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COMPLETIONS OF RINGS OF INVARIANTS AND

THEIR DIVISOR CLASS GROUPS

PHILLIP GRIFFITH

Introduction

Let k be a field and let A = Wi^Ai be a normal graded subring
of the full ring of polynomials R = k[X19 ,XJ (where R always is
graded via total degree and Ao = k). R. Fossum and the author [F-G]
observed that the completion A at the irrelevant maximal ideal of A is
isomorphic to the subring ΓL>o^ of the formal power series ring R
= k[[X19 , Xn]] and, moreover, that A is a ring of invariants of an
algebraic group whenever A is. In the aforementioned paper, the au-
thors needed to know that A remained a factorial ring in case k was
of characteristic p > 0 and A was the ring of invariants of Z/pnZ,
where the action of Z/pnZ was induced from the regular representation
on a ^-vector space of dimension pn. Having settled this question in
the affirmative, R. Fossum and the author were able to obtain many
examples of non Cohen-Macaulay, factorial domains as well as show that
the completion of M. Bertin's example [B] was also non Cohen-Macaulay
and factorial. Rather difficult computations in group cohomology were
required in order to establish the factoriality of A in these cases. In
the same vein Danilov [D] has shown using geometric arguments that,
if A is a graded ring which is generated by its 1-forms and if Proj (A)
is smooth over k, then the map of divisor class groups Cί(A) —»C£(A)
is an isomorphism provided certain cohomology groups vanish. One
negative note on the matter is that the map C£(A) -> C£(A) need not be
an isomorphism when A is a ring of invariants of derivations in posi-
tive characteristics (see [F; pp. 101,102]).

The situation we wish to discuss in this paper goes as follows. Let
V be an w-dimensional fc-vector space over an algebraically closed field
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k and suppose the linearly reductive, affine algebraic group G has a
linear representation p:G —• GL(V). This representation induces an
action of G on R = k[X19 , XJ, which preserves the natural grading
on Zϋ. So A = R° is (in this case) a finitely generated λ -algebra as well
as a graded subring of R. Our main goal is to show that the natural
map of divisor class groups Ci{A) -> C£(A) is an isomorphism. The
more general case concerning reductive groups is not yet resolved, al-
though R. Fossum has communicated some (unpublished) results in that
direction. We would like to thank M. Hochster for pointing out a mistake
in an earlier draft.

1. Some general facts about groups of units, divisor class groups and
cohomology

As a general reference for this section one may consult Fossum's
book [F Chapters IV and V]. In addition to the notation cited in our
introduction, we shall generally use Gm(B) to denote the multiplicative
group of units of a ring B, although we shall deviate from this in the
case of fields and use the usual notation of fc*. One should also recall
that the divisor class group of a normal domain B (denoted C£(B)) is
the set of isomorphism classes of divisorial (i.e. reflexive) ideals of B
together with the operation: [α] [b] == [Horn (α*,b)] = [α®b)**], where
α and b are reflexive ideals and α* = Horn (α, B). Unless otherwise
stated, all graded normal domains B will be finitely generated over Bo

= k, where k is a field.

LEMMA 1.1. Let the normal domain B be a finitely generated,
graded k-algebra and let G be a linearly reductive affine algebraic group
acting k-linearly on B. Suppose that u: G —• Gm(B) is a one-cocycle for
the induced action of G on B, that is, there is a nonzero f e B for
which g(f) = u(g)f9 for each g eG. Then there is a character χ of G
and a trivial one-cocycle v : G —»Gm(B) i.e. v(g) = ωg{ω~ι) for some fixed
ω e Gm(R)) such that

u(g) = χ(g)v(g) for g eG .

Proof. Let Ba) denote the ith graded part of B. We can write
the function u = Σ ^ o ih, where ut{g) is the homogeneous component of
u(g) in B(i). Since Bm = k and since k is G-trivial, the one cocycle
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condition on u implies that u0: G —> fc* is a character. Put χ = u0 and

set v(g) = χ~ι(g)u(g). Writing v = Σ ^ o v« as u was also written, one

may easily observe that v is a one-cocycle and that v0 = 1.

