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FOURIER-EISENSTEIN TRANSFORM AND

PLANCHEREL FORMULA

FOR RATIONAL BINARY QUADRATIC FORMS
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§ 0. Introduction

0.1. Let X be the space of nondegenerate rational symmetric matrices of size

2 and put

G = {g e GL2(Q) I det g > 0} and Γ = SL2(Z).

The group G acts on X by

g * x = (detg)~ ι'gx ιg.

We are interested in the space ^(ΓXX) of Γ-invariant C-valued functions on X

and its subspace s2(Γ\X) of functions whose supports consist of a finite number

of /""-orbits. The Hecke algebra ffl(G, Γ) of G with respect to Tracts naturally on

these spaces.

For an x e X, let K = Q(/— det J : ) or Q θ Q according as ~άetx^

(Q x) 2 or €= (Qx)2. Take a positive rational number r such that rx is primitive
half-integral and let \{x) be the conductor of rx. For any positive integer/ denote
by Θ) the group of units with positive norm of the order of conductor / of K. We

define the Eisenstein series (zeta functions of binary quadratic forms) on X by

ΣE(x; Si, s2) ~
detx

where μ(x) — \.Θ\\U](X)\ . As a function of x, the series E(x; 5i, s2) is in

^°°(Γ\X) and will turn out to be a X(G, Γ)-eigenfunction.

The purpose of the present paper is analysing the structure of s£(Γ\X) as

X(G, Γ)-module through an integral transform with kernel function E(x; 5i, 52),

which we call the Fourier-Eisenstein transform.
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0.2. Let K = Q Θ Q or a quadratic number field and D — Dκ the discrimi-

nant of K. We understand that D = 1 if K = Q Θ Q. For r e Q, r > 0, we put

άetx= -^

and, if Z) < 0, we further put

r2D
XD,Y — (x ̂  X\ det x = T—, .r is positive definite},

1^", = teel| det x = T—, x is negative definite}.

Then the G-orbit decomposition of Xis given by

I = [ U U ΛiJ U (U U (Xί, U ̂ :r) 1.
r>0 r>0

This yields the decomposition

sS(Γ\X) = f θ Θ J&(Γ\XD.r) ] θ ί θ Θ ω(Γ\Z^r) ®d(Γ\Xϊ.r)) }
r>0 r>0

into direct sum of $C(G, Γ)-submodules. Here we denote by ώ(Γ\Xi$) the sub-

space of JS(Γ\X) consisting of functions whose supports are contained in Xffi.

For a fixed D > 0 (resp. D < 0), all ^ ( Γ \ Z ^ ) (resp. jS(Γ\X£r)) (r e Q,

r > 0) are isomorphic $C(G, Γ) -modules. Therefore it suffices to consider

d(Γ\X), where X = Xz)(1 or Z ^ .

Let 3£pr be the set of all primitive characters of the narrow ideal class groups

of (not necessarily maximal) orders of K. Then we can define an orthogonal family

of projections {pχ | χ e Xpr} of the tf(G,Γ)-module J ( Γ \ X ) and we have the

direct sum decomposition

(0.1) d(Γ\X) = Θ d(Γ\X)x,

w h e r e ^ ( Γ \ Z ) χ = px(d(Γ\X)).

Let

m = C [2' + 2"', 3' + 3-',. ..,/>' + / Γ ' , . . . ] ,

where /) runs over all rational primes. Define a homomorphism : X(G,Γ) —* SR

by

)^ = 1, T(/>, 1)Λ = P1/2(pf + p~f) for any rational prime />,

whereT(p,p) and T(/>, 1) are the characteristic functions of /"(£ . ) Γ and
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^\0 1/ ^' r e s P e c ^ v e ^y We consider the ring 9ϊ as an ffl(G, Γ) -module through

this homomorphism. Then our main result (Theorem 3) is as follows:

THEOREM, (i) For φ e s&(Γ\X)x, put

Fχ(φ)(t)=aχ{ Σ φ

where L{χ\ s) is the Hecke L-function attached to the class character χ and aχ is a

normalizing constant. Then Fχ(φ) (t) is contained in 9Ϊ and the mapping

is an isomorphism of#l(G, Γ) -modules.

(ii) We have an #C(G, F)-module isomorphism

where 3 is the ideal of#£(G, Γ) generated by

{T{p, p) — \\p\ rational primes}.

We define a structure of pre-Hilbert space on s£(F\X)χ via the inner pro-

duct

= Σ
x<=Γ\X

Σ μ(x)φ(x)φ(x).

Let L2(Γ\X)χ be the completion of d(F\X)χ. Moreover we construct a Hubert

space £\ which is a completion of 9Ϊ with respect to an explicitly given inner

product ( , ) χ and prove that the mapping Fχ can be extended to an isometry of

L2(F\X) onto £χ (Theorem 4). This result may be considered as the Plancherel

formula for the (normalized) Fourier-Eisenstein transform Fx.

An explicit form of the inverse transformation of Fx follows quite easily from

the Plancherel formula (Theorem 5). Furthermore, using the main theorem, we can

determine all tf(G, F)-eigenfunctions in ^°°(F\X) (Theorem 6).

0.3. Let K be a real quadratic field. Then the set K — Q can naturally be

identified with the space X = XDΛ, where D is the discriminant of K. The action

of G on K — Q is given by linear fractional transformation. Arakawa [A] and Lu

[Lu] constructed certain ffl(G, F) -eigenfunctions by arithmetic means. In §5, we

shall dicuss these eigenfunctions from our point of view.
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0.4. In [Ml] and [M2], Mautner took up the same problem for positive

definite forms and obtained the decomposition (0.1). He further noted that

$?(G, .Γ)-eigenfunctions are products of local eigenfunctions. Our investigation

can be viewed as a development of his work. We complete his results with the

Plancherel formula, an explicit formula for eigenfunctions, the relation between

eigenfunctions and zeta functions of binary quadratic forms, and a generalization

to the case of indefinite forms.

