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COMPLETIONS OF RINGS OF INVARIANTS AND
THEIR DIVISOR CLASS GROUPS

PHILLIP GRIFFITH

Introduction
Let k£ be a field and let A = [][;0A; be a normal graded subring
of the full ring of polynomials R = k[X,, ---,X,] (where R always is

graded via total degree and A, = k). R. Fossum and the author [F-G]
observed that the completion A at the irrelevant maximal ideal of A is
isomorphic to the subring [[;»,A4; of the formal power series ring R
= kl[X,, -+, X,]] and, moreover, that A is a ring of invariants of an
algebraic group whenever A is. In the aforementioned paper, the au-
thors needed to know that A remained a factorial ring in case k was
of characteristic p > 0 and A was the ring of invariants of Z/p"Z,
where the action of Z/p"Z was induced from the regular representation
on a k-vector space of dimension p®. Having settled this question in
the affirmative, R. Fossum and the author were able to obtain many
examples of non Cohen-Macaulay, factorial domains as well as show that
the completion of M. Bertin’s example [B] was also non Cohen-Macaulay
and factorial. Rather difficult computations in group cohomology were
required in order to establish the factoriality of A in these cases. In
the same vein Danilov [D] has shown using geometric arguments that,
if A is a graded ring which is generated by its 1-forms and if Proj (A4)
is smooth over %, then the map of divisor class groups C/(4) — CZ(A)
is an isomorphism provided certain cohomology groups vanish. One
negative note on the matter is that the map C4(4) — Ce(/i) need not be
an isomorphism when A is a ring of invariants of derivations in posi-
tive characteristics (see [F; pp. 101, 102]).

The situation we wish to discuss in this paper goes as follows. Let
V be an n-dimensional k-vector space over an algebraically closed field
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k and suppose the linearly reductive, affine algebraic group G has a
linear representation p:G — GL(V). This representation induces an
action of G on R = k[X,, ---,X,], which preserves the natural grading
on R. So A = R¢ is (in this case) a finitely generated k-algebra as well
as a graded subring of B. Our main goal is to show that the natural
map of divisor class groups Cé(4) — C4(A) is an isomorphism. The
more general case concerning reductive groups is not yet resolved, al-
though R. Fossum has communicated some (unpublished) results in that
direction. We would like to thank M. Hochster for pointing out a mistake
in an earlier draft.

1. Some general facts about groups of units, divisor class groups and
cohomology

As a general reference for this section one may consult Fossum’s
book [F; Chapters IV and V]. In addition to the notation cited in our
introduction, we shall generally use G,(B) to denote the multiplicative
group of units of a ring B, although we shall deviate from this in the
case of fields and use the usual notation of k*. One should also recall
that the divisor class group of a normal domain B (denoted C/4(B)) is
the set of isomorphism classes of divisorial (i.e. reflexive) ideals of B
together with the operation: [a].[b] = [Hom (a*,b)] = [a ® b)**], where
a and b are reflexive ideals and a* = Hom (a,B). Unless otherwise
stated, all graded normal domains B will be finitely generated over B,
=k, where k& is a field.

LEMMA 1.1. Let the normal domain B be a finitely generated,
graded k-algebra and let G be a linearly reductive affine algebraic group
acting k-linearly on B. Suppose that u: G — Gn(B) is a one-cocycle for
the induced action of G on B, that is, there is a nonzero feB for
which 9(f) = w(g)f, for each ge G. Then there is a character y of G
and o trivial one-cocycle v:G — Gn(B) i.e. v(g) = wg(w™) for some fixed
o € Gn(R)) such that

u(g) = x(9)v(9) for geG .

Proof. Let B denote the ith graded part of B. We can write
the function u = >, %;, where u,(9) is the homogeneous component of
u(9) in B;. Since B, = k and since k is G-trivial, the one cocycle
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condition on % implies that u,: G — k* is a character. Put y = 4, and
set v(g) = y N (Qul(g). Writing v = 3,5, v; as u was also written, one
may easily observe that v is a one-cocycle and that », = 1.

