathfrak{\beta}} \alpha_{\mathfrak{p}} \gamma_{\mathfrak{p}}=\operatorname{ord}_{\mathfrak{B}} \alpha_{\mathfrak{p}}=\operatorname{ord}_{\mathfrak{B}} \mathfrak{D}_{K_{1} K_{2}}\left(\mathfrak{D}_{K_{1}} \mathfrak{D}_{K_{2}}\right)^{*}
$$

And clearly α satisfies (2), Lemma 2.
Secondly we prove the existence of β. For a prime ideal \mathfrak{p} of K_{2} above p we take an element z of $\mathfrak{D}_{K_{2}}$ with (iii) in 2.1. We put $\beta_{\mathfrak{p}}=g_{z}^{\prime}(z)$. By taking dual of $\mathfrak{S}_{K_{1}}[z] \subset \mathfrak{O}_{K_{1}} \mathfrak{O}_{K_{2}}$, we have

$$
\beta_{p}\left(\mathfrak{D}_{K_{1}} \mathfrak{D}_{K_{2}}\right)^{*} \subset \mathfrak{O}_{K_{1}}[z] .
$$

Therefore we have

$$
\left(\mathfrak{N}_{K_{1}} \mathfrak{D}_{K_{2}}\right)^{*}\left(\sum_{p / \mathcal{P}} \beta_{p} \mathfrak{D}_{K_{1}} \mathfrak{D}_{K_{2}}\right) \subset \mathfrak{N}_{K_{1}} \mathfrak{N}_{K_{2}}
$$

For a prime ideal \mathfrak{p} of K_{2} we take γ_{p} satisfying the condition in Lemma 1 , where S is the set of all prime ideals of $K_{1} K_{2}$ above p and n is sufficiently large. We put

$$
\beta=1 / \sum_{p \mid p} \beta_{p} \gamma_{p} .
$$

β satisfies the conditions of Lemma 2. In fact, for a prime ideal $\mathfrak{\beta}$ of $K_{1} K_{2}$ and a prime ideal \mathfrak{p} of K_{2} with $\mathfrak{P}|\mathfrak{p}| p$, we have

$$
\operatorname{ord}_{\mathfrak{F}} \beta=-\operatorname{ord}_{\mathfrak{F}} \beta_{\mathfrak{p}} \gamma_{\mathfrak{p}}=-\operatorname{ord}_{\mathfrak{\beta}} \beta_{\mathfrak{p}}=\operatorname{ord}_{\mathfrak{\beta}} \mathfrak{O}_{K_{1} K_{2}}\left(\mathfrak{O}_{K_{1}} \mathfrak{O}_{K_{2}}\right)^{*}
$$

And clearly β satisfies (2), Lemma 2. Thus we proved Lemma 2.
Let p be a prime ideal of k and α, β elements of $K_{1} K_{2}$ satisfying (1), (2) in Lemma 2. Since

$$
\begin{aligned}
& {\left[\mathfrak{D}_{K_{1} K_{2}}\left(\mathfrak{O}_{K_{1}} \Im_{K_{2}}\right)_{p}^{*}: \alpha\left(\Im_{K_{1}} \mathfrak{S}_{K_{2}}\right)_{p}\right]_{\mathfrak{D}_{k, p}}} \\
& =\left[\Im_{K_{1} K_{2}}\left(\Im_{K_{1}} \mathfrak{O}_{K_{2}}\right)_{p}^{*}: \beta\left(\mathfrak{D}_{K_{1}} \mathfrak{D}_{K_{2}}\right)_{p}\right]_{\boldsymbol{D}_{k, p}} \\
& =\left[\bigoplus_{K_{1} K_{2}, p}:\left(\mathfrak{(}_{K_{1}} \mathfrak{Q}_{K_{2}}\right)_{p}\right]_{\unrhd_{k, p}} \text {, }
\end{aligned}
$$

we have

$$
\alpha\left(\mathfrak{S}_{K_{1}} \mathfrak{S}_{K_{2}}\right)_{p}=\left(\mathfrak{S}_{K_{1}} \mathfrak{S}_{K_{2}}\right)_{p}^{*}=\beta\left(\mathfrak{N}_{K_{1}} \mathfrak{S}_{K_{2}}\right)_{p}
$$