0.5. In [SH], we have defined Eisenstein series and Fourier-Eisenstein trans-

forms for reductive symmetric spaces and showed that analogous results can be

obtained at least for the symmetric spaces GL(n) x GL(ή)/Δ(GL(ή)), GL(2n)

/Sp(n) and GL{m + n)/GL(m) X GL(ή). Thus it is quite natural to expect that

the results in the present paper will turn out to be one of the simplest examples of

a general phenomenon.

ACKNOWLEDGEMENT. We would like to express our gratitude to T. Arakawa

for his helpful comments on the material in §5. A part of this work was done

while the second author was staying in Gόttingen under the support of the SFB

170.

§ 1. Function spaces and the invariant measure on the set of rational

binary quadratic forms

1.1. Let

X = {g e GL2(Q) \tg = g) and G = GLJ(Q) = {g e GL2(Q) | det g > 0).

The group G acts on X by

g * x = (det g)~1'gxtg.

Put Γ = SL2(Z) and consider the following function spaces:

= iφ : X-* C | φ(γ * x) = φ(x), for every γ e Γ),

JS(Γ\X) = {φ e <r°(Γ\X) | φ = 0 outside a finite union of Γ-orbits},

r ° ( Γ \ F ) = {φ e ^°°(Γ\X) | Supp φ a F},

sS(Γ\Y) = iφ^ sS(Γ\X)

where Y is a G-stable subset of X. Denote by chrgr (g e G) the characteristic

function of the double coset ΓgΓ. As usual, the Hecke algebra X(G, Γ) of G with

respect to Γ is defined to be the C-vector space spanned by ichΓgr I g e G) with



HARMONIC ANALYSIS FOR BINARY QUADRATIC FORMS 1 2 5

product

chΓgr'chΓhΓ = Σ mkchΓkr,
ΓkΓe=Γ\G/Γ

where

mk = # {(t\ ) I gih, e kΓ] ,ΓgΓ= LJ &Λ ΓhΓ = U AyΓ.
! j

Here we use the symbol LJ to indicate disjoint union. We define an action of

W{G,Γ) on <f(Γ\X) by

{chrtr * φ){x) = Σ φ(gfι * J?). where />Γ = LJ gtΓ.

Then, for any G-stable subset Y, the spaces i?°°(/A F) and J ^ ( , Γ \ F ) are

^ ( G , Γ)-submodules of #°°(Γ\ΛΓ).

Our aim is to determine the # ( G , .Γ)-module structure of JS(Γ\X). For the

discriminant D of a quadratic field or Q and r G Q, r > 0, put

if D > 0,

J¥ί r = {x ^ X\άetx= - r2 D/4, x is positive definite} if D < 0,

XβtY = {x e X | det x = - r2 Z)/4, x is negative definite} if D < 0.

Then G acts on these subsets transitively and we get the orbit decomposition

I = ( U U XD,} U ( U U (xD

+,r LJ XΪ,)},
lD>0 r e Q J ιD<0 r e Q J

r>0 r>0

and the direct sum decomposition

JS(Γ\X) = [ θ Θ d(Γ\XD,)} θ ί θ Θ (s&(Γ\X&r)®Λ(Γ\X£r))}
lZ)>0 r€ΞQ J lZ><0 r e Q J
[
lZ)>0 r € Ξ Q Q

r>0 r>0

as * ( G , Γ)-module. Since XD,r = {rx | x e X^J for D > 0 and X ^ = {+ rx

I x G X^J for Z) < 0, we have the following isomorphisms of X(G, Γ) -modules:

β ( r \ ω - J ( Λ Zz),i) Φ > o),

^ (Γ\ Z^ r) - J (Γ\ JKi) (D < 0).

Hence it suffices to consider only d(Γ\XDΛ) (D > 0) and JS(Γ\XΪΛ) (D < 0).

1.2. In the following, we always fix the discriminant D of a quadratic field

or Q and put X = XDΛ (resp. XJfl) if D > 0 (resp. 2) < 0). We also put

K = KD =

We define the norm N : K-+ Q by

Q Θ Q i f Z ) = l

Q ( / D ) i f D ^ l .
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N(x) =
\x\Xi if D = 1 and x = (xu x2)

[NK/Q(X) UDΦ1.

Let P be the set of rational primes. We define Dirichlet characters χ# and χκ,f

with / ^ N a s follows: for p <

Xκ(p) =

Xκ(P) =

Xκj(p) =

P,

1 if >̂ splits in K

- 1 if /> is inert in K if D Φ 1,

0 if ?̂ ramifies in if

X#(/>) if,

0 if j

For each natural number/, let Of be the Z-order in if of conductor/ i.e.

{(x, y) (ΞZ2\x=y (mod /)} if D = 1

and let

= ef\N(x) = 1}.n =
We have used the symbol [α, ^J to denote the Z-lattice in K with Z-basis {a, β}.

For simplicity, we write Θ = ΰ, and 0 1 = Θ\.

For an 0/-ideal α, we define its norm by Nf(a) — Wf : α]. Then , for α £ 0/,

we have Nf(a0f) =\N(a) |.

A full Z-lattice α in 0 is called an 6/-proper ideal if {x ^ K\ ax Q a} = Of.

Let // be the multiplicative semigroup of all ^/-proper ideals. As usual, we write

α ~ b if b = ax for some x ^ K with JV(x) > 0. Then the narrow ideal class

group Clf is defined by C// — If/ ~ . We denote by /*/ the order of C//. It is

known that the class number h/ is given explicitly by

(1.1)
-_Jhκ_

[ϋ1 : 0}] *ι/
Π (1 - XK(P)P~1),

where /*# = ^i (cf. [L, Chapter 8, Theorem 7], for example). For D = 1, it is easy

to see that

/ / = {[(w, mf), (0,/ί)] \n, t > 0, 0 < m < / , (/, m) = 1, w - wf(mod/)}

and
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Now we recall the correspondence between the set of ideal classes and the set

of equivalence classes of primitive binary quadratic forms. For S> T ^ X, we say

that S and T are equivalent and write S ~ T if T — γ * S for some γ e Γ. Put

a 6/2 \

6/2 c )
a, b, c e Z , ( α , 6 , c ) = 1, b2 - 4ac = f 2 D \ .