For the moment let w = > w; be any one-cocycle (as above) with
w,=1. Let n be the first positive integer such that w, = 0. The two
conditions w, =1 and w(gh) = gw(W)w(g) give that w,(gh) = g(w,(h))
+ w,(g), that is, w, represents a one-cocycle in the Hochschild cohomology
group H'(G, B,,,). However, H'(G, B,,) = 0 since G is linearly reductive
(c.f. [D-G; page 194]). We therefore obtain an element z¢ B, so that
w,(9) = —2z + g(2) for each ge G. Now define the trivial multiplicative
one-cocycle

A G — G, (B)

by 1%(9) = 1 — 2)"'g(1 — 2), and further consider the new multiplicative
one cocycle wi™. For ge G we have the expression

wA™(g) = QS w(P2)9(1 — 2) .

Clearly the degree zero part of this expression is 1 and the terms of
degree 1, ¢t <mn, are zero since w, =0, for 0<¢<mn, and degree 2
= degree g(z) = n. Moreover, the term of degree n is (w,(9) + 2) — 9(2).
However, this term is also zero from the preceding discussion. Hence
our “new w” has at least one more positive degree term which is iden-
tically zero.

We now return to consider the one-cocycle v: G — Gm(ﬁ’). By suec-
cessively applying the above procedure, we obtain z,e€ B, for each
i>0, and 1?: G — G,(B) defined by 19(g) = (1 — 2 'g( — 2z,) so that
AP ... 1™ (g) has no nonzero positive degree terms for 0 < ¢ < n. Clearly
the sequence of functions {2% ... 2™}, converges to ™' in the m-adic
topology (m is the irrelevant maximal ideal of B). Since degree z;, =1,
it also follows that the sequence of units 1 —2) -.- (1 — 2,) converges
to some unit w in B. Consequently we have that

vHg) =limA~-2)"9g01 —2) - 1 —2,)"91 —2,)

or that v~'(g) = w'g(w). Hence v(9) = wg(w™?) for each ge G. This
completes our proof of Lemma 1.1.

LEMMA 1.2. Assume the setting is as in Lemma 1.1 together with
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the additional assumptions that G is connected and that B is factorial
(consequently B is also factorial). If fe A = B® divides a monzero
homogeneous element in A = B®, then f is an associate in A of a
homogeneous element of A.

Proof. Suppose that h is a homogeneous element of A and that
fe A is such that h = fd. Since B is factorial and since homogeneous
primes in B necessarily remain primes in B, it follows that f is an as-
sociate in B of a homogeneous element, say f = uw, where ue¢ Gm(é)
and w is homogeneous in B. Since f is an invariant, it follows that
the orbit of w under G is finite (up to associates). Therefore, the fact
that G is connected gives that g(w) = u(g)w, where u(g) € G,(B). One
easily checks from the multiplication that «:G — G, (B) is a one-cocycle.
Moreover, since w is homogeneous, it follows that u(g) is of degree zero
for each g and hence that « is a character u:G — k*. After noticing
that the degree zero term of % is nonzero and invariant and that, of
course, each homogeneous component of f is invariant, then one may
observe that u is the trivial character. So g(w) = w for each geG,
and we A; thus u is necessarily also in A. Thus, f is an associate in
A of a homogeneous element of A.

LEMMA 1.3. Let k be an algebraically closed field and let B be a
normal domain that is also a graded k-algebra. Then there is an exact
sequence of groups

1-G,B)— G, (B)—D—1
where :

a) D is a torsion free abelian group that is divisible by every
positive integer that is not divisible by the characteristic of k. (Hence,
if chark = 0, then D is a divisible group).

b) If B is factorial or if B = R®, where R = k[T, ---,T,] and
G is a connected affine algebraic group acting linearly on R, then for any
nonzero homogeneous form h in B there is a natural isomorphism

D -5 coker (G,(BIE™]) — G, (BIL™)) .