For the moment let w = Σ w< be any one-cocycle (as above) with

wQ = 1. Let n be the first positive integer such that wn ^ 0. The two

conditions w0 = 1 and w(gh) = g(w(h))w(g) give that wn(gh) = g(wn(h))

+ wn(θ)> that is, wn represents a one-cocycle in the Hochschild cohomology

group Hι(G,B(n)). However, H\G,B{n)) = 0 since G is linearly reductive

(c.f. [D-G page 194]). We therefore obtain an element z e B(n) so that

wTO(#) = — z + #0) for each g e G. Now define the trivial multiplicative

one-cocycle

ϊn): G - Gm(β)

by λ{n)(g) = (1 — z)~ιg(l — z), and further consider the new multiplicative

one cocycle wλ{n\ For geG we have the expression

Clearly the degree zero part of this expression is 1 and the terms of

degree i, i < n, are zero since wt = 0, for 0 < i < n, and degree z

= degree g(z) = n. Moreover, the term of degree n is (wn(g) + z) — g(z).

However, this term is also zero from the preceding discussion. Hence

our "new w" has at least one more positive degree term which is iden-

tically zero.

We now return to consider the one-cocycle v : G —• Gm(B). By suc-

cessively applying the above procedure, we obtain zt e B{i), for each

% > 0, and λH): G -> Gm(B) defined by λ(ί)(g) = (1 - z^'gd - zt) so that

vλa) λ(n)(g) has no nonzero positive degree terms for 0 < i < n. Clearly

the sequence of functions {λω λ{n)}n converges to w1 in the m-adic

topology (m is the irrelevant maximal ideal of B). Since degree zt — ί,

it also follows that the sequence of units (1 — Sj) (1 — zn) converges

to some unit w in B. Consequently we have that

v\g) - lim (1 - zd'ιg(X - zλ) . (1 - znY'g{l - zn)

or that v~\g) = w~ιg{w). Hence v(g) = wg(w~ι) for each geG. This

completes our proof of Lemma 1.1.

LEMMA 1.2. Assume the setting is as in Lemma 1.1 together with



74 PHILLIP GRIFFITH

the additional assumptions that G is connected and that B is factorial
(consequently B is also factorial). If f e A = BG divides a nonzero
homogeneous element in A — BG

9 then f is an associate in A of a
homogeneous element of A.

Proof. Suppose that h is a homogeneous element of A and that
/ e A is such that h = fd. Since B is factorial and since homogeneous
primes in B necessarily remain primes in B, it follows that / is an as-
sociate in B of a homogeneous element, say / = uw, where u e Gm(B)
and w is homogeneous in B. Since / is an invariant, it follows that
the orbit of w under G is finite (up to associates). Therefore, the fact
that G is connected gives that g(w) = u(g)wy where u(g) e Gm(B). One
easily checks from the multiplication that u:G-^> Gm(B) is a one-cocycle.
Moreover, since w is homogeneous, it follows that u(g) is of degree zero
for each g and hence that u is a character u:G—> fc*. After noticing
that the degree zero term of u is nonzero and invariant and that, of
course, each homogeneous component of / is invariant, then one may
observe that u is the trivial character. So g(w) — w for each g e G,
and w e A; thus u is necessarily also in A. Thus, / is an associate in
A of a homogeneous element of A.

LEMMA 1.3. Let k be an algebraically closed field and let B be a
normal domain that is also a graded k-algebra. Then there is an exact
sequence of groups

where:

a) D is a torsion free abelian group that is divisible by every
positive integer that is not divisible by the characteristic of k. (Hence,
if char k = 0, then D is a divisible group).

b) // B is factorial or if B = RG, where R = k[Tl9 , ΓJ and
G is a connected affine algebraic group acting linearly on R, then for any
nonzero homogeneous form h in B there is a natural isomorphism

D JZ+ coker (Gm(B[h~1]) -> Gm(B[h~'])) .