Then

X _ I I 1 x^pr 1 γvr _ I 1

- U 7 Λ / , 7 A, - -y
/ e N J J J

L^pr
V

We say that x is 0/ conductor f iί x ^ ~? XJτ. If D — 1, a complete set of repre-

sentatives of X / r / ~ can be chosen as

m f/2

0 0 <m < / , (/", w) = 1 .

Then, as is well known, there is a bijective correspondence between Xfr/~ and

C// induced by

i ί D = 1 '

a 6/2
6/2 c

J if ΰ ^ 1,

By this bijection we identify the both sets and use the following notation to indi-

cate the corresponding classes:

Clf

[S] [as]

[α].

If Γ e l f , S ε ^ r and / | / l f then αΓα5 is an

^/-proper ideal. We denote by

T -X- S €= X/Γ the matrix corresponding to ctrCts, which is determined up to

/^-equivalence.

1.3. We recall the definition of the completions of G and X (cf. [SH]). Let

Γ (n) be the principal congruence subgroup of level n €= N:
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Γ(ή) = {γ^Γ\γ

We define the completions G and X of G and X, respectively, by

G = lim G/Γ(n) and X = lim Γ(n)/X.

n n

Then G is a locally compact totally disconnected unimodular topological group and

X is a locally compact totally disconnected topological space. Since the action of G

on X is uniquely extended to a continuous action of G on X, we use the same sym-

bol * to denote the extended action.

We may identify G with the closure of G in GL2(A/), where A/ = Π^ Qp, the

finite part of the adele ring of Q. In the present case, since the group SL2 satisfies

the strong approximation theorem, we have

G = ig e GL2(Af) I det g e Q, det g > 0).

We denote by Γ the closure of Γ in G. Then we get natural bijective corres-

pondences between Γ\X and Γ\X, and between Γ\G/Γ and Γ\G/Γ, so we

may identify r ° (Γ\X) with

JS(Γ\X) with

d(Γ\X) = {̂  e ^ ( f \1) I φ : compactly supported}

and ^ ( G , Γ) with

«P(r r\ - \f r-^n / compactly supported,

[ f(raγ2) = fix) (ϊu Ϊ2 e Π

We normalize the Haar measure rf^ on G by \^dg— 1. Then the multiplica-

tion of 3ίf(G, Z1) can be expressed as

(Λ Λ) (A) = / . h(g)Mg-ιh)dg, fu f2 e #(G, Γ)

can be expressed asand the action of #C(G, Γ) on

(/ * <p)(:r) = Lf(g)φ(g-γ *

By Proposition 2.6 of [SH], the space X carries a G -invariant measure dμ.

For J: G X, denote by Γx the isotropy subgroup of Γ at x. We fix a base point

.To G XΓ ( c ^ ) and we normalize dμ by setting
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f_dμ=l.
J Γ*x0

Then, by Proposition 1.9 of [SH], we have

(1.2) f dμ = [Γxo: gxΓxgx

ι],
J Γ*x

where gx G G for which x0 = gx * «r. For simplicity, we write

For later use, we compute the value of μ(x).

= / dμ.
J Γ*x

LEMMA 1.1. If x ^ X is of conductor /, then μ(x) = [01 : ϋj]. In particular, if

D — 1, then μ(x) = 1 /or gwry x ^ X.

Proof Let D = 1 and x ^ X. Denote by Gx

ι) the isotropy subgroup of G{

/ 0 l / 2 \
SL2(Q) at x We may take x0 — ( Λ ) as base point. Then we get1 / Z u

— 1 \ \ gx Lrχo Ex — I —
1 0

0 1

Thus we get μ(.r) = 1 by (1.2).

i
LetDΦl,x = j S , S =

a b/2

6/2 c

5 t

/ r and x o = CΓ Then

(s, t) e Q2 - {(0, 0)}

So we obtain an isomorphism

t + bu -u 0 0 ί/2

Take a g ^ G such that ^ * J7 = x0, equivalently (/ detjf) Γ = ^S '^ . Then we

see
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-i _ ί / ° uf\ (t/2 0 \
I \ uf U / \ U t / ΔI

while

r =\τ{ ° u ) + (t/2 ° ) * + »&-*eA
lχ" V\-u o) \ 0 t/2) 2 ° j

Now, by (1.2), it is obvious that μ(x) = W1 : θ}].

§ 2. Decomposition of JS(Γ\ X) by characters of class groups

For a positive integer / let 9£(/) be the character group of Clf. If /i | /, then

pfιthere exists a canonical surjective homomorphism pfι: Cl/—* Cl/X induced by α

α0 Λ ; hence we have a natural injective map

lndf 3E(/i) -^ 3E(/)

The conductor/χ of χ ^ 3£(/) is defined by

Λ = min {/x e N | / i devides / , χ e

If / — / χ , then χ ^ £ ( / ) is called primitive. Let 3£pr be the set of all primitive

characters of arbitrary conductor.

Denote by ch x the characteristic function of Γ * x for x e X Let χ e Xpr

and T ^ X/r. Taking /i satisfying fx \ f\ and /1 /i, we put

It is easy to see that the right hand side is independent of the choice of such an / l f

hence we get a linear operator px on (60O{Γ\X). The operator px stabilizes

For a χ G 3£pr and a positive integer / such that/ χ | /, set

_ 1 ^

The purpose of this section is to show the following proposition.
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PROPOSITION 2.1. (i) Let Λ(Γ\X)χ = pχ(Λ(Γ\X)). Then the space d(Γ\

X)x is spanned by cXtf (/€= N,/χ | / ) .