Proof. Since B is of finite type over a field and normal, it follows
that B is a normal local domain and that an equation of the form
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X* —u =0,ueG,(B), having a solution in B necessarily has a solution
in B. Hence G, (B) is a pure subgroup of Gm(ﬁ). Since k* is contained
in G,(B) and since k is algebraically closed, it easily follows that all
torsion elements of Gm(f?) are in k* < G(B). Therefore D is torsion
free. The statement in part a) concerning the divisibility of D is a
direct consequence of Hensel’s Lemma and the lifting of factorizations
from k* to B of polynomials of the type X — u.

In order to see part b) of Lemma 1.3, we first note that under
either hypothesis on B that, if fe B divides a nonzero homogeneous
form in B, then (from Lemma 1.2) f = uh,, where ue¢ Gm(é) and h, is
homogeneous in B. Hence, if f is a unit in G,(B[A™)), then f divides
h* for some s> 0. So from the preceding discussion we have that
f = uh,, where ue G,(B) and h, is a homogeneous element of B which
(necessarily) divides #°. Consequently, the coset f-G,.(B[r'D) =u
-Go(BI[R™']) from which it follows that the natural map D — coker
(G (BIh]) — G.(BIL~'D] is an epimorphism. It is elementary to show
that this map is monic.

Remark. For k algebraically closed and B = R = k[T, ---,T,]
there is an abelian group decomposition G,(R) = k* x D, where D
={ueR|u=1modh} and where # denotes the completion of the
irrelevant maximal ideal. If G operates on R as described in the intro-
duction (and consequently G operates on G,(R)), then the above decom-
position is also a G-decomposition. Finally, when char k = p > 0, then
D is a torsion free p-adic module which is complete and separated in
the p-adic topology.

COROLLARY 1.4. Let k be an algebraically closed field and let G be
a finite group with char k not dividing the order of G and let G act
linearly on the graded normal domain B. Let A = B®. If Bis factorial
and if A — B is separable at all prime ideals of A of height one, then
we have natural isomorphisms

HY(G, k*) = Hom (G, k*) —> C4(A) —> C4(4) .

Proof. Since the exact sequence 1— G, (B) — Gm(é) — D —1 is easily
seen to be a G-exact sequence and since G is finite with D torsion free
and divisible by every prime dividing |G|, it follows that H!G,D) =0
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for all ¢ > 0 and that HYG, G.(B)) — HYG, D) is an epimorphism. So
H'(G, Gu(B)) — H'(G, Gn(B)

is an isomorphism. Moreover, G,(B) = k* and, of course, G acts triv-
ially on k*. Hence Galois descent and the commutative diagram

ClA = ClA

Il !

HYG, G.(B) —> HYG, G,(B)

give the remaining conclusions. The isomorphisms of the divisor class
groups of A and A with the respective cohomology groups is a conse-
quence of separability at prime ideals of height one (c.f. [F; page 82]).

In the remaining results of this section, we show the importance
of B-divisorial ideals that are generated by homogeneous elements of B
in examining the map C¢B — C¢B.

LEMMA 1.5. Let B be a graded normal domain over the field k.
If v is a prime ideal of B and if q s the E’-ideal, which is generated
by all homogeneous elements of p, then q is a prime ideal in B as well
as being the completion of the prime ideal q N B.

Proof. Since q has a generating set from B, it is clear that
q= B®;5 (g N B). Moreover, since ¢ N B is a graded ideal qN B=a
= |]i0 @; and since the product topology on graded modules agrees with
the irrelevant maximal ideal topology (c.f. [EGA 11, 2.1, 6 (vi)]), it follows
that q = a = [[i;s0a;- Now suppose that s, te B and that s-teq. But
then the homogeneous components of s-¢ are in q. Then using the same
elementary argument as in [F'; page 41], we see that one of s or ¢ has
all of its components in q. Thus, by completeness of g, it now follows
that seq or teq.