Proof. Since B is of finite type over a field and normal, it follows
that B is a normal local domain and that an equation of the form
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Xn — u = 0, u e Gm(B), having a solution in B necessarily has a solution
in B. Hence Gm(B) is a pure subgroup of Gm{B). Since &* is contained
in Gm(B) and since k is algebraically closed, it easily follows that all
torsion elements of Gm(B) are in &* c Gm(β). Therefore D is torsion
free. The statement in part a) concerning the divisibility of D is a
direct consequence of HenseΓs Lemma and the lifting of factorizations
from &* to B of polynomials of the type Xn — u.

In order to see part b) of Lemma 1.3, we first note that under
either hypothesis on B that, if / e B divides a nonzero homogeneous
form in B, then (from Lemma 1.2) / = uh19 where u e Gm(B) and hλ is
homogeneous in B. Hence, if / is a unit in Gm(B[h~1]), then / divides
hs for some s > 0. So from the preceding discussion we have that
/ = uhlf where u e Gm(B) and hx is a homogeneous element of B which
(necessarily) divides hs. Consequently, the coset f'Gm(B[h~1]) = u
-Gm(B[h~1]) from which it follows that the natural map D —> coker
-[Gm(B[h~1])—>Gm(B[h~1])] is an epimorphism. It is elementary to show
that this map is monic.

Remark. For k algebraically closed and B = R = k[T19 • i ,Tn]
there is an abelian group decomposition Gm(R) = fc* x D, where D
= {ueR\u = 1 modxh} and where tft denotes the completion of the
irrelevant maximal ideal. If G operates on R as described in the intro-
duction (and consequently G operates on GmiR)), then the above decom-
position is also a G-decomposition. Finally, when char k- = p > 0, then
D is a torsion free $>-adic module which is complete and separated in
the p-adic topology.

COROLLARY 1.4. Let k be an algebraically closed field and let G be
a finite group with charfc not dividing the order of G and let G act
linearly on the graded normal domain B. Let A = BG. If B is factorial
and if A —> B is separable at all prime ideals of A of height one, then
we have natural isomorphisms

H\G, fc*) = Horn (G, fc*) -^> C£(A) ~^> C£(A) .

Proof. Since the exact sequence 1 —• Gm(B) -> Gm(B) -+D-*1 is easily
seen to be a G-exact sequence and since G is finite with D torsion free
and divisible by every prime dividing |G|, it follows that H*(G,D) = 0



76 PHILLIP GRIFFITH

for all i > 0 and that H°(G, Gm(B)) -> H°(G, D) is an epimorphism. So

> HKG,Gm(B))

is an isomorphism. Moreover, Gm(B) = &* and, of course, G acts triv-

ially on fc*. Hence Galois descent and the commutative diagram

CZA =—>

give the remaining conclusions. The isomorphisms of the divisor class

groups of A and A with the respective cohomology groups is a conse-

quence of separability at prime ideals of height one (c.f. [F page 82]).

In the remaining results of this section, we show the importance

of jB-divisorial ideals that are generated by homogeneous elements of B

in examining the map CZB —> CZB.

LEMMA 1.5. Let B be a graded normal domain over the field k.

If p is a prime ideal of B and if q is the B-ideal, which is generated

by all homogeneous elements of p, then q is a prime ideal in B as well

as being the completion of the prime ideal q Π B.

Proof. Since q has a generating set from B, it is clear that

q = B (g)B (q Π B). Moreover, since q Π B is a graded ideal q Π B = a

= Ii ί>o ai &n(ϊ since the product topology on graded modules agrees with

the irrelevant maximal ideal topology (c.f. [EGA II, 2.1, 6 (vi)]), it follows

that q = a= Uί>oaί' Now suppose that s,teB and that s-teq. But

then the homogeneous components of s t are in q. Then using the same

elementary argument as in [F page 41], we see that one of s or t has

all of its components in q. Thus, by completeness of q, it now follows

t h a t seq o r teq.

