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SUPER-LUKASIEWICZ IMPLICATIONAL LOGICS

YUICHI KOMORI

§ 1. Introduction

In the traditional study of Lukasiewicz propositional logic, the
finite-valued or infinite-valued linearly ordered model exists at the start,
and then the axiomatization of the set of all formulas valid in its model
are studied. On the other hand, we are in a point of view such that
the set of provable formulas is important and models are no more than
means to characterize the set.

It is known that the ^-valued Lukasiewicz implicational logic is
axiomatizable by the four axioms and that the four axioms are valid
in the m-valued Lukasiewicz implicational logic for any natural number
m (cf. [1], [2], [3]). Hence, the question arises if there exist implicational
logics (in which the four axioms are valid) other than the above logics.
In this paper, we will give the answer that there exists no implicational
logic other than the above logics.

§ 2 . Super-Lukasiewicz implicational logics

We must give the accurate definition of implicational logics to
answer the above question. By an implicational formula (C formula),
we mean a propositional formula which contains no connective other
than D.

DEFINITION 2.1. A set L of C formulas is an implicational logic
if it satisfies the following two conditions:

1) L is closed with respect to modus ponens, that is, P, P D Q e L
implies Q e L,

2) L is closed with respect to substitution for propositional vari-
ables by C formulas.

An implicational logic L is a super-Lukasiewicz implicational logic
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(SLIL) if L contains the following four formulas.

2.1 p D ? D p.

2.2 ( | ) D g ) D ( g D r ) D | 3 D r .

2.3 p V q 3 tf V p.

2.4 ( p D j ) V ( ί D p ) .

Here we use P V ζ> as the abbreviation of (P D Q) Z) Q. We as-

sociate to the right, and use the convention that D binds less strongly

than V. We denote the smallest SLIL by Lu.

§3. C algebras as models

In our former paper [1], we gave the definition of C algebras and

investigated some properties of C algebras. We borrow some definitions

and results from [1].

A C algebra is an algebra <A 1, -»> which satisfies the following

five axioms, where A is a non-empty set and 1 and —> are 0-ary and

2-ary functions on A, respectively.

3.1 l-*x = x.

3.2 x->y-*x = 1.

3.3 (x —> y) -* (y -> z) -> x -> « = 1.

3.4 & U 2/ = 1/ U a?.

3.5 (a? -> ?/) U (y -> a?) = 1.

In the above, we abbreviate (x—>y)-*y by x U y. We use the

same convention as before. We say simply that A is a C algebra,

when (A 1, —>)> is a C algebra. We denote x —> y — lhy x <*y. Then,

we can verify the following without 3.5:

3.6 x ^ 1,

3.7 x <: a?,

3.8 a? <; 2/ and y ^ 3 =£> a; ̂  z,

3.9 a? ̂  y and y ^ a; => a? = y,

3.10 ^-»7/->^ = y-^^-^^,

3.11 a? ̂  aj U y and y ^x U y,

3.12 # ̂  » and y<^z=$>x{Jy^z,

3.13 1/ -> z <£ (a; —> ̂ /) —> a? —> 3.

By 3.6-3.9, the relation <; is an order relation with the largest

element 1. By 3.11 and 3.12, x U y — sup (#,2/).

DEFINITION 3.1. Let A be a C algebra. A non-empty subset J of
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AJis a filter of A if it satisfies the following two conditions:

1) l e J ,

2) xeJ and x->y eJ ^>y eJ.

DEFINITION 3.2. Let A be a C algebra and / be a filter of A.

We define a relation ~j on A as follows:

# ~jyt=ϊ%->yeJ and y -* xeJ.

THEOREM 3.3. For any C algebra and any'filter J of A, the rela-

tion ~j is a congruence relation and A/~j is naturally a C algebra.

(A/~j is denoted by A/J.)

DEFINITION 3.4. Let A be a C algebra, x be an element of A

other than 1. A is irreducible with respect to x if x is contained

within any filter of A which contains at least an element other than 1.

A is irreducible, if there exists an element such that A is irreducible

with respect to the element or A has only one element 1.

THEOREM 3.5. [1] Any irreducible C algebra is linearly ordered.

Now, we will prove the following lemma.

LEMMA 3.6.

3.14. If x <^y, then z—> x ^ z->y and x-> z <Ξ*y —> z.

3.15. (x —> y) —> z —> y = (y —> x) —> z —> x .

3.16. (y -*x)-*y-+z = (x->y)->x-+z.
3.17. // y ^ x, then (x —> y) —> z —> y = z —* x.