So we have

$$
\begin{aligned}
& \left(\left[\left(\mathfrak{D}_{K_{1}} \mathfrak{O}_{K_{2}}\right)^{*}: \mathfrak{O}_{K_{1}} \mathfrak{O}_{K_{2}}\right]_{\mathrm{O}_{1}}\right)_{p} \\
& =\left[\left(\bigcap_{K_{1}} \mathfrak{N}_{K_{2}}\right)_{p}^{*}:\left(\mathfrak{N}_{K_{1}} \bigcirc_{K_{2}}\right)_{p}\right]_{\mathfrak{O}_{K_{1}, p}} \\
& =\left[\alpha\left(\mathfrak{O}_{K_{1}} \mathfrak{D}_{K_{2}}\right)_{p}:\left(\mathfrak{D}_{K_{1}} \mathfrak{O}_{K_{2}}\right)_{p}\right]_{\mathfrak{D}_{K_{1}, p}} \\
& =\mathrm{N}_{K_{1} K_{2} / K_{1}}\left(\alpha^{-1}\right) \mathfrak{D}_{K_{1}, p} \\
& =\mathrm{N}_{K_{1} K_{2} / K_{1}}\left(\prod_{\sigma \neq 1} \mathrm{e}_{\sigma \mid K_{2}}\right) \mathfrak{O}_{K_{1}, p} .
\end{aligned}
$$

Hence we get

$$
\left(\left[\mathfrak{D}_{K_{1}} \mathfrak{O}_{K_{2}}\right) *: \mathfrak{O}_{K_{1}} \mathfrak{O}_{K_{2}}\right]_{\mathfrak{O}_{K_{1}}}=\mathrm{N}_{K_{1} K_{2} / K_{1}}\left(\prod_{\sigma \neq 1} \mathfrak{e}_{\sigma \mid K_{2}}\right) .
$$

§3. Examples

3.1. Let k be a number field and K its finite Galois extension with

Galois group G. Let K_{1}, K_{2} be intermediate fields of K / k. We denote by H_{1}, H_{2} the subgroups of G corresponding to K_{1}, K_{2} respectively. We define $\sum_{K_{1}, K_{2}}$, a subset of G, by $H_{1} H_{2}-H_{1}-H_{2}$, where $H_{1} H_{2}$ is $\left\{h_{1} h_{2}: h_{1} \in H_{1}, h_{2} \in H_{2}\right\}$. Then the conductor $\mathfrak{f}_{K_{1}, K_{2}}$ of $\mathfrak{D}_{K_{1}} \mathfrak{D}_{K_{2}}$ with respect to $\bigoplus_{K_{1} K_{2}}$ is $\prod_{\sigma \in \Sigma_{K_{1}, K_{2}}} \mathfrak{e}_{\sigma}$, where e_{σ} is $\left(x-x^{\sigma}: x \in \mathfrak{D}_{K}\right)$. This can be proved by fundamental properties of elements. From this fact we know that $\oint_{K_{1} K_{2}}=\mathfrak{S}_{K_{1}} \mathfrak{D}_{K_{2}}$ holds if and only if for any prime ideal \Re of K and any $\sigma \in \sum_{K_{1}, K_{2}}, \sigma$ is not contained in the inertia group of \mathfrak{P}.
3.2. We give some examples.

1. $G=\operatorname{Gal}(K / k)=\left\langle\sigma, \tau: \sigma^{2}=\tau^{2}=(\sigma \tau)^{2}=1\right\rangle$.

Let K_{1}, K_{2}, K_{3} be the fixed fields of $\langle\sigma\rangle,\langle\tau\rangle,\langle\sigma \tau\rangle$ respectively. Then we have

$$
\begin{aligned}
\sum_{K_{1}, K_{2}} & =\{\sigma \tau\} \\
\mathfrak{f}_{K_{1}, K_{2}} & =\mathfrak{e}_{\sigma \tau}=\mathfrak{D}_{K / K_{3}}
\end{aligned}
$$

$\mathfrak{S}_{K}=\mathfrak{S}_{K_{1}} \mathfrak{S}_{K_{2}}$ holds if and only if K / K_{3} is unramified.
2. $\quad G=\operatorname{Gal}(K / k)=\left\langle\sigma, \tau: \sigma^{3}=\tau^{2}=1, \tau^{-1} \sigma \tau=\sigma^{-1}\right\rangle$.