(ii) The operators px commute with the action of $((G, Γ) and we have an

#£(G, Γ)-module isomorphism

= Θ
χeXpr

For the proof of Proposition 2.1, we need the following lemmas.

LEMMA 2.2. For any T ̂  Xfτ, we have

pχ{άi^τ) = -,TΠΊ. ..
f [χ([T])cχ,f if

where

χ([fl) =

Proof. It is easy to see that the identity holds for the case fχ \f. Let f%Xf

and take a common multiple/i of /and fx. Then we have

Λ ( c h i Γ ) = - f - Σ chi(r^s) Σ χ( ί^([ϋ]))
7 ^ / i [SleC// / [I/leC//! X

Pf/(U]) = IS]

= Σ chicΓ^χίί^tί/sl)) Σ
J

j Σ cΓ^χίί^tsl)) Σ ,
^ A [SleC// J x [V]<=Ker(pf/)

where [Us] e C/Λ with ̂  [C/s] = [S]. Since /χ X f we get

Σ
[V]

hence

LEMMA 2.3. (i) For any characters χ and φ in 3£pr, we have

Pχ°Pφ — Pφ° Px — δχ,ψpχ,

where δχ,ψ is the Kronecker delta.

(ii) For any S ̂  Xfτ, we have

c h i s = Σ f

f χeXP r

/J/
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Proof. Trivial from the orthogonality relation of characters. I

Two lemmas above show that j£(Γ\X)χ = pχ(s3(Γ\X)) is spanned by

{cχt/I / e N, A I/} and d(Γ\X) is a direct sum of d(Γ\X)x(λ e * p r ) as

C-vector space. Therefore, to prove Proposition 2.1, it suffices to show that the

operators px commute with the action of #C(G, Γ). For this purpose it is conve-

nient to introduce another $(G, Γ)-action on (βco(Γ\X). For φ = chx e

<f(Γ\X) and/ = c h w

 e #(G, Γ) with /£Γ = U , Γhh put

(2.1) / * < ? = Σch*,**.
j

It is easy to see that (2.1) induces an ^f(G, Γ) -action on (βco(Γ\X). Define a

C-linear map V : r ° (Γ\X) -> r°(Γ\X) by V (ch*) =

LEMMA 2.4. For ev r̂y / e 3i?(G, Γ) αnίί ^°°(Γ\Z), ^ following identity

holds:

f*φ= V(f* (V~ιφ)).

Proof. We have only to show the identity for / = chΓgr
 G tf?(G, Γ) and

. Let

where Γx— {γ ^ Γ\ γ * x = x\. Then we get

/ * φ(y) = #{i\y^gιΓ* x)

— # {i I there exists kΓx ^ gtΓ/Γx such that /c * x = y)

= # {AΓΛ €= Γ^Γ/Γ, I A * x = y).

We see that the number of left JΠr-cosets in ΓmΓx which give the same element

γm * x in X is equal to [Γm*x : mΓxm~ι Π / I . So we obtain

/ * φ = Σ [Γmι*x : wΛwΓ1

On the other hand we get

/ * φ = Σ [Γx: Γ, Π mr1 Γ /

since the number of left F-cosets Γk satisfying ΓhΓx — ΓkΓx is equal to

[Γx: Γ x Π h~ιΓh]. We obtain
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[Γx : Γx Π m" 1 Γm] = \ynΓxnΓι : Γ m *J [Γ w s t e : m / > r x Π Γ\

and, by (1.2),

[mΓxm~ι: ΓW*J — μim ^ x)/μ(x).

Hence we get the required density.

By Lemma 1.1 and Lemma 2.2, we see that

Px'V=V-px.

Hence the proof of the commutativity reduces to the proof of the identity

(2.2) Pχ(f*φ)=f*<Px(φ)), f e tf(G, Γ), φ e <f(Γ\X).

In the rest of this section, we consider the case D Φ 1, since the proof for

D = 1 is much easier. We need the following lemma due to Shintani (cf. [Sn, Lem-

mas 2.3 and 2.5]).

LEMMA 2.5. Let α be an Θ'/-proper ideal and p be a rational prime.

(i) Among p + 1 sublattices in a of index p, there are p ~ Xκ(p) Θ/p-proper

ideals and 1 + Xκ(p) Θf-proper ideals if p X f, and there are p Θfp-proper ideals and

one Θf/p-proper ideal if p\ f.

Let {cti,. . . ,ah) be a complete set of representatives of ideal classes in Clf and %

the set of all sublattices of at (1 < i < hf) of index p.

(ii) For every C €= Clfp, there are [0} : Θ}p] lattices b in $ such that b is 0/p-

proper and b ^ C.

(iii) If' p X f, then for every C ^ Clf, there are 1 + Xκ(p) lattices b in % such

that b is ΰf-proper and b e C.

(iv) If p I /, then for every C €Ξ Clμp, there are hf/hf/p lattices b in 38 such that

is Θf/p-proper and b €= C.

Recall that #(G, Γ) is generated as a C-algebra by the elements

{Tip, l), r ( i ,n^Pi ,

where T{p,p)±ι (resp. Tip, 1)) is the characteristic function of the double

(P o \ ± 1 / (P o\\
7^-coset containing I I I resp. I ] ). Since it is clear that the identity

\0 pI \ \0 1//
(2.2) holds for every Tip, p)±ι ^ ffliG, Γ), it suffices to show the following
identity for every p ^ P and x ^ —? Xfr:
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(2.3) Px(T(p, 1) * chj - T(p, 1) * pχ(chx).

We denote by (R) (resp. (Z,)) the right (resp. left) hand side of (2.3).