3.18. If x t^V> then (y -> x) -^> y -^> z = x -> z.

Proof. By 3.3 and 3.10, we have immediately 3.14. As for 3.15,

(x-»y)-*z->y = z-*(x-+y)-*y (by 3.10)

= z -> (ι/ -> #) -> a? (by 3.4)

= (y-»x)-*z-*x (by 3.10).

By 3.5, we have (# —> y) -> # •-> « ίS ̂ / —> ». Hence, we have

(*) (x —> y) -»?/ -> x = y —> x. In 3.15, we substitute x->z and y -> z

for a? and y, respectively. Then, using 3.15, we have

(**) [(z -» a?) -> 1/ -> x] -> 1/ -> « = [(« -> a/) -> x -> y\ -> » -» «

Hence, we have



130 YUICHI KOMORI

(y->x)-^y -*z <:[(z->x)-»y->x]->(z-+x)->y -+ z (by 3.13)

= (z -> x) -> [(z -> x) -* 7/ -> x] -> 7/ -> 2 (by 3.10)

= (2 -> #) -> [(2 -* y) -> a? -»7/] -» # -* 2 (by (**))

= [(z-+y)-+x-*y]-+(z-*x)-+x->z (by 3.10)

= [ ( « - * #) -> α? -> y] -> a? -* s (by (*))

^ (a? —> y) ~> a? -> 2 (by 3.14) .

Because we get the converse inequality if we exchange x and y, we
have 3.16. 3.17 and 3.18 are immediately obtained from 3.15 and 3.16,
respectively. Q. E. D.

Let A be a C algebra. If f(P) — 1 for any assignment of A, we
say that P is valid in A. We denote the set of C formulas valid in A
by L(A). Let L and W be a SLIL and the set of all C formulas,
respectively. We define the Lindenbaum C algebra λ(L). The elements
of λ(L) is equivalence classes of determined by the equivalence relation
~L on W defined by (P ~LQ&P 3 QeL and Q Z) PeL). The func-
tions 1 and —> are defined as follows:

[P] ->[Q] = [ P 3 Q ] , 1 = [P 3 P] .

Here [P] denotes the equivalence class containing the C formula P.
λn(L) denotes the subalgebra of λ(L) generated by elements correspond-
ing to propositional variables p1?p2, ,pw. The following theorems
are easily shown.

THEOREM 3.7. For any C algebra A, L(A) is a SLIL. Conversely,
for any SLIL L, L = L(λ(L)) = Π L(λn(U).

THEOREM 3.8. If a C algebra B is a subalgebra of a C algebra A,
or B = A/J for some filter J of A, then L(B) 2 L(A).

By the next theorem, it is sufficient in many cases only if we deal
with irreducible and finitely generated C algebras.

THEOREM 3.9. For any SLIL L, there exists a set {Aλ}λeΛ of irre-
ducible and finitely generated C algebras such that L = Π L(Aλ).

xeΛ

Proof. Let P be a C formula such that P&L. Let n be the
number of different propositional variables appearing in P. Then,
P g L(λn(L)). Let / be an assignment of λn(L) such that /(P) Φ 1. Let
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J be a filter of λn(L) not containing f(P) such that for any filter K 2 /
f(P)eK. By Zorn's lemma, such a filter exists. Then, we can show
that λn(L)/J is an irreducible and ^-generated C algebra and L c
L(λn(L)/J). Therefore, for any C formula P such that P £L, there exists
an irreducible and finitely generated C algebra A such that P £ L(A) and
L cz L(A). Hence, we have the theorem. Q.E.D.

We denote the set {0, 1/m, 2/m, , (m — l)/m, 1} and the set of
all rationale in the interval [0,1] by Sm (m ^ 1) and Sω, respectively.
We define the function on Sm (1 ^ m ^ ώ) by x -> y = min (1,1 — x + y).
Then, we can regard Sm as a C algebra. Sm is the well-known
Lukasiewicz (m + l)-valued (or ^0-valued if m = ω) model. We denote
also the C algebra with only one element by SQ.

Sm is isomorphic to a subalgebra of Sn if m ^n. A finitely
generated subalgebra of Sω is isomorphic to Sm for some m < ω.
The result by Rose and Rosser [3] is that L(SJ = Lu. Hence, the fol-
lowing theorem is immediate.