As a consequence of this observation, we obtain a criterion for the

divisor class group map C£(B) —> C£(B) to be a bisection.

COROLLARY 1.6. Let k be a field and B a normal domain which is

a graded k-algebra. Then there is an exact sequence

0 -> C£(B) -> Ctφ) -> Pic OS"1 B) — 0 ,

where S denotes the multiplicative semigroup of all nonzero homogeneous
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elements of B.

Proof. Suppose that some isomorphism class of an element in Cί(B)
contains a divisorial ideal α with α Π S Φ φ. From Lemma 1.5, it fol-
lows that each prime ideal of height one in B which contains α is the
completion of a homogeneous prime ideal from B. So α = p[ei) Π Π p{

t

et\
where each fo is in the image of the map CίB -> CίB. Thus, α must
also be in the image of this map. It now follows that there is an exact
sequence

0 -> CίB -> CίB -> Cί(S~ιB) -> 0 .

But Cί(S~ιB) ^ Pic (S-'B), since S-'B is necessarily locally regular.
(Recall that B -> B has regular fibers and that all prime ideals in
Spec (S"1^) contract to regular prime ideals in B).

We now wish to rid ourselves of the apparant problem of separa-
bility in Corollary 1.4.

PROPOSITION 1.7. Let k be an algebraically closed field and let G
be a finite group with \G\ not divisible by charfe. Let B be a graded
normal domain over k and suppose that G acts linearly on B. Let A
= BG. Suppose B satisfies:

i) Blhϊ1] is a UFD for some nonzero homogeneous element hx in B.
ii) The natural map coker [Gm(B) -> Gm(B)] -> coker [Gm(B[h~1])

—> GmiBlh'1])] is an isomorphism for any nonzero homogeneous element
h in B. Then the natural map Cί(A) —> Cί(A) is an isomorphism. (See
Lemma 1.3 (b) for situations in which part (ii) of the hypothesis is
satisfied).

Proof. If ^ in part (i) is not in A we replace hx by its norm with
respect to the action of G on J5, i.e., we may assume that hx e A. Since
A is a graded subring of B, the different is a homogeneous ideal and,
moreover, its completion is the different for the ring extension A —» B.
Hence there is a homogeneous element h2 in A so that Alhϊ1] —> Blh^1]
and Alh^1] —> Blh^1] are separable extensions at prime ideals of height
one. Now let h = hxh2. Then both ring extensions A[h~ι] -• B[h~*] and
A[h~ι] —> B[h~ι] are separable at prime ideals of height one, and both
Blh'1] and Blh'1] are factorial. From Galois descent we have the nat-
ural isomorphisms Cί(A[h~1]) ~^> Hι(G9 Gm(B[h^])). Our assumption of
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part (ii) above and the argument in Corollary 1.4 now give that the

map Cΰ(A[h~1]) —> Cέ(Ά[h~1]) is an isomorphism (because the cohomology

groups are isomorphic as in the proof of Corollary 1.4). Therefore we

obtain the following commutative diagram

0 > K > Cί(A) • CSiAlh-1]) • 0

1 I ϊι
0 > K1 > CS(A) • CS(A[h~1]) > 0

where K and K1 are generated by those classes in C£(A) and Cΰ(A),

respectively, that have a representative containing h. But Lemma 1.5

and Corollary 1.6 give that K—>Kι is an isomorphism and consequently

that C£(A) —> C£(A) is an isomorphism.

2. The main theorems

We first need to introduce some further notation and definitions.