As a consequence of this observation, we obtain a criterion for the
divisor class group map C{4(B) — C¢(B) to be a bijection.

COROLLARY 1.6. Let k be a field and B a normal domain which 1is
o graded k-algebra. Then there is an exact sequence

0 — C4(B) — C4(B) — Pic (S B) — 0,

where S denotes the multiplicative semigroup of all nonzero homogeneous
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elements of B.

Proof. Suppose that some isomorphism class of an element in C¢(B)
contains a divisorial ideal a with a N S 3= ¢. From Lemma 1.5, it fol-
lows that each prime ideal of height one in B which contains a is the
completion of a homogeneous prime ideal from B. Soa=pF> N ... N pler,
where each p, is in the image of the map C/B — C¢B. Thus, a must
also be in the image of this map. It now follows that there is an exact
sequence

0— C¢B — CtB — CiS-'B)—0.

But C4(S-'B) = Pic (S-'B), since S~'B is necessarily locally regular.
(Recall that B — B has regular fibers and that all prime ideals in
Spec (S—'B) contract to regular prime ideals in B).

We now wish to rid ourselves of the apparant problem of separa-
bility in Corollary 1.4.

PROPOSITION 1.7. Let k be an algebraically closed field and let G
be a finite group with |G| not divisible by char k. Let B be a graded
normal domain over k and suppose that G acts linearly on B. Let A
= B¢, Suppose B satisfies:

i) BlhiY is @ UFD for some nonzero homogeneous element h, in B.

ii) The natural map coker [G,(B) — Gm(é)] — coker [G,.(B[r™'])
— G (BIR™D)] is an isomorphism for any monzero homogeneous element
h in B. Then the natural map Cé(A)—»CZ(A) is an isomorphism. (See
Lemma 1.3 (b) for situations in which part (ii) of the hypothesis is
satisfied).

Proof. If h, in part (i) is not in A we replace 7, by its norm with
respect to the action of G on B, i.e., we may assume that 7, ¢ 4. Since
A is a graded subring of B, the different is a homogeneous ideal and,
moreover, its completion is the different for the ring extension A - B.
Hence there is a homogeneous element k2, in A so that A[k;'] — Blh;']
and A[h;l] — é[h;‘] are separable extensions at prime ideals of height
one. Now let h = hh,. Then both ring extensions A[r~']— Bl[h™!] and
A[h'1 — B[h~'] are separable at prime ideals of height one, and both
BIk~'] and B[] are factorial. From Galois descent we have the nat-

ural isomorphisms CUA[L™]) —> HYG, G(Blh']). Our assumption of



8 PHILLIP GRIFFITH

part (ii) above and the argument in Corollary 1.4 now give that the
map CU(A[R']) — Ce(A[RD) is an isomorphism (because the cohomology
groups are isomorphic as in the proof of Corollary 1.4). Therefore we
obtain the following commutative diagram

0—> K —> Cl(A) —> CUAL[R') —> 0

| 2

0—>K'— > Cl(A) —> CL(A[h™]) —> 0

where K and K' are generated by those classes in C4(4) and C4(A),
respectively, that have a representative containing #. But Lemma 1.5
and Corollary 1.6 give that K — K' is an isomorphism and consequently
that C4(A) — C¢(A) is an isomorphism.