Write x = -?S, S ^ Xfx. First we consider the case where fxX f. Then

(R) = 0 by Lemma 2.2. If fx X fp, then clearly (L) = 0. If fx X fp, then we get by

Lemma 2.5,

'CX,fPt
IT) '* '

where the summation is taken over all [ 7] Ξ Clfp satisfying pf/([T]) = [S] .

Since fx X f we have (L) = 0. Thus, we see that (L) = (i?) = 0 if fx X f

Now we assume that fx \ f The conductor of a lattice b in if is, by definition,

a positive integer / for which b is an ^/-proper ideal and we denote it by f(b).

We may choose an ideal as coprime to pf from the ideal class corresponding to S.

We get

(I) = Σχ(b)c χ , f ( b >,
b

where b runs over all sublattices of as of index /> and

0 if/χ,

We consider the right hand side (7?). For [7] ^ C//' with/χ | / r , we simply write

χ(Γ) forχ(/)Γ[Γ]).Let

Σ χ(Γ)Σch.Lv
TleClf b

 m

where the summation with respect to b is taken over all sublattices b of aτ satis-

fying [aτ :b] = p and f (b) = m. Then we see by Lemma 2.5 (i) that

(R) =

If b is a sublattice of aτ of index )̂ and f (b) = /£, then b^/ = αΓ, and so we get by

Lemma 2.5 (ii)

— X W) u CXtfp
rif

= (p-Xκ,f(P))x(S)-cχ,fP
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(for the definition of χκ,f, see §1.2). If b is a sublattice of aτ of index p and f(b) =

f/p, then b ~ aT0f/p. Hence, if p | / we get by Lemma 2.5 (iv)

[U]eClf/p ! IT)

(S)cχ,///> if/χ| | ,

where the summation is taken over all [T] €= C// such that ^ / /7)([ Γ]) = [ ί/]. If

p X f, then we obtain, by Lemma 2.5 (iii),

^ 1 ^ 1 Σ χ(T) v
^ / lT]GClf bdϋf

 f

Wt:b\=p,\{b)=f

Σ χ(b)cXJ.
b c α s

[αs:b]=/>,f(b)=/

Hence we see that (i?) = (L), and this completes the proof of the commutativity,

and so we finish the proof of Proposition 2.1.

§3. Eisenstein series

3.1. We define the Eisenstein series on X, which is a slight modification of

the zeta functions of binary quadratic forms, by the following formula:

(3.1) £ ε ( x ; slf s2) = iuto) x Σ ^-7 —

where ε = 0 or I, sgn ε( ) = {sgn( )}ε and Γx = {/ e Γ | 7 * .r = xl.

This Eisenstein series coincides with the one introduced in [SH, §3.1, (3.7)]

up to the factor ζ(2si + 1) (see also [SH, §3.2]). The right hand side of (3.1) is

absolutely convergent if Re(sO > y, has a meromorphic continuation to the whole

C2 and satisfies the following functional equation (cf. [S]):

Λε(x; z2, zι) = Λε(x; zu z2),

where

Λε(x; zu z2) = πzι~Z2Γ[z2 — zx+ ^)VDJZ2 ~ zx + ^)Eε(x; z2 - zu - z2),
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VD,ΛS) =

1 if D< 0

cos(s7r/2) if D > 0 and ε = 0

lsin(sττ/2) if D > 0 and ε = 1.

3.2. As usual, for S e Xfr and s e C, we define

(3.2) ζs(s) = Σ 1 = Σ

and, for C Ξ Clf and s ^ C ,

(3.3) ζ ( / ) ( C ; s ) = Σ
N(a)s

a+fϋ,=e,

The series ζs(s) and ζ ( / ) (C; 5) are absolutely convergent for Re(5) > 1. It

is obvious that ζs(s) depends only on [S] ̂  Clf.

THEOREM 1. Let x ^ j S , 5, e Z / r . T/ien w

62"t-4

Σ̂
rfl/

i / I X O ,

w /î r̂  // ί5 the ideal class in Clf containing the ideal

<JfD) ifD>\

((/, -/)) ifD=\.

Proof. From (3.1), (3.2) and Lemma 1.1, it is easy to see that

E(x-s)-

+ f
if Z)>0

if £>< 0
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where [S'] = // [S]. Hence the theorem is an immediate consequence of the fol-

lowing lemma. •

LEMMA 3.1. (i) Let C e Clf. Ifa^C satisfies a + fθf = Of, then

Nf(aY
ς ' } N(a)s'

(α, /) =
(ii) For S e= Z/

Proof (i) We put

α — {ά I a <Ξ a},

where for x ^ K,

), a) if D = 1 and x = (β,ft)

^ if Z) ̂  1 and x = α + ft/D, α, ft e Q.

Then we get

iV(α) = N(a) and αα = N(a)0f,

and so

There is a bijection

{b e C"1 b

aa
N(a)

and so we obtain the identity.

(ii) Let α be an ideal belonging to the class [as] such that α + fθf = 0f. Then

we see that

aΰfι Π 0/2 = α^/2 if Λ I /2 and f21 /

and

iV/(α) = Nfl{a0fl) i f / i | / .
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We see that, for a ^ α — {0} and d which divides/,

(α, f)e £ dΰ if and only if d~ιa <Ξ at

For d I / put

then

Q - {0} = U

Now we get

ζs(s) = Σ Σ

iV(α)>0

(β,f/d) = l,N(β)>0

= Σ

4. Fourier-Eisenstein transform and Plancherel formula

4.1. Let Φώe be the C-vector space of Dirichlet series

3

which converge absolutely for Re (22) ~~ Re(^i) > -y , have meromorphic

continuations to the whole C 2 and satisfy the functional equation

Ξ(z2, zi) = Ξ(zu z2),

where

Ξ(zly z2) = πzι~Z2Γ\z2 — Zi + 2J r}D,ε\z2 — zx + -^J ξ (zu z2).