Let G be an affine, linearly reductive algebraic group and consider a

linear representation p:G-+GL(n,k). We denote by X(G) the character

group of G, that is, the morphisms χ : G —»fc*. In this situation we

have the induced action of G on R = k[X19 , Xn] and R° is a finitely

generated, normal fc-algebra. We set Vx = {f eR\g(f) = χ(g)f}, that is,

the gemi invariants of R of weight χ. Because the action of G on R

preserves the grading on R, it follows that Vχ is a graded A = RG-

module. Moreover, if Vχ = {f e R \ g(f) = χ(g)f}, one may easily observe

that Vχ = Vχ ®A A, since the action of G preserves the homogeneous

components of R. Consequently, Vχ Φ 0 if and only if Ϋχ Φ 0. If Vχ

Φ 0 and if / is a nonzero element of Vzf then we say that χ occurs

for the representation p if and only if both Vx and Vχ_1 are non-

zero. We denote by X(p, G) the set of characters of G that occur for

the representation p. Finally, we note that the preceding discussion

remains valid when R is replaced by a normal domain B, which is a

finitely generated graded fc-algebra and where the action of G is linear

on B.

LEMMA 2.1. Let k be a field and let B be a graded k-algebra that

is a normal domain. We assume that B is generated over k by its

forms of degree one. Suppose the linearly reductive group G acts

linearly on B, that is, the action of G is induced by a representation
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p:G-+ GL(V), where V denotes the vector space of forms of degree one.
Put A = BG.

( i ) If χ occurs for p, then Vχ is isomorphic to an ideal of A.
Similarity, Vχ is isomorphic to an ideal of A.

(ii) X(p; G) is a subgroup of X(G).
(iii) If f yds Vx are both nonzero, then the map φ:BG Π (fB)-+BG

Π (dB) defined by φ(r) = (d/f)r is an A — BG-isomorphism. Moreover,
this statement remains true when A and B are replaced by their respec-
tive completions.

Proof. Suppose that χ occurs for p and let / be a nonzero element
of Vx_1. Then the A-homomorphism f^ffx gives an embedding of
Vx into A. So (i) is established. Part (iii) is elementary. In regard
to statement ii), the preceding discussion shows that χ occurs for p if
and only if χ"1 occurs. Moreover, it is elementary that X(p G) is closed
under products. Thus X(p; G) is a subgroup of X(G).

LEMMA 2.2. Let the notation and hypothesis be the same as in
Lemma 2.1. In addition, assume that G is connected and that B is a
factorial domain.

a). Let p be a prime ideal of height one in BG = A. Then there
is a principal prime f e B so that p = BG Π (fB).

b). For f as in part a), there is a 1-cocycle u:G-+Gm(B) such that
g(f) = U(g)f for geG.

Proof. Let S = BG - p. One easily checks that (S-'B)0 = (BG\ and
that S^B is faithfully flat over the discrete valuation ring (BG)P. Con-
sequently, there is a prime element f e B (recall that B is factorial)
such that p = BG ΓΊ (fB). This establishes part a). Since / necessarily
divides an invariant, it follows that the orbit of / under G is finite
(up to associates). Since G is connected, we have that g(f) = u(g)f,
where u(g) e Gm(B) for each geG. Finally, one easily checks that u(gh)
= g(uQι))u(g) for each g, h in G, that is, u:G-+ Gm(B) is a 1-cocycle.

The following theorem due to A. Magid [M] is essential in the proof
of our main result.

THEOREM 2.3 (A. Magid). Let R be an affine normal domain over
k and let G be a connected algebraic group over k acting rationally on
R. If C£(R) is finitely generated, then C£(RG) is also.
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PROPOSITION 2.4. Let B be a normal domain that is finitely gen-
erated and graded over k, and assume that B and B are factorial. We
assume B is generated by its one-forms). Suppose the connected, linear-
ly reductive group G is acting linearly on B through a representation
p on the one-forms of B. Put A = BG. Then the natural map C£(A)
—> C£(A) is an isomorphism.

Proof. Let p be a prime ideal of height one in A. By Corollary
1.6, in order to demonstrate that p is in the image of the map C£(A)
—> C£(A) it suffices to show that p is A isomorphic to a reflexive A-
ideal that contains a nonzero homogeneous element of A.