2. The main theorems

We first need to introduce some further notation and definitions.
Let G be an affine, linearly reductive algebraic group and consider a
linear representation p: G — GL(n,k). We denote by X(G) the character
group of @G, that is, the morphisms y: G — k*. In this situation we
have the induced action of G on R = k[X,,---,X,] and R? is a finitely
generated, normal k-algebra. We set V, = {f e R|g(f) = x(9)f}, that is,
the demi invariants of B of weight y. Because the action of G on R
preserves the grading on R, it follows that V, is a graded A = R¢-
module. Moreover, if V, = {f ¢ R|g(f) = x(9)f}, one may easily observe
that 171 =V,®, A, since the action of G preserves the homogeneous
components of B. Consequently, V,= 0 if and only if 17, *#0. IfV,
# 0 and if f is a nonzero element of V,, then we say that y occurs
for the representation p if and only if both V, and V,_, are non-
zero. We denote by X(p, G) the set of characters of G that occur for
the representation p. Finally, we note that the preceding discussion
remains valid when R is replaced by a normal domain B, which is a
finitely generated graded k-algebra and where the action of G is linear
on B.

LEMMA 2.1. Let k be a field and let B be a graded k-algebra that
18 a normal domain. We assume that B is generated over k by its
forms of degree one. Suppose the linearly reductive group G acts
linearly on B, that is, the action of G is induced by a representation
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p:G— GL(V), where V denotes the vector space of forms of degree one.
Put A = B°.

(i) If yx occurs for p, then V, is isomorphic to an ideal of A.
Similarily, V, is isomorphic to an ideal of A.

(ii) X(p; @) is a subgroup of X(G).

(i) If f,deV, are both nonzero, then the map ¢:B° N (fB)— B
N (dB) defined by ¢(r) = (d/f)r is an A = BP-isomorphism. Moreover,
this statement remains true when A and B are replaced by their respec-
tive completions.

Proof. Suppose that y occurs for p and let f be a nonzero element
of V,_,,. Then the A-homomorphism f — ff, gives an embedding of
V, into A. So (i) is established. Part (iii) is elementary. In regard
to statement ii), the preceding discussion shows that y occurs for p if
and only if 7' occurs. Moreover, it is elementary that X(p; G)is closed
under products. Thus X(p; @) is a subgroup of X(G).

LEMMA 2.2. Let the notation and hypothesis be the same as in
Lemma 2.1. In addition, assume that G is connected and that B is a
factorial domain.

a). Let p be a prime ideal of height one in B¢ = A. Then there
is a principal prime fe B so that p = B¢ N (fB).

b). For f as in part a), there is ¢ l-cocycle u: G — G, (B) such that
9(f) =u(9)f for geQG.

Proof. Let S = B% —p. One easily checks that (S~'B)¢ = (B¢), and
that S~'B is faithfully flat over the discrete valuation ring (B%),. Con-
sequently, there is a prime element fe B (recall that B is factorial)
such that p = B¢ N (fB). This establishes part a). Since f necessarily
divides an invariant, it follows that the orbit of f under G is finite
(up to associates). Since G is connected, we have that g(f) = u(9)f,
where u(g) € G.(B) for each g e G. Finally, one easily checks that u(gh)
= g(u(h)u(g) for each g, h in G, that is, u: G — G.(B) is a 1l-cocycle.

The following theorem due to A. Magid [M] is essential in the proof
of our main result.

THEOREM 2.3 (A. Magid). Let R be an affine normal domain over
k and let G be a connected algebraic group over k acting rationally on
R. If CUR) s finitely generated, then CL(R®) is also.
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PROPOSITION 2.4. Let B be a normal domain that is finitely gen-
erated and graded over k, and assume that B and B are factorial. We
assume B is generated by its one-forms). Suppose the connected, linear-
ly reductive group G is acting linearly on B through a representation
o on the one-forms of B. Put A = B®. Then the natural map C{(A)
- CeA) is an isomorphism.

Proof. Let p be a prime ideal of height one in A. By Corollary
1.6, in order to demonstrate that p is in the image of the map C4(A)
— C4(A) it suffices to show that p is A isomorphic to a reflexive A-
ideal that contains a nonzero homogeneous element of A.