We define the Fourier-Eisenstein transform on sS(Γ\X) as follows:
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(4.1) Fε:d(Γ\X)

φ Fε(φ)(s)= lφ(x)Eε(x; su s2) dμ(x).
*J x

Here we consider E£(x; s) as a function in cβ0O(Γ\X). Note that Fε(φ)(s) is a fi-

nite linear combination of the Eisenstein series. In fact, by Lemma 1.1, we have

Fε(ψ)(s) = Σ ψ(x) W1 : Ufa] Eε(x; Su s2),
X<ΞΓ\X

where f(x) is the conductor of x. Hence Fε(φ) is in Gί)ώε.

Let

m = Cίx2,x3,...,xP,...], xP=p'+p-' ( / » e p ) .

PROPOSITION 4.1. (i) There is a surjective C-algebra homomorphism

, Γ) — m
α>

f - ht) = /,
t + 1/2a (Pig)) f , s U e

dipig)) • n g ) d g '

where p(g) is an element in \\ ΛJ^G b — 0[ such that gp(g) λ e Γ and

a{p(g))and d(p(g)) are the (l,l)-entry and the {2,2)-entry ofp(g), respectively.

(ii) The following identities hold for any f ^ $€{G, Γ) and any φ ^ ώ(Γ\X)\

(4.2) F e ( / * φ)(s) =f(s1)Fε(φ)(s)

(/* Eε)(x; su s2) = f(sι)Eε(x; su s2).

Proof (i) By the Iwasawa decomposition of GL(2), we see that />-*/is a

C-algebra homomorphism. By direct computation, we get

T(p,p)~(t) = 1 and Tip, l)\t) = pι/2ψ + p-*).

Thus we obtain the result.

(ii) The former identity is an immediate consequence of [SH, Theorem 2]. Since

Fε(chx)(s) = μ(x)Eε(x, s),

we obtain

<J*Es)(x s) = μixΓΨΛf * ch*)(s),

where f'(g) = fig'1). It is easy to see that / ' * φ = f * ψ for any /
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Γ) and φ e j£(Γ\X). Hence

(/* Eε)(x;s) =
= f(Sl)Ee(x; s).

This concludes the proof. I

Remark The homomorphism given in the first part of the proposition above

is nothing but a specialization of (the tensor product of) the Satake transform on

GL(2). We call the homomorphism the restricted Satake transform.

Let x ^ 3£pr and φ ^ J£(Γ\X)X, and define the normalized Fourier-

Eisenstein transform Fx by

Σ Fe(φ)(t,s2)
(4.3) Fx(φ)(t) = v*0'1^ Γ7 r .

2^ Fε{cχjx) (t, s2)
ε=0,l

It is obvious that the right hand side of the identity is independent of s2.

THEOREM 2. For anm e N , dβ

0χ,m(O = Π

a function φx,m(t) e 31 by

*p(t), eP = ord/,(m),

where

) 2 • iflκjx(P) = 0

ifχκ./x(P) = -

i/Z) # 1 αwd (p) = pp inlχ([p Π ̂ /J)

Then, forfx | / we have

(4.4) i?χ(cχ./)(/) = Wi : C}]φxs,fχ(t).

In particular, for any φ G s£(Γ\X)x, Fx(φ) is contained in the ring 9Ϊ.
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For the proof of the theorem above, we prepare some notation on L-functions

of quadratic fields. For χ ^ 3£(/) and s ^ C , let

(4.5)

and

; s ) = Σ χ(C)ζ(/)(C;s)

L(χ;s)=L{f*)(χ;s).

Then, if Re(s) > 1, we obtain

L(χ s) =HLP(χ;s) andL ( / )(χ;s) = L(χ; s) /Π Lp(χ; s),
P\f

where

(4.6)

Lp(χ s) = •

Π
piprunem* 1 ~ X ( tp

1

anάDΦ 1

and Z) = 1

Here we write χ([p]) for χ([(/>,/>), d , Λ ) ] )

Proof of Theorem 2. Let fχ \ f and put o — 0 or 1 according as D < 0 or D > 0.

Then, by Theorem 1, we obtain

FΛcχ,f)(s)= Σ χ ^
lec/

[SlsCI/

d\f

Σ
[Sled/

Pf

d([S]) = [T

[T]eCld
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= (1 + (- lYσ χ (Jfx)) /- "4 ( f ) " 2 + 7

d\f
f χ \ d

By (1.1), we obtain

Fε(cx>f)(s) = (l + ( - l ) ε σ χ (//,))

xL(χ;Sι+±) Σ ^ Π -
d\f p\d 1 - Xκ(P)P

fx\d

Hence we get

F (r Λ(h = \(Π\ (ΠιΛ I-*M y ή2t Π —
v * ' .,/ ίlrf 1 — ΎKXκ,fχ{P)P

. ,. / LjHχ; t + -̂-1 ep >
= [^ : 0}] Π /r°K> 1 + —± — ^ Σ ί H ,

where ^ = orάp(f/fx). By (4.6), we obtain the identity (4.4). •

Through the restricted Satake transform :M{G, Γ) —• 9ϊ given in Proposi-

tion 4.1 (i), we consider the ring 9ΐ as an ^ ( G , Γ)-module. Then, by (4.2) and

Theorem 2, the normalized Fourier-Eisenstein transform Fx defines an X(G,

F) -homomorphism of s&{Γ\X)x into 3ΐ i.e., the following identity holds for any

/ ^ ^f(G, Γ) and any φ ^ JS(Γ\X)X:

F χ (/* φ)(t) =f(t)-Fx(φ)(t).

THEOREM 3. Let χ ^ 3£pr.

(i) T/ι̂  normalized Fourier-Eisenstein transform

is an isomorphism of #£(G, Γ) -modules.