THEOREM 3.10.

w = L(S0) 3 us,) a L(S2) 2 a usn) a a MSJ = n
In the above theorem, the inequalities due to the fact that

V peLGSJ and gL(STO+1), where we define (Pz))nQ as (PD)°Q = Q and

DEFINITION 3.11. Let A b e a C algebra and x be an element of A.
The order of x, denoted by ord (x), is the least integer n such that
x U (x^)ny = 1 for any element y of A. If no such integer w exists,
then ord (ίc) = ω. ord (A) defined by

ord (A) = sup {ord (x) \ x e A} .

It should be noticed that even if ord (x) < ω for any x, it is possible
that ord (A) = ω.

LEMMA 3.12. (1) If x <y ^ z, then z->x < z->y.

(2) If z <^ x < y, then y —> z < x —* «.

Proof. Suppose (2 —>?/)-> 2 —» x = 1. By 3.16, (# —> s) —> 1/ —> a = 1.
By y ^ z, y ^> x ~1. This is contradictory to x < y. Proof of (2) is
similar. Q.E.D.
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THEOREM 3.13. // ord (A) = m and A is irreducible, then A is

isomorphic to Sm.

Proof. When m equals 0 or 1, the proof is easier than others.

So we will prove it only for m >̂ 2.

Since A is irreducible, there exist a and b such that (a->)mb = 1

and (a—>)m~ιb Φ 1. We show that a is the second element from the top

element 1 and b is the least element. Suppose x is an element such

that a < x < 1. Suppose that x-> x-*b % a —>b. Since A is linearly

ordered, a->b < x-> x->b and 1 = (α —> 6) —>#->#—>& = #-> (α -+&)

—> x—>b — x—>(b -> a) —> x—> a •=. x—> x-> a, by 3.10, 3.15 and b < α.

Hence, a? <̂  a? —» α. Then, we have, by 3.14, 3.16 and a < x,

[{x -> a) ->

Therefore, we

By 3.10 and 3

(x—> a)

have w

.14, we

' —> W —> i

have

^ - * δ

VII
^ [(# —

= [ ( α -

.-> & if

• a)

> x)

we

--> #

put

- > δ ]

- δ ]

w —

—* a -

-> a-

x or

->&

t(; =

- 1 .

a.

This is contradictory to ord (A) — m.

Suppose x is an element such that x < δ. When α—># ^ δ, we

have (a->)mx <̂  (α-^)7 7 1"^ < 1. This is contradictory to ord (A) = m.

When b < a-+ x < a—>δ, we have 1 > (c& —> ^) —• δ > (α —• δ) —> δ = a.

This contradicts that α is the second element from the top.

By Lemma 3.12, we can show that

δ = (α->)mδ -> δ < (a->)m-ιb -+b < •- <(a-*b)-*b = a <b-+b = 1 .

Let x be an element such that (a->)n+1b —» δ < x < (α—>)wδ —> δ (% < m).

Then, by 3.17 and 3.18, we have

1 > x ~> (a->)n+1b -> δ > [(α-^)wδ -> δ] -> (α->)w+1δ - . δ

This contradicts that a is the second element. Hence, any element is

of the form (a-+)nb -> δ for some n <^m. And we have

= f
(k>n) .
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Hence, it is obvious that the function / defined by f((a-+)nb —> b) =
(m — ri)/m is an isomorphism from A onto Sm. Q.E.D.

THEOREM 3.14. // ord (A) = ω and A is irreducible, then A has a
subalgebra isomorphίc to Sn for any non-negative integer n.

Proof. By the hypothesis, there exist a and & in A such that
(a—>)nb Φ 1 and a Φ 1. We can, similarly to the proof of Theorem 3.13,
show that

(a->)nb -> b < (a->)n~ιb - > & < . . . < (a-+)2b - > b < a < 1 ,

and this series is a subalgebra of A isomorphic to Sn. Q.E.D.

§4. Main result

Now, we can prove the main theorem.

THEOREM 4.1. For any SLIL L, L = L(Sn) for some n <; ω.

Proof. By Theorem 3.9, there exists a set {Aλ}λeΛ of irreducible C
algebras such that L— Π L(A^). Let n be sup {ord (Aλ) \ λ e A}. By

xeΛ

Theorem 3.10, Theorem 3.13 and Theorem 3.14, we have L = L(Sn).
Q.E.D.

Lu + P denotes the SLIL obtained by adding a C formula P as an
axiom schema.

COROLLARY 4.2. For any C formula P such that PeL(Sn) and
P z L(Sn+1) in < ω), Lu + P = L(Sn).
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