Recalling Lemma 2.2, we obtain an element fe B such that p= A
n fé and such that g(f) = w(g)f, for ge G, where u: G — G.(B) is a
one-cocycle. By Lemma 1.1, there is a character y: G — k* and a unit
w e B such that 9(f) = y(@wglwf) for g G. Setting f, = wf we ob-
tain that p = A N £,B and that g(f) = x(9)f,, for each geG. Since p
# 0 it follows that V, and V,_, are both nonzero, that is, y € X(p; G).
An easy consequence of the fact that G preserves the grading on B is
that there are nonzero homogeneous elements b and ¢ in B such that
9(0) = x(9)b and g(c) = y~(9)¢, for g G. By Lemma 2.1 (iii), there is
an A-isomorphism (noting p = A N fB)p— A N bB = q, and from above
a contains the homogeneous element bc in A.

We now establish our main result.

THEOREM 2.5. Let k& be an algebraically closed field and let G be a
linearly reductive, affine algebraic group acting linearly on R = k[T, ---,
T,] through a representation p on the one-forms of R. Put A = RE°.
Then the natural map CE(A) — CL(4) is an isomorphism.

Proof. Let G° denote the connected component of G and let B = R%’.
By Proposition 2.4, the natural map C4(B) — C¢(B) is an isomorphism.
Moreover, A = B¥, where H is a finite group acting linearly on the
graded normal domain B with the property that char (k) does not divide
the order of H. Since A is a graded subring of the graded ring B
and since Cé¢(B) = Cﬂ(é) is a finitely generated group by Theorem 2.3,
one can find a nonzero homogeneous form fe A such that B[f!] and
Bl 71 are factorial (here we use the fact that the finite generating set

of homogeneous primes for C4(B) —> C¢(B) have nontrivial contrac-
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tion in A) and such that A[f'] — B[f"'] and /i[f“l] — E[f”] are sepa-
rable ring extensions. Thus by Lemma 1.3 (b) and Proposition 1.7, our
result is established.

Remark. We would like to note here that Theorem 2.5 remains
true if one replaces R = k[T, ---,T,] by a finitely generated, normal
domain B graded over k& with the properties that B (and hence also B)
is factorial and Lemma 1.3 (b) is statisfied.

One case that still remains unsettled is that of a finite group G
acting linearly on k[T, ---,T,] = R under the assumption that chark
=p divides |G|. If u:G — G,(R) is a one cocycle in HXG, G.(R)) of
order prime to p, it is possible to show that w(g) = x(¢)v(g) where y is
a character and v(g) = wg(w™) for weG,(B). One uses the same
technique as in Lemma 1.1, since the cohomology groups HY(G, R ) are
necessarily p-groups. One may deduce from this fact (as in Corollary
1.4 and Proposition 1.7) that it suffices to demonstrate that the p-com-
ponent of H'G,G.(R)) is zero. However, since the p-component of
H'(G, G,(R)) is naturally an epimorphic image of H'(G,, G.(R)), where
G, denotes the Sylow p-subgroup of G, it suffices to show that
HY(G,G,(R)) =0 when G is a p-group. Since G has a normal series
with Z/pZ as the factors, one can obtain the desired result if one can
show that H'(Z/pZ, Gm(é)) = 0 under the assumption that B satisfies:

1) B is a normal graded subring of R = k[T, ---,T,] such that R
is a finite integral extension of B.

2) B and B are factorial.

3) Z/pZ acts linearly on B.

Special cases of this result were settled in the affirmative in [F-G] where
the action of Z/p"Z on the one-forms of x[T,---,T,.] =R was via
the regular representation of Z/p"Z on a k-vector space of dimension
p™. The technique in [F-G] centered around an inverse limit argument
after having computed the G-module structure on R, and the cohomology
groups H'(G, R ,) (which need not be zero in this case). To suggest that
the general problem is not completely trivial, we point out that Ex-
ample 17.13 [F'; page 102,103] (see also Danilov [D]) shows that the nat-
ural map C4(R®) — C¢(R%) is not in general an isomorphism when one
replaces the G-action by that of derivations acting on R.
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