(ii) The space s£(F\X)x is generated by cxjx as an %Ϊ(G, F)-module and we

have an X(G, Γ) -isomorphism

, Γ)/J,

where 3 is the ideal oftf(G, Γ) generated by {T(p, p) - 1 | p G P}.



HARMONIC ANALYSIS FOR BINARY QUADRATIC FORMS 1 4 3

Proof. It follows from Theorem 2 that Fχ is bijective. This proves the first

part. Since Fχ(cχjx) — 1, we get

Γ) * cXJχ.

This also implies that JS(Γ\X)X = # ( G , Γ)/J>, where J is the kernel of the res-

tricted Satake transform. By the proof of Proposition 4.1 (i), we see that J is

generated by {T(p, p) - 1 \p e P}. •

4.2. We define a hermitian inner product on s£(Γ\X) as follows:

J x

Thus J£(Γ\X) becomes a pre-Hilbert space. Let L2(Γ\X) be the completion of

L2(Γ\X) = {φeΞ<g~(Γ\X)\ Σ μ(x) | φ(x) |2 < + oo}.

We denote by L2(Γ\X)X the closure of Λ(Γ\X)X in L2(Γ\X).

Now we introduce a pre-Hilbert space structure on 3Ϊ. For p e P, put

*p

Then 9Ϊ is canonically isomorphic to the restricted tensor product ®/>ep 9ϊ/>. First

we define a hermitian inner product on $lp.

Let ®/> = v — 1 (R/~j r Z l and let dpt be the Haar measure on ®/>

normalized by / dpt = 1. Consider the measure α>/,(£) on ®^ ̂ iven by

(4.7)

where ζp(2t) = ~. Then we can define an inner product on 9Ϊ/, by
1 — p ιt

<ΨP, ΦP>X.P = J ψp(t)ψp(t)ωp(t) (ψp, ψp

P

The inner product on 9ϊ = ® r 9ΐ/> is now defined by
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for

φ = φp
,ij and φ = Σ b} *, bj e C,

We denote by «S?| (resp. £l,p) the completion of 9Ϊ (resp. dip) with respect to the in-

ner product ( , ) χ (resp. < , ) χ,/>). The Hubert space *£\ is the Hubert restricted

product of £\,P (p e P ) .

THEOREM 4 (Plancherel formula). The normalized Fourier-Eisenstein transform

can be extended to an isometry of L2(Γ\X)χ onto !£\. In particular, for every φ, φ

j£(Γ\X)χ, the following identity holds:

(4.8) <φ,φ>jS= (Fχ(φ),Fx(Φ)>χ.

First we prove the following result on local factors of the inner product.

LEMMA 4.2. For any p €= P, we have

0
1

ifdΦe

ifd = e =

— ifd = e>0.

Proof By (4.6), we have

ζp(2t)

where
(pi

Π

Let Xκjx(p) ~ — 1. Then we get

I φχ,pe(t)φx,pi(t)ωP(t)

IP'-p-'l2

P' - P-
P2t-ρ-1

P' - p-'
-H) ipi-

if D= 1

if D Φ 1 and (p)

if Xκjx(p) = 0

if Xκ,fxip) = ~

iίXκjz(P) = 1,

=ρp in K.
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i~2t - b~l h2t — h~ll2 ( 1 + p'1) J Φ, \p~2t - p-1 p2t - p~

x {p-{d-ι)t(p-2t-p~ι) -p{d~ι)t(p2t -p~1)} dPt

h-(d+e)/2
V

x {ρ-{d-ι)t(ρ~2t - p-1) -ρid-1}t(ρ2t -p-1)} dPt

if d = e = 0

1 if d = e > 0

0 iίdΦe.

We can prove the other cases similarly.

Proof of Theorem 4. We have only to show the identity (4.8) for φ = cx>βfx

and φ — cXtdfx with ^, d €= N. It is easy to see that

(Cχ,efx, Cx,dfx/sΛ — δe,d ^ """.

On the other hand, we get

<Fx(φ), Fx(φ)>x = δe,d

 W ' h

 &lfχ] [0}x: Θ\fχY Π P " ' lf

hf* Pie I - XKJX(P)P

where βp — orάp(e). By the class number formula (1.1), we obtain the result. I

We define a function ωXtt in %°°(Γ\X) ® c M by

ωx,t = Σ hfφxj/fχ(t)cx,f.
W : VfJ f:fχ\f

THEOREM 5. For every φ G s3(Γ\X)x, we have

φ(x) — (Fχ(φ), ωXJ(x))x,

namely, the inverse transformation of Fx is given by

Fx(φ) •-> <Fx(φ), ωx,t>x.

Proof By the definition of the inner product ( , ) ^ , we have
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φ(x) = τ ^ y (ψyChx)^.

It is easy to see that

<Px<P, Ψ>Λ = <φ, PXΨ>Λ

for any φ, φ e # ~ ( Γ \ Z ) f if one of <p and 0 is in ^ ( Γ \ X ) . If <p is in JS(Γ\X)X

then #? = ̂ χ^). Hence, we get

0 if

where / is the conductor of x and S = fx ^ X/ r. By Theorem 4, we have

<<P, CXJ>Λ = <Fχ(φ),Fχ(cχJ)>χ.

Now the theorem follows immediately from (4.4). I

4.3. Theorem 3 enables us to determine all X(G, Γ) -common eigen-

functions in ^°°(/^\X). Since 9ΐ = ®'9t/>, we can define an algebra
P

homomorphism >ίf : 9ΐ —̂  C for any t — (tp)pep ^ C by setting

Λ*(® 0ί) = Π φp(tp) (ψp e 9?̂ , 0^ = 1 for almost all p).
P peP

Composing λt with the restricted Satake transform ~ : ̂ f(G, .Γ) —>• 9Ϊ given by

Proposition 4.1 (i), we obtain an algebra homomorphism

n -> c
- f(t):=λtφ.