Recalling Lemma 2.2, we obtain an element f e B such that p = A
Π fB and such that g(f) = u(g)f, for g e G, where u: G -> Gm(B) is a
one-cocycle. By Lemma 1.1, there is a character χ:G->&* and a unit
we B such that g(f) = χ(g)wg(w~1f) for # e G. Setting /x = w/ we ob-
tain that p = A ΓΊ /jβ and that g(fλ) = χ(g)fι, for each # e G. Since p
^ 0 it follows that F z and Vχ_1 are both nonzero, that is, χeX(p G).
An easy consequence of the fact that G preserves the grading on B is
that there are nonzero homogeneous elements b and c in B such that
g(b) = χ(g)b and #(c) = χ~\g)c, for # e G. By Lemma 2.1 (iii), there is
an A-isomorphism (noting p = A Π fB)p -* A Π bB = α, and from above
α contains the homogeneous element &c in A.

We now establish our main result.

THEOREM 2.5. Let k be an algebraically closed field and let G be a
linearly reductive, affine algebraic group acting linearly on R — k[T19 ,
ΓJ through a representation p on the one-forms of R. Put A = RG.
Then the natural map C£(A) —> C£(A) is an isomorphism.

Proof. Let G° denote the connected component of G and let B — RG\
By Proposition 2.4, the natural map C£(B) —> C£(B) is an isomorphism.
Moreover, A = BH, where H is a finite group acting linearly on the
graded normal domain B with the property that char (k) does not divide
the order of H. Since A is a graded subring of the graded ring B
and since C£(β) ^ C£(B) is a finitely generated group by Theorem 2.3,
one can find a nonzero homogeneous form / e A such that Blf'1] and
B[f~ι1 are factorial (here we use the fact that the finite generating set

of homogeneous primes for C£(B) -^> C£(B) have nontrivial contrac-
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tion in A) and such that At/*"1] -> B[f~ι] and At/-1] -> B[f~ι] are sepa-

rable ring extensions. Thus by Lemma 1.3 (b) and Proposition 1.7, our

result is established.

Remark. We would like to note here that Theorem 2.5 remains

true if one replaces R = k[T19 , Tn] by a finitely generated, normal

domain B graded over k with the properties that B (and hence also B)

is factorial and Lemma 1.3 (b) is statisfied.

One case that still remains unsettled is that of a finite group G

acting linearly on k[Tlf , Tn] = R under the assumption that char k

= p divides |G|. If u:G^Gm{R) is a one cocycle in Hι(G,Gm(R)) of

order prime to p> it is possible to show that u(g) = χ(g)v(g) where χ is

a character and v(g) = wg(w~ι) for w e Gm(#). One uses the same

technique as in Lemma 1.1, since the cohomology groups H\G,R{i)) are

necessarily p-groups. One may deduce from this fact (as in Corollary

1.4 and Proposition 1.7) that it suffices to demonstrate that the p-com-

ponent of Hι(G,Gm(R)) is zero. However, since the p-component of

Hι(G,Gm(R)) is naturally an epimorphic image of Hι(Gp,Gm(R)), where

Gp denotes the Sylow p-subgroup of G, it suffices to show that

Hι(G, Gm(R)) — 0 when G is a p-group. Since G has a normal series

with Z/pZ as the factors, one can obtain the desired result if one can

show that Hι(Z/pZ, Gm(B)) = 0 under the assumption that B satisfies :

1) B is a normal graded subring of R = k[Tlf , Tn] such that R

is a finite integral extension of B.

2) B and B are factorial.

3) Z/pZ acts linearly on B.

Special cases of this result were settled in the affirmative in [F-G] where

the action of Z/pnZ on the one-forms of k[Tί9 , Tpn] = R was via

the regular representation of Z/pnZ on a fc-vector space of dimension

pn. The technique in [F-G] centered around an inverse limit argument

after having computed the G-module structure on R{ί) and the cohomology

groups Hι(G, R(i)) (which need not be zero in this case). To suggest that

the general problem is not completely trivial, we point out that Ex-

ample 17.13 [F page 102,103] (see also Danilov [D]) shows that the nat-

ural map C£(RG) —> C£(ίϊG) is not in general an isomorphism when one

replaces the G-action by that of derivations acting on R.
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