Let K_{i} be the fixed field of $\left\langle\tau \sigma^{i-1}\right\rangle(i=1,2,3)$ and M the fixed field of $\langle\sigma\rangle$. 3.2.1 $\sum_{K_{1}, K_{2}}=\{\sigma\}$,

$$
\mathfrak{f}_{K_{1}, K_{2}}=\mathfrak{e}_{\sigma}=\mathfrak{D}_{K / M}^{1 / 2} .
$$

$\mathfrak{O}_{K}=\mathfrak{D}_{K_{1}} \mathfrak{D}_{K_{2}}$ holds if and only if K / M is unramified.
3.2.2 $\sum_{K_{1}, M}=\left\{\tau \sigma, \tau \sigma^{2}\right\}$,

$$
\mathfrak{f}_{K_{1}, M}=e_{\tau o} \mathrm{e}_{\tau o \sigma^{2}}=\mathfrak{D}_{K / K_{2}} \mathfrak{D}_{K / K_{3}} .
$$

$\mathfrak{D}_{K}=\mathfrak{D}_{K_{1}} \mathfrak{D}_{M}$. holds if and only if M / k is unramified.
3. $\quad G=\operatorname{Gal}(K / k)=A_{4} \longrightarrow \operatorname{Aut}(\{a, b, c, d\})$.

We put $x=(a b)(c d), y=(a c)(b d), z=(a d)(b c), t=(a b c)$ and $H=$ $\{1, x, y, z\}$. Let $K_{1}, K_{2}, K_{3}, K_{4}$ be the fixed fields of $\langle t\rangle,\langle t x\rangle,\langle t y\rangle,\langle t z\rangle$ respectively. Let L_{1}, L_{2}, L_{3} be the fixed fields of $\langle x\rangle,\langle y\rangle,\langle z\rangle$ respectively. Let M be the fixed field of H.
3.3.1 $\sum_{K_{1}, M}=\left\{t^{2} x, t^{2} y, t^{2} z, t x, t y, t z\right\}$.

$$
\mathfrak{f}_{K_{1}, M}=\mathfrak{D}_{K / K_{2}} \mathfrak{D}_{K / K_{3}} \mathfrak{D}_{K / K_{4}}
$$

$\mathfrak{D}_{K}=\mathfrak{O}_{K_{1}} \mathfrak{D}_{M}$ holds if and only if M / k is unramified.
3.3.2 $\sum_{K_{1}, K_{2}}=\left\{x, t z, t^{2} x, z\right\}$,

$$
\mathfrak{f}_{K_{1}, K_{2}}=\mathfrak{D}_{K / L_{1}} \mathfrak{D}_{K / L_{3}} \mathfrak{D}_{K / K_{3}}^{1 / 2} \mathfrak{D}_{K / K_{4}}^{1 / 2} .
$$

$\mathfrak{O}_{K}=\mathfrak{D}_{K_{1}} \mathfrak{O}_{K_{2}}$ holds if and only if K / k is unramified.
3.3.3 $\sum_{K_{1}, L_{2}}=\left\{t^{2} y, t y\right\}$,

$$
\mathfrak{f}_{K_{1}, L_{2}}=\mathfrak{D}_{K / K_{3}}^{1 / 2} \mathfrak{D}_{K / K_{4}}^{1 / 2} .
$$

$\mathfrak{O}_{K}=\mathfrak{O}_{K_{1}} \mathfrak{O}_{L_{2}}$ holds if and only if M / k is unramified.

References

[1] A. Fröhlich, Local fields, Chapter 1 in "Algebraic Number Theory", Proceeding of the Brighton Conference, London and New York, 1967.
[2] G. Shimura, Construction of class fields and zeta functions of algebraic curves, Ann. of Math., 85 (1967), 58-159.

University of Tokyo