Any algebra homomorphism of $(G, Γ) into C can be obtained in this manner

for some t ^ C .

For t — {tp)p<=p ^ C P , define a function ωχ,t ^ ^(ΓXX) by

W : vyj f.Jχ\f

where

eP =

It is not hard to check the identity

(4.9) f*ωx.t
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THEOREM 6. Let Ψ be an $(G, Γ) -common eigenfunction in (@°°(Γ\X) satis-

fying

/ * W = f(t) Ψf

Then Ψ is a (not necessarily finite) linear combination of {(Jΰx,t I X e Xp r), namely, Ψ

is of the form

Ψ= Σaχ-ωχ,t (aχ ε C ) .
X

Proof. We identify %~(Γ\X) with Hom c (^(Γ\X), C) via the nondegen-

erate bilinear form

<,> :W(Γ\X) x JS(Γ\X) -• C

{Ψ,ψ) •-» (ψ,φ>= (_Ψ{x)φ{x)dμ{x).
J X

Since <pχ(Ψ), ψ> = <Ψ, pχ(ψ)> for any i f e # " ( Γ \ * ) and <p e J ( Γ \ Z ) , the

space ^ ~ ( Γ \ ^ ) Z = ft(Γ(ί\Z)) can naturally be identified with Hom c (^(Γ\

X)x> C). By Proposition 2.1 and Theorem 3, we have

= π

Let ?P"be as in the theorem and denote by Ψx the f°°(Γ'\^ί)χ-component^χ(2r) of

Ψ. Then, for any / e 3ίf(G, Γ), we have

= f(t)<Ψ, cZfχ>

= f(tχψχ,c£fx>.

On the other hand, by (4.9), we have

<ωχ,t,/* Cx,/} =/( ί )<ω χ > f , Cχ,fχ}.

= /(«•

Hence

(if, - α, α> χ > ί ,/* cZf) = 0

where we put
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Since s£(Γ\X)x = #!(G, Γ) * cχJχ by Theorem 3, this implies that

Ψx = ax-ωχ,t.

Thus we obtain

W= Σaχ-ωχ,t.
X

Remark. For the space of nondegenerate binary quadratic forms over p-adic

fields, results analogous to Theorem 2-6 have been obtained in [HI], [H2].

§5. Examples of Hecke eigenfunctions

Let K be a real quadratic field with discriminant D. As in the previous sec-

tions, we put

X = XDΛ ={χ^ M(2, Q) \'x = x, άetx= - D/4).

Put Kr — K — Q and consider the bίjection

K' -» X

a ^ Sa

given by

1 - t r ( α ) / 2 \(
01 a-a \- tr(α)/2 N(a) I

Then, for any g—\ ) ε G = GZ,J(Q), we have
\c d)

Thus we can identify the space (β0O(Γ\X) with the space

<β~<T\K') = {φ:K'-+C

Hence the Hecke algebra M{G,Γ) acts on #°°(Γ\/Π.

We give examples of Hecke eigenfunctions in

EXAMPLE 1. In [A], Arakawa introduced the Dirichlet series

* / \ v1 cot Tina , _ τ,f,ξ(sy a) = Σ — (α e /jΓ')
n = l M
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and proved that

(1) ξ(s, a) converges absolutely for Re 5 > 1;

(2) ξ(s, a) has an analytic continuation to a meromorphic function of 5 on C;

(3) ξ(s, a) has a simple pole at 5 = 1.

Let C-ι(a) be the residue of ξ(s, a) at s — 1. Then the following is a refor-

mulation of [A, Theorem 2.16]:

THEOREM (Arakawa). The function C-ι(a) belongs to (6°°{Γ\Kί) and satisfies

the identity

.! (fe%(G,Γ)).

EXAMPLE 2. For an a e X', let

α = Co H ^

be the expansion into periodic continued fraction. Using the block of periodic

terms ai}.. .,ak, we define the Hirzebruch sum Ψ (a) by

0 if /c is odd

Ψ(a) = k
Σ ( ~ l)i+saj if A: is even.

; = l

In [Lu], Lu studied the behaviour of Ψ (a) under the action of the Hecke algebra.

Put

¥o(a) = Ψ(a)/μ(a), μ(a) =

Then the following is a reformulation of [Lu, Theorem 7]:

THEOREM (LU). 77Z<? function Ψo(a) belongs to (βoo(Γ\K/) and satisfies the

identity
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In other words,

Thus the functions C-i(ct) and Ψo(a) belong to the same eigen space of

Γ). Arakawa proved that these two functions essentially coincide with each other.

PROPOSITION (Arakawa).

where ε is the totally positive fundamental unit of K with ε > ε.

In §4.3, we proved that any $?(G, Γ)-common eigenfunction in (@OO(Γ\X) is

a linear combination of (i)Xtt's. If all tp coincide with a fixed t ^ C, then, by (4.4),

we have

, i/

where

E(x;t,0) =E0(x;t,0) +El(x:tJ0).

Hence if L (χ; t + TH Φ 0, eigenfunctions of ffl(G, Γ) corresponding to the

eigenvalue / l ~ * / ( 0 should have an expression in terms of special values of the

Eisenstein series (zeta functions of binary quadratic forms) at (t, 0).

For the function C-ι(a), such an expression has been obtained by Arakawa, if

the conductor of Sa is equal to 1 ([A, Proposition 3.1]). Namely, under this

assumption, he proved that

(5.1) c-Λa) = -J^E(Sal ~ τr,θ).

By Theorem 6, the ^(/Λ^Oχ-component of an #?(G, Γ) -eigenfunction can be

determined uniquely up to constant multiple by the corresponding eigenvalue.

Hence, by (5.1), we have the following:

THEOREM 7. For any character χ of Ch, the following identity holds:

pΛc-ύ(a) = -^~JPχ(E){s«; ~ | ,θ) (α e K